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In the wetlands of Kakadu, rangers 
are using AI and Indigenous 
Knowledge to care for country. 
Together with the Kakadu Rangers 
and Microsoft, we developed the 
Healthy Country Dashboard. 
Image: Michael Douglas

Key findings

Executive summary

We are amidst the largest surge 
in history in the development 
and adoption of artificial 
intelligence (AI) for scientific 
research in all disciplines 
of natural science, physical 
science, social science and the 
arts and humanities. This will 
impact the research sector, 
research organisations and 
individual research careers. 

1 2 3
The future impacts of AI 
range from enablement to 
transformation. Enabling 
means improving the speed, 
safety, cost‑effectiveness and 
quality of research. It’s also 
possible that AI could transform 
knowledge discovery, allowing 
scientists to solve problems 
hitherto beyond reach. 

We identify six future 
development pathways for 
research organisations seeking 
to upgrade AI capability for 
the future so they can harness 
the benefits and mitigate 
the risks of AI technologies. 
We provide detailed guidance 
on each pathway. 
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Why we wrote this report
This report aims to inform researchers and research 
organisations within the spheres of government, 
industry, community and academia seeking to develop 
improved AI capabilities. The report is focused on the 
use of AI for science, and it describes AI adoption trends 
in the physical, natural and social science fields. Using a 
bibliometric analysis of peer-reviewed publishing trends 
over 63 years (1960–2022), the report demonstrates a 
surge in AI adoption across all fields over the past several 
years. The report examines future development pathways 
and explores implications for science organisations. 

Artificial intelligence 
adoption trends
There is a recent surge in publications of AI adoption 
by scientists. By September 2022 approximately 
5.7% of all peer-reviewed research worldwide was 
on the topic of AI. This is up from 3.1% in 2017 and 
1.2% in 2000. In 2020, before research had migrated 
to COVID-19 topics, five (of seven) of the most 
influential research papers on Google Scholar (based 
on citation metrics) were on the topic of AI [1]. 

AI is being used in increasingly diverse research domains. 
In the field of computer science, 30% of all peer-reviewed 
papers are now on the topic of AI. However, the use of 
AI extends well beyond computer science. Practically all 
fields of natural, physical and social science and the arts 
and humanities are rapidly absorbing AI technology. 

Public and private sector AI research and development 
investment is rising. The average advanced-economy spend 
on research and development (R&D) has risen from 2.1% 
of GDP in 2000 to 2.5% in 2019 [2]. Within the R&D spend, 
resources devoted to AI are increasing. Since 2017 over 
700 AI policy and strategy initiatives have been developed 
across 60 countries and territorial jurisdictions [3, 4]. 

There is evidence of enhanced productivity through case 
studies. In this report we identify and review numerous 
case studies where AI has improved the efficiency and 
effectiveness of research. For example, a CSIRO team 
developed an automated robotic system that tests 
12,000 solar cells in 24 hours. Previously the research 
team could manually test up to 20 solar cells per day. 

The AI approach improved productivity by 600 times 
[5]. In another case, CSIRO researchers used machine 
learning to find disease genes. This approach processes 
10 million genomic variants in 15 hours compared to 
traditional approaches which are estimated to take 
100,000 years [6]. There are many more such examples. 

AI development can also be challenging. Whilst AI 
is a powerful technology, the pathway to successful 
application within research fields can be challenging 
and holds some level of risk. For example, a review of 
62 machine-learning models developed for COVID-19 
diagnosis from chest scans found that none were 
sufficiently reliable for clinical application [7]. 

Future development pathways
Software and hardware upgrades. Research organisations 
seeking to upgrade AI capability can take advantage 
of the continuously improving AI toolkit. Purpose-built 
processors designed for machine learning are speeding 
up computations. Quantum computing could lead to 
transformative leaps in computational power. Platforms 
such as PyTorch, TensorFlow, Microsoft Azure and Amazon 
Web Services along with code-free AI software tools are 
making it easier for scientists to develop and apply AI. 

The quest for better data. The era of ‘big data’ may 
be transitioning into the era of ‘better data’. Recent 
breakthroughs in machine learning, capable of 
supporting mission-critical, real-world applications, 
have been achieved using smaller datasets that are 
well curated, fit-for-purpose and provenance assured. 
Targeted investment in quality datasets will allow 
research organisations to develop AI capabilities. 

Education, training and capability uplift. There has 
been an explosion of university and technical-college 
training degrees and courses on AI at undergraduate 
and postgraduate levels over the past 5 years. 
The number of students enrolling in these courses is 
rising. There’s been an increase in the diversity of fee-
based, or free-of-charge, professional development 
education and training for scientists wanting to upskill 
in AI. Research organisations can take advantage of 
wide‑ranging training and education resources to recruit 
AI talent and uplift capabilities of existing staff. 
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Our robots can perform multi‑agent 
navigation to effectively explore 
unknown environments.

Toward human-centric artificial intelligence. 
In the vast majority of cases, AI will be augmenting 
not replacing the human scientist. Research 
organisations need to find ways via which humans 
work harmoniously with AI-enabled systems. Issues 
of trust, transparency and reliability will be important 
for scientists and reviewers working on AI systems. 

