Using genetic analysis, scientists have for the first time been able to conclusively establish that insects originated approximately 480 million years ago, and that they developed the ability to fly approximately 80 million years later.

Additional Resources

Published today in Science , the study, which involved more than 100 researchers from 16 countries including five from Australia’s CSIRO, answers long-held questions about the evolution of the world’s largest and most diverse group of living things – insects.

“Our research shows that insects originated at the same time as the earliest land-based plants, about 480 million years ago. These first insects were probably similar to today’s silverfish,” said Dr David Yeates, Director of CSIRO’s Australian National Insect Collection, and one of the authors on the paper.

“Then, about 400 million years ago, ancient ancestors of today’s dragonflies and mayflies were the first to develop wings – giving them the ability to fly long before any other animal could do so. This was at about the same time that land-based plants developed height, showing they were able to rapidly adapt to their changing environment. Some of these dragonflies quickly developed wings spanning up to 70 cm, and with slashing mandibles, these swift general predators weren’t to be messed with!”

The findings also confirm that while biodiversity crises led to mass extinction events in many other groups, such as dinosaurs, insects continued to survive and diversify by quickly adapting to new situations and opportunities that arose.

By answering many long-held questions about their evolutionary history, this research is essential to understanding the millions of insect species that shape our environment, and both support and threaten our natural resources.

“Insects are the most species rich organisms on earth. They are of immense ecological, economic and medical importance and affect our daily lives, from pollinating our crops to vectoring diseases,” said Dr Bernhard Misof, Professor from the Zoological Research Museum Alexander Koenig in Bonn, Germany, who led the research effort.

“We can only start to understand the enormous species richness and ecological importance of insects with a reliable reconstruction of how they are related.”

This reconstruction of the insect tree of life was made possible by creating and analysing a DNA sequence dataset of unprecedented scale.

“The research involved sequencing all the expressed genes from over 140 insects to calculate relationships between all the major groups of insects, and then integrating this with fossil evidence to estimate when the different groups evolved,” said Dr Yeates.

The development of novel software and algorithms to handle the ‘big data’ generated through the sequencing of insect genomes is another notable achievement of the project.

Following their success, the consortium of researchers is now embarking on the analysis of over 2000 insect genomes. This will provide a more detailed evolutionary history, and enable the researchers to explore exactly how insects responded to the crises and opportunities that appeared during their long and successful occupation of planet Earth.

Read the full report in Science .

Hear our news first

Want to hear our news as it happens, and be the first to see our most exciting stories? Subscribing to our news releases and newsletters including Snapshot will give you the latest info.

Images

  • An Archaeognathan

    An Archaeognathan, one of the closest living relatives of the first insect to evolve. Credit: David McClenaghan, CSIRO  ©David McClenaghan, CSIRO

    Download image
  • Australian Emperor Dragonfly in a hand

    Thankfully modern dragonflies, such as this Australian Emperor Dragonfly, are much smaller and friendlier than their ancient ancestors.  ©Daniel lightscaper, Flickr.

    Download image
  • Green lacewing

    Green lacewing (Chrysopa perla).  ©Oliver Niehuis

    Download image
  • Greenhouse camel cricket (Diestrammena asynamora).

    Greenhouse camel cricket (Diestrammena asynamora). Credit: Oliver Niehuis

    Download image
  • Flour Beetle (Tribolium castaneum)

    Flour Beetle (Tribolium castaneum). Credit: Oliver Niehuis

    Download image
  • Snakefly (Dichrostigma flavipes).

    Snakefly (Dichrostigma flavipes). Credit: Oliver Niehuis

    Download image
  • Stonefly (Perla marginata).

    Stonefly (Perla marginata). Credit: Oliver Niehuis

    Download image
  • Cuckoo wasp (Hedychrum nobile).

    Cuckoo wasp (Hedychrum nobile). Credit: Oliver Niehuis

    Download image

News release contact

Fiona Brown

Communication advisor

Contact us

Have a question? Contact us using the form below, or call 1300 363 400 during business hours, .

Your contact details

First name must be filled in

Your enquiry*

We'll need to know what you want to contact us about so we can give you an answer.

Please tell us how you heard about CSIRO