Improving workforce diversity. The AI research 
workforce lacks gender, ethnic and cultural diversity 
which limits the quality of outcomes. Improving the 
gender, ethnic and cultural diversity of the AI research 
workforce will lead to better science outcomes. 

Meeting societal expectations and regulations for 
ethical AI. Research organisations will be challenged 
to develop capabilities, technologies and cultures that 
deliver increasingly ethical AI. Societal expectations 
for ethical AI are rising. Voluntary principles for 
ethical AI may increasingly become regulations 
and laws. For example, AI-specific legislation has 
been proposed in Europe and the United States. 

Conclusion
This report demonstrates the widespread and rapid 
diffusion of AI technology across all fields of natural, 
physical and social science, and the arts and humanities. 
The current surge in uptake far exceeds the breadth and 
depth of AI’s 2 historical surges. There are no signs of a 
slowdown. Recent developments in AI are likely to have 
a lasting impact on how humans discover knowledge 
and solve problems in all fields of science and research. 
However, the pathway to AI adoption and capability uplift 
is challenging. Researchers are likely to experience both 
success and failure as they develop AI systems within their 
domains of expertise. This report identifies pathways 
for organisations engaged in science and research 
seeking to uplift their AI capability into the future. 
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Testing a bionic eye. In partnership with CSIRO 
spinout Bionic Vision Technologies, we helped 

develop a retinal implant along with a vision 
processing and software library to restore sight to 
a degree in people with profound vision loss due 

to Retinitis Pigmentosa or Macular Degeneration.
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We are seeing steep rates of adoption in science because, 
in many well-publicised cases, AI is improving the 
speed, cost-effectiveness, quality and safety of scientific 
research. In some cases, the benefits from using AI are 
transformational; scientists have been able to solve 
problems hitherto beyond reach. There is a hope that 
AI can provide a much-needed productivity boost for 
science. AI may help scientists address humanity’s greatest 
challenges such as climate change, pollution, resource 
scarcity and infectious diseases. However, not all AI projects 
have met the expectations of scientists. Sometimes AI 
projects can be complex, costly, time-consuming and 
labour-intensive with limited results. The pathway to 
AI enablement, which most science organisations have 
embarked upon, is both rewarding and challenging. 

This report has been prepared to help science managers, 
science organisations and investors understand plausible 
development pathways for AI. Our aim is to describe 
how AI has changed science and what the future may 
hold. We hope this will help science-sector workers 
make informed decisions about how they prepare for an 
AI‑enabled future. Such decisions may be about investment, 
divestment, capability uplift, education, training and 
organisational design. We think most of the world’s 
science and research organisations are currently working 
through these, and related, issues as they seek to harness 
the opportunities and mitigate the risks of AI technology. 

1	 Introduction

Other research institutes examining the impact of AI 
on science and exploring related issues include:

•	 The Alan Turing Institute. The institute was 
awarded £38.8 million ($70.6 million) in 2018 
for a 5-year research program on ‘AI and Data 
Science for Science, Engineering, Health and 
Government’. This applied‑research program 
aims to understand and accelerate productive 
application of AI within these sectors [9]. 

•	 The ‘Artificial Intelligence and Augmented 
Intelligence for Automated Investigations for 
Scientific Discovery’ (AI4SD) program aims to 
explore and demonstrate how AI technologies can 
boost discovery in all fields of research [10]. It is 
funded by the United Kingdom Engineering and 
Physical Sciences Research Council. A recent AI4SD 
conference was held at Chilworth Manor in the United 
Kingdom (and online) during 1–3 March 2022. 

•	 The Organisation for Economic Co-operation and 
Development (OECD). Under the broader umbrella of 
the AI Policy Observatory, the OECD held a conference 
on ‘artificial intelligence and the future of science’ 
from 29 October to 5 November 2021. The conference 
examined the science productivity slump and the extent 
to which AI may provide a solution [11]. At this conference 
experts from across the globe presented data showing 
declining productivity in the science sector and discussed 
improvements possible via AI technology [12, 13]. 

We are currently amid the largest surge, arguably ‘boom’, in the application 
and development of artificial intelligence (AI) for scientific research in 
history. Scholarly publications, patents, education, training, salaries, 
research activity and investment are increasing at unprecedented rates. 
We may now be on the steepest part of the adoption and development 
curve. This is happening across the entire economy. Practically all industry 
sectors, advanced economies, professions and world regions are seeing 
rapid uptake of AI. The science sector is no exception. There’s a worldwide 
competitive race, and collaborative movement, to develop AI capability [8]. 
Many scientists, and science organisations, are aiming to uplift AI capability.
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•	 The Stanford University Human-Centered AI Institute. 
This institute prepares the AI index and associated 
reports, which are regularly updated to provide a 
comprehensive dataset on AI technology uptake and 
adoption across all fields of science, industry and 
society [14]. This institute also has a lead role in the 
‘One Hundred Year Study of Artificial Intelligence’ 
(AI100), which provides an ‘insider’ perspective 
about the past, present and future trajectory of AI 
development. The most recent AI100 report was 
published in 2021 and is titled ‘Gathering Strength, 
Gathering Storms’ [15], indicating enhanced AI capability 
but coming with increased risks and complexity. 

•	 The Argonne Laboratory AI for Science Project. 
The Argonne Laboratories at Oak Ridge and Berkeley 
hosted ‘town hall’ meetings for over 1,000 scientists 
during July to October 2019 about the use of AI, big 
data and high-performance computing. The findings 
were captured in the ‘AI for Science’ report written by 
over 80 authors. This report provides a detailed account 
about the state of the art, grand challenges, advances 
over the next decade, accelerating development 
and expected outcomes from AI application in 
nine major fields of scientific research [16]. 

•	 The University of Adelaide Australian Institute for 
Machine Learning (AIML). Along with the Australian 
Strategic Policy Institute, the AIML recently published 
a report titled ‘Artificial intelligence: Your questions 
answered’ [17], which examines issues of development, 
adoption and adaptation to AI technologies in 
Australia. It also examines issues of sovereign 
capability and why Australian industry often cannot 
buy AI ‘off-the-shelf’. The AIML actively monitors 
and examines issues relating to AI in Australia. 

•	 The 20-year community roadmap for AI research in 
the United States [18]. This document, and associated 
program of activity, is concerned with AI capability uplift 
in the United States out to the year 2040. It identifies 
research priorities in the areas of (a) integrated 
intelligence, (b) meaningful interaction, and (c) self‑aware 
learning. The report makes recommendations about 
hardware and software resources, training and 
education, ethics, policy, workforce transitions and 
mission-led research for AI, amongst other matters [18]. 

This report contributes to the understanding about how 
AI will enable, and potentially transform, science from a 
global and Australian perspective. Our report opens with 
a brief history of AI and what makes now, the current 
boom cycle, different from the past. We then describe 
the global and Australian science sectors, highlighting 
science’s productivity slump which AI can potentially 
help solve. We next present a bibliometric analysis of 
AI adoption across all science domains and patterns 
of AI science and technology development. Lastly, the 
report explores AI development pathways in science 
over the coming decade and examines the strategic 
implications for scientists and science organisations 
aiming to uplift capability for an AI-enabled future. 
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2.1	 A turbulent history 
There are many detailed accounts of AI’s history. In this 
section we draw upon key publications [19-23] to provide a 
brief summary of AI’s historic development to contextualise 
our subsequent analysis of its current status and future 
development pathways. We emphasise that AI isn’t new 
to science; it has been on a long and turbulent journey 
with interest waxing and waning through history. 

AI is a field of science that has been widely considered 
done-and-dusted a few times. However, AI has shown a 
strong ability to bounce back and re-establish scientific 
prominence. It is hard, if not impossible, to identify a start 
date for AI research. Scientists were publishing on concepts 
related to AI in the 1930s and 1940s. For example, Walter 
Pitts and Warren McCullough [24] published a paper in 
1943 about how artificial neurons can perform logical 
functions. One of their students, Marvin Minsky, later 
developed the ‘stochastic neural analog reinforcement 
calculator’ [25] which has evolved into AI neural networks 
used widely in machine learning (deep learning) today. 

One of the pivotal papers in AI was written by Alan Turing 
(Figure 1) and published in October 1950 [26]. This paper 
opens with the words ‘I propose to consider the question, 
can machines think?’. It lays out the future challenges for 
AI to solve. Turing’s question is still being asked [27] but 
remains unanswered. Turing died in 1954. The field of AI got 
its name at the Dartmouth Workshop of 1956. Organised 
by John McCarthy, Marvin Minsky, Nathaniel Rochester and 
Claude Shannon, this meeting brought together leading 
AI experts of the time [28]. Workshop attendees agreed to 
adopt ‘artificial intelligence’ as the name of their emerging 
research field. Naming AI helped connect a related set of 
technologies, concepts and theories. It helped formalise 
and establish an identity for a new field of science. 

Investment and activity in AI escalated during the 1950s 
and, more so, in the 1960s. Significant advances occurred 
in the fields of natural language processing, automated 
reasoning, computational modelling, autonomous systems 
and robotics. The United States Defense Advanced Research 
Projects Agency (DARPA), the National Research Council 
and the United Kingdom Government were among the 
more notable investors in AI capability. The 1960s can 
be considered AI’s first boom time. However, sentiment 
changed in the early 1970s. The first AI ‘winter’ lasted 
from 1974 to 1980. It was triggered by the Lighthill Report 
commissioned by the British Government and written 

2	 Artificial intelligence – 
Why now?

Figure 1. Alan Turing – Can machines think? 

Data source: Sketch by Natata on Shutterstock.

by mathematician James Lighthill. The report was highly 
critical of AI’s failure to achieve its ‘grandiose objectives’ 
[29]. The funding agencies mostly agreed with the view 
that AI had over-promised and under-delivered. The flow 
of resources for AI research was reduced to a trickle [23]. 

Despite the setbacks, the 1980s saw a return to boom times 
with the rise of expert systems and connectionism – an 
approach in the cognitive sciences which explains mental 
phenomena using artificial neural networks. The Japanese 
Government began aggressively funding AI through 
the fifth-generation computer project [30]. The United 
Kingdom and United States governments were soon to 
follow, again injecting substantial funds into a range of AI 
research initiatives in the early/mid 1980s. The business 
community became engaged as private companies 
boosted funding for AI research and development (R&D). 

However, the boom times of the 1980s were 
followed by a second winter in 1987–1993. This was 
triggered by the business community which 
increasingly felt their investments in AI were failing 
to achieve commercial outcomes. Similar to the 
first winter, there was again a prevailing sentiment 
that AI had over‑promised and under-delivered. 
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Expectations had risen higher than what was achievable. 
It was reported that by 1993 over 300 AI companies had 
shut down or gone bankrupt [23, 31]. This triggered a 
review of AI investment by governments; and again, AI 
R&D funds were suddenly and substantially reduced in the 
United States, the United Kingdom and across the globe. 

Despite the two winters, the field of AI found a return to 
growth in the 1990s seeing the rise of new paradigms, 
tools, theories and applications. The 1990s saw the 
rapid growth of the internet, data and computing 
power. Since the late 1990s AI has remained on a strong 
growth trajectory. Research, investment, capability 
and adoption have continued to expand; there hasn’t 
been a third winter. There are no apparent signs of 
a slowdown. In the current era AI is having a greater 
impact on scientific research than ever before. 

2.2	 Why is now different?
Many of the historic conditions which characterised 
the time periods leading up to previous AI winters, 
sometimes called AI ‘springs’, exist at the current 
time. There has been a huge and sudden boom in 
investment. There is much hype. Expectations are 
running high, and there is considerable mythology and 
confusion surrounding AI’s capabilities and functions. 
If AI again fails to deliver on its perceived promises, it 
may enter another winter. However, there are reasons 
to believe the current era is different from the past. In 
this section we briefly explore what is different about 
the current epoch in the timeline of AI for science.

2.2.1	 Greater depth and breadth 
of adoption

Compared to historic booms, today’s AI surge has 
greater depth and breadth of technology penetration 
within diverse scientific fields, industry sectors, 
geographies, policy spheres and demographics. AI has 
gotten into practically everything everywhere. This is 
creating greater resilience for AI compared to historic 
boom–bust cycles. AI is too deeply embedded in too 
many places to suddenly lose relevance, as happened 
in the two winters of 1974–1980 and 1987–1993.

This embeddedness can be seen through publishing and 
patent trends. Our bibliometric analysis based on data 
from The Lens [32] reveals that 5.7% of all peer-reviewed 
research publications refer to AI in the title, abstract or 
keywords. This is up from 3.1% in 2017 and 1.2% in 2000. 

In 2021 alone, 344,000 journal papers, books, book 
chapters and conference papers were published on the 
topic of AI [33]. In 2020 Google Scholar reported that AI 
attracted more citations than any other research field 
and five of the seven top-cited papers were on AI topics 
[1]. Patents for AI have also been increasing sharply. 
According to data from The Lens the number of published 
patents worldwide on the topic of ‘artificial intelligence’ 
rose from 11,000 in 2017 to 57,000 in 2021 representing 
an average year-on-year growth of 84% over the last 5 
years [32]. This growth is happening in all world regions 
and most countries, with China being a standout: the 
number of peer-reviewed publications on AI from China 
now exceeds that from both the United States and Europe. 
Furthermore, the growth in AI publishing is happening 
in all industry sectors with sharp increases in the 
corporate, government, medical and other sectors [14]. 

In terms of expenditure, we are seeing sustained growth 
which is likely to continue over coming years. Most 
governments from advanced economies have announced 
and funded significant AI strategies, roadmaps, plans 
and policies. Canada was among the first of the OECD 
countries to commit to a national AI strategy in 2017 [34]. 
Since then over 700 AI policy and strategy initiatives 
have been developed across 60 countries and territorial 
jurisdictions [3, 4]. By late 2019, over $86 billion in funding 
had been announced for AI initiatives [35]. Investment 
has continued to grow. In 2021 worldwide spending on AI 
products and services grew 15.2% year-on-year, reaching 
US$341.8 billion. Growth of 18.8% is expected for 2022 
with total spending forecast to exceed US$500 billion 
per year by 2024 [36]. The share of this expenditure being 
invested in science and research is unknown, but due to 
the novelty and complexity of developing AI – e.g. training 
machine-learning algorithms – it is likely to be substantial. 

It is also worth noting that AI has now found its way 
into people’s day-to-day lives. Billions of people use, 
and increasingly depend upon, AI on a regular basis. 
Countless companies use AI technologies to provide goods 
and services to their customers. Before the turn of the 
century this was not the case. In the 1990s (and before) 
AI was a concept beyond the realm of most people’s 
lived experience. In comparison, people today routinely 
interact with powerful AI through smart-phones, smart-
cars and smart-speakers. This makes AI both tangible 
and practically useful. The contemporary widespread 
familiarity with AI makes it easier for today’s research 
community to communicate its value proposition. 
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2.2.2	 Hardware, software and 
data availability

Throughout history AI scientists have struggled 
to implement and test their ideas due to a lack of 
computational resources and/or lack of data to train 
machine-learning algorithms. Much was theorised but 
could not be proven nor developed. That is often why 
scientists hit a wall and could not realise their objectives. 
This boom is different. This boom comes with much 
better tools and much better data. Scientists can turn 
their ideas into technologies and technologies can be 
turned into consumer products with commercial value. 

For example, in the last 10 years we have seen the rise 
of graphics processing units (GPUs) which are well 
suited to support parallel computing. The GPU has 
been transformative for AI. It has enabled low-cost 
high-power computing for a vast range of complex 
machine-learning challenges. Furthermore, cloud-
based computing services are bringing these within 
reach. We are also seeing software tools and platforms, 
such as PyTorch, Tensorflow, Theano, MxNet, Microsoft 
Azure, and Amazon Web Services, make AI much more 
accessible to a broader cross‑section of scientists; a 
subset of AI functionality is usable for those without 
highly developed and specialised AI skills. More recently 
we have seen code-free AI tools that allow users to 
perform AI functions via relatively simple graphic user 
interfaces (GUIs). These are likely to improve over time. 

Another limiting factor for AI scientists in history has been 
the availability of data to train machine-learning algorithms. 
However, there’s no shortage of data today. There are 
challenges about managing an overwhelming volume, 
variety and velocity of data. There are also challenges 
about verifying data, as well as challenges about handling 
private and confidential data. If these challenges can be 
addressed, today’s scientists can have access to more 
data on every topic than ever before in history. The data 
comes from human internet usage, sensory systems and 
countless other rapidly expanding sources. These data 
are providing scientists with new opportunities to use AI 
to identify patterns, test hypotheses and make predictions. 

2.2.3	 Commercial drivers

While there have been surges in AI investment in the past, 
they do not come close to what is happening today. Private 
investment flows into AI have increased substantially over 
the past several years (Figure 2). Despite the pandemic, 
private investment in AI companies increased by a record 
high of 9.3% in 2020 year-on-year – which is above the 5.7% 
increase of 2019 – and exceeded US$40 billion [14]. Venture 
capital investment in AI has also been growing compared 
to other areas of investment. According to the OECD, the 
share of venture capital investments in AI start-ups reached 
20% of all venture capital investments in 2020, up from 
3% in 2012 [37]. The number of venture capital deals in AI 
companies grew by 34% annually between 2012 and 2020 
from 500 deals in 2012 to 3,900 deals in 2019 [37]. In 2020 
Australia was ranked 11th in the world by the total amount 
of private investment in AI companies [14] with the United 
States, China, United Kingdom and Israel at the top of the 
list. With so much invested, AI activity by R&D providers and 
product developers is likely to be sustained for some time. 

Figure 2. Private investment in artificial intelligence companies 
worldwide (billions of US dollars).

Data source: Stanford University Artificial Intelligence Index [14].
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HairNet is an artificial intelligence and 
machine learning model that can score leaf 

hairiness in cotton to assist breeders in 
identifying plants with beneficial traits.

2.2.4	 Improved scientific knowledge and 
technological capability

Lastly, today’s surge in artificial intelligence comes with 
solutions and/or improvements to some – but by no means 
all – of the longstanding machine-learning problems, and 
with knowledge gaps filled which limited AI’s development 
historically. For example, CSIRO re-implemented a classic 
machine-learning algorithm, Random Forest, enabling 
it to overcome the ‘curse of dimensionality’, which 
was brought on by today’s larger and more detailed 
datasets [6]. Other algorithmic improvements include 
new regularisation techniques which modify the learning 
algorithm to improve the generalisability of the model 
plus improve its performance on unseen data [38]. 
These techniques can reduce the problem of ‘overfitting’ 
in machine learning which happens when the model is 
too closely matched to input data and is, therefore, unable 
to predict future observations accurately. We have also 
seen the emergence of robust optimisers such as Adam 
[39], RMSprop [40] and modification of the stochastic 
gradient descent (SDG) procedure [41]. These approaches 
speed up optimisation algorithms and generate higher 
quality solutions compared to earlier methods. The last 
10 years have also seen the emergence of improved 

backpropagation algorithms which improve the accuracy of 
artificial neural networks by finely adjusting mathematical 
weight functions. The recent transition to the Rectified 
Linear Unit (ReLU) activation function has substantially 
helped address the vanishing gradient problem; a 
longstanding challenge in the field of machine learning [14]. 

Solutions to these, and other, AI barriers have opened 
up entirely new avenues for continued problem solving 
and improvement of AI technologies. This means 
AI science has a greater chance of delivering on 
expectations. The future is likely to see continued 
discovery and innovation in the field of AI enabling the 
development of enhanced technological capabilities.

2.2.5	 No slowdown in sight

There’s so much momentum behind the current AI 
growth cycle it is hard to see it ending anytime soon. 
If AI were to experience another winter in one field of 
research – such as computer science – it is unlikely to 
be winter everywhere. The field of AI has become so 
large and diverse it is likely to be experiencing all four 
seasons in sub-fields, application domains, geographies 
and industry sectors at any one point in time. 
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3.1	 What is the science sector?
The science sector is an interconnected, collaborative and 
dynamic global community with highly porous boundaries. 
It captures a diverse range of conceptual frameworks, 
paradigms, methodologies and cultural approaches to 
knowledge discovery. The Australian Academy of Science 
[42] says, ‘science can be thought of as both a body of 
knowledge (the things we have already discovered), and the 
process of acquiring new knowledge (through observation 
and experimentation—testing and hypothesising)’. 

Science happens in households, communities, 
start‑ups, large companies, government agencies, 
research institutions and universities. There are many 
ways of classifying scientific activity. The Australian 
Academy of Sciences identifies four broad and 
high‑level categories of scientific research [42]:

•	 natural science – the study of living organisms 
and physical sciences which includes the 
study of the material universe

•	 social science – the study of human individuals, 
communities, societies and institutions 
and how they interact and behave

•	 formal science – the study of logic and mathematics

•	 applied science – the adaptation and 
use of existing scientific knowledge for 
industry and societal applications.

The United Nations recently conducted global consultation 
to define the science sector for statistical purposes [43]. 
This analysis identified the concept of ‘scientific and 
technological activities’ which includes three components 
of science activity: (a) research and experimental 
development, (b) scientific and technological education 
and training, and (c) scientific and technical services. 
We have defined and conceptualised the science sector 
in the same manner in the subsequent analysis. 

3.2	 The global science sector
For some time, the world has been growing its science 
workforce and research spending (Figure 3). In 2018 the 
global research workforce was estimated by the United 
Nations at 9.33 million workers up from 8.01 million in 2014. 
This workforce is estimated to be growing over three times 
faster than population growth; increasing by 16% during the 
5-year period 2014 to 2018 [44]. Data from the OECD show 
that the number of researchers per 1,000 employed persons 
has increased from 6.1 to 8.9 during 2000 to 2020 [2].

Expenditure patterns for R&D are indicative of aggregate 
global-level science spending. Spending on R&D is 
outpacing global economic growth, reaching 2.2% 
of global GDP by 2020 compared to 2.0% a decade 
ago. In the OECD it has grown faster, reaching 2.48% 
in 2019. Recent estimates suggest the world now 
spends over US$1.7 trillion per year on research with 
10 countries accounting for 80% of expenditure. The 
top five spenders in absolute terms are the United 
States, China, Japan, Germany and South Korea. The 
country spending the most on R&D relative to GDP is 
Israel, which invested 4.93% of GDP in R&D in 2019 [2].

Global technology corporations are another key source 
of expanding funds, and overall activity, for scientific 
research. This has been a relatively recent phenomenon 
and is especially relevant to AI science. During 2005–2018, 
global private-sector R&D spending rose from $523.8 billion 
to $1.1 trillion [45]. A NASDAQ report [46] reveals the R&D 
budgets of the top spenders in 2020: Amazon ($62.3 billion), 
Alphabet ($40.2 billion), Huawei ($32.1 billion), Microsoft 
($28.1 billion), and Apple ($27.3 billion). These trends suggest 
that private corporations are funding or doing much of the 
world’s scientific research. Given the business objectives 
of these companies, much of this R&D is likely within the 
fields of data science and AI. The entry of the private/
corporate sector into R&D is impacting scientific research. 

3	The science sector

In this section we describe the size, structure and trends within the Australian 
and global science sectors. We examine how the sector has expanded and we 
examine the science productivity slump. It is likely that AI will play an important 
role in boosting science productivity and, in turn, economy-wide productivity.
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The bulk of the global research effort by publishing 
volume lies in the physical sciences, which contained 
44% of all publishing in the year 2021. This is followed by 
the health sciences, life sciences and the social sciences 
and humanities, which contained 22%, 20% and 14%, 
respectively, of publishing in the same year. The relative 
level of publishing within these domains has remained 
relatively stable over history. When we look beneath 
the top-level research domains, we see that the fields 
of medicine, biochemistry genetics and molecular 
biology, engineering, social sciences and computer 
science account for over half of all research publishing 
(Figure 4). Medicine is by far the largest research field, 
accounting for one-fifth of all research publishing. 
Again, this has remained relatively stable over history. 

The volume of research published across all fields of 
science has been increasing consistently for over 60 years 
(Figure 5). However, during the peak COVID-19 pandemic 
years of 2020 to 2022, global combined scientific publishing 
via journal papers, conference papers, books, book 
chapters and dissertations declined by 12%. This may have 
multiple causes, including: (a) the redirection of research 
effort towards urgent COVID-19 issues; (b) a switch to 
alternative non-traditional publishing venues; (c) decreased 
productivity of researchers working in lockdowns; and (d) 
reduced research funds in the university sector associated 
with reduced revenue due to COVID-19 disruptions. 
The patterns and consequences of pandemic-related 
research activity contraction are explored in the research 
literature in greater depth [48, 49]. These studies indicate 
the possibility of long-term effects and the disproportionate 
impact on female researchers with young children. 
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Figure 4. Share of global peer-reviewed publishing by research field in 2022. 

Data source: The Lens [32] and Scopus, Elsevier All Science Journal Classification [47]. Data sourced for 1 Jan 2022 to 20 Sept 2022. 
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Publishing venues may also be changing. During recent 
times, new open-access research-sharing platforms have 
risen quickly. For example, during 2016–2021 submissions 
of research papers to the arXiv pre-print server increased 
60% from 113,380 to 181,630 [50]. The material is not subject 
to peer review and, therefore, comes with a significant 
quality and reliability caveat. However, it does allow 
for rapid sharing of research results and is being used 
extensively. In another example, the ‘Papers with Code’ 
platform now reports 62,856 research papers (as of 8 Jan 
2022) [51]. The extent to which these alternative venues 
displace and/or complement traditional peer-reviewed 
publishing, and/or morph into new publishing models, 
remains to be seen. Peer review is still needed to separate 
knowledge from opinions. The question is whether new 
models can uphold this critical function whilst speeding 
up the process of knowledge sharing [52]. What’s evident 
at the current time is sizeable and rapidly increasing usage 
of the alternative venues by the science community. 

3.3	 The Australian science sector
In the Australian and New Zealand Industry Classification 
(ANZIC) the science sector fits under the industry 
sub‑grouping ‘scientific research services’ [53]. In 2016, this 
industry contained 28,850 workers, roughly 0.3% of the 
Australian workforce. However, most scientists work within, 
and most science happens within, other industry sectors 
(Figure 6). The vast bulk of Australian scientists do not work 
in the science industry. They use science to problem‑solve 
in other industries and societal spheres. The ‘science 
sector’ is spread widely across the entire economy. 

Using the most recent population census for 2016, 
we identify 109,890 natural, physical and social scientists 
in Australia representing 1% of the total workforce [53]. 
We note a degree of uncertainty in this estimate due to 
the category groupings used by the Australian Bureau 
of Statistics. It is likely that we are including some 
non‑scientists and excluding some scientists because 
there is no category for ‘scientist’ in our statistics; it 
requires aggregating and disaggregating other categories. 

Figure 5. Worldwide peer-reviewed scientific publishing in all fields for 1960–2021. 

Data source: The Lens [32] database of peer-reviewed scholarly publications. 
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Nevertheless, we believe a reasonable approximation 
has been achieved using the occupation information 
in the census (Appendix A). From this we identify 11 
sub‑categories of the scientist profession (Figure 7). 
The two largest groupings are medical laboratory 
scientists and environmental scientists, which together 
account for about 30% of the scientific workforce [53]. 

At 22% of the total science workforce, Australia’s 
professional services sector contains the largest share 
of scientists [53]. It includes sub-industry groupings such 

as management consulting, architectural, engineering, 
law, accounting, market research, veterinary and other 
services. This analysis suggests that much of AI for science 
(the focus of this report) is likely to occur within Australian 
industry as opposed to dedicated research organisations 
and universities. This is because most scientists work in 
industry. However, research organisations may be more 
focused on theoretical and early-stage developmental 
aspects of AI compared to industry scientists who 
may be focused on adoption and application. 

Figure 6. The number of Australian scientists by industry grouping.

Data source: Australian Bureau of Statistics, 2016 Population Census [53].

Figure 7. The number of Australian scientists by field of science. 

Data source: Australian Bureau of Statistics 2016 Census (see Appendix A for methods and assumptions) [53].  
Note: Thesocial science field contained a small number of non-science occupations that could not be disaggregated. 
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R&D spending patterns recorded by the Australian Bureau 
of Statistics [54] provide insight into science investment 
patterns. In 2019–2020, total expenditure on R&D 
by business, government, higher education and not-
for‑profit sectors in Australia amounted to $35.602 billion, 
representing an increase of $2.54 billion (8%) over the 
preceding 2 years. Much of the growth in R&D spending 
comes from the higher education sector, which increased 
from $11.24 billion in 2017–2018 to $12.71 in 2019–2020, 
an increase of $1.47 billion (13%). However, over the 
longer-term Australian R&D spending declined as a 
percentage of GDP from 2.1% in 2012 to 1.8% in 2020. 

At the higher levels of the research field taxonomy, the 
publishing profile for Australian research has similar 
expression to global research. However, at a more 
granular level we can see that Australia has comparative 
specialisation in certain fields. To examine this, we 
calculate specialisation quotients at the second-level of 
the All Science Journal Classification (ASJC) by Scopus, 
Elsevier [47] which contains 26 unique research fields. 
The specialisation quotient is calculated as follows:

A specialisation quotient above 1 implies the research field 
is associated with greater output in Australia compared to 
the average for all research fields. This analysis reveals that 
over the 10-year period 2012–2021, the fields of psychology, 
health professions, earth and planetary science, nursing, 
agricultural and biological science and environmental 
science have higher levels of comparative specialisation 
in Australia (Figure 8). By comparison, Australia has lower 
levels of comparative specialisation in dentistry, physics and 
astronomy, mathematics, chemistry and materials science. 
At the even more granular (third) level of the research field 
hierarchy, the top 10 fields of research by specialisation for 
Australia include: emergency medical services; research and 
theory; community and home care; tourism, leisure and 
hospitality management; economic geology; chiropractics; 
occupational therapy; pharmacy; physical therapy, sports 
therapy and rehabilitation; and ecological modelling.

Specialisation quotient  
for a given research  
field in Australia

=

Number of publications 
in research field by 
Australian authors

÷
Number of publications 
in all research fields by 
Australian authors

Number of publications 
in research field by 
worldwide authors

÷
Number of publications 
in all research fields by 
worldwide authors
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Figure 8. Comparative levels of specialisation in Australian science and research during 2012–2021.

Data source: The Lens [32] and Scopus, Elsevier All Science Journal Classification [47]. A higher score indicates greater 
specialisation within the given field of research compared to the average comparison of Australia and the world. 
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3.4	 Productivity decline
Productivity is the efficiency via which inputs are 
converted to outputs. Productivity is an important 
determinant of short-run economic growth and the primary 
determinant of long-run economic growth (and wealth 
generation). Ideas are the fuel source for productivity. 
When people discover how to produce something or 
deliver a service more efficiently it leads to productivity 
growth. Science is one of the most important pathways to 
discovery and ideation. The positive associations between 
science, ideas and productivity are well established 
and accepted, although the magnitude of benefit is not 
easily quantified [55]. However, over the past decade or 
so, the world’s advanced economies, and the science 
sector itself, have been caught within a productivity 
slump (Figure 9). This is harming economic growth and 
limiting long-term improvement of living standards. 

A comprehensive study published in the American 
Economic Review in 2020 finds that within the science 
sector ‘research effort is rising substantially while research 
productivity is declining sharply’ [56]. The analysis 
examines agricultural crop yields, semi-conductors, cancer 
treatments, heart disease treatments, intellectual property 
patents and overall economic productivity. The analysis 
uses outcome metrics related to benefits such as changes 
in crop yields (e.g. wheat, corn) per unit of area resulting 
from agricultural R&D. Similar outcome metrics were 
used for the other categories. The researchers show that 
the cost of developing new pharmaceutical products to 
treat illness doubles every 9 years. They find that while 
the research workforce has grown, productivity (output 
per researcher) has decreased [56]. We are getting 
fewer ground-breaking ideas for each dollar invested. 
For example, the cost of developing a new antibiotic 
was estimated at US$1.581 billion in 2017 [57]. This far 
exceeds the costs of antibiotic discovery compared to 
the ‘golden era’ of the 1970s and 1980s. For antibiotic 
discovery, and many other types of scientific discovery, the 
next wave of discovery appears harder to achieve [58]. 

The authors conclude that the United States needs to 
double research effort, and double its research workforce, 
every 13 years to maintain science output. Without this 
investment, they argue, the United States economy will 
experience productivity decline and declining rates of 
GDP growth [56]. The United States economy, and other 
advanced economies worldwide, increasingly depend 
on science and technology improvements to sustain 
growth. Therefore, it is critical that the science sector 
– the engine room for the creation of ideas – keeps 
operating at full pace. If science productivity is declining, 
the only way to achieve this is via investing in more 
scientists and more science resources. The economists 
who did this study indicate that in advanced economies, 
income growth and improved living standards depend 
on research productivity and research effort [56]: 

Figure 9. Average (mean) annual OECD-country multi-factor 
productivity growth.

Data source: OECD Statistics [2].
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The centrality of innovation, science and research to 
productivity uplift and economic growth is well accepted 
and demonstrated within the field of economics. It means 
that if research productivity is declining, the only way 
of ensuring income growth is via increasing research 
effort. This is the approach followed by most advanced 
economies, as shown in the R&D expenditure data and 
statistics on the growing R&D workforce presented earlier 
in this chapter. Most OECD economies are growing the 
share of GDP spent on R&D to offset declines in research 
productivity and achieve overall economic growth. 

The United States economic study finding productivity 
decline isn’t a standalone. A study from the Research 
Institute of Economy, Trade and Industry in Japan applied 
the same techniques and found ‘significant decline of R&D 
efficiency in the Japanese information service industry’ [12]. 
The researchers recommend that the Japanese government 
implement R&D policies that address the decline. Another 
team of economists from the Leibniz Centre for European 
Economic Research and the Copenhagen Business School 
replicated the United States study for China and Germany 
using firm-level data over three decades [13]. They find 
evidence of productivity decline in both countries and 
‘strong decline’ in Chinese R&D productivity. The authors 
conclude that ‘diminishing returns in idea production are 
a global phenomenon, not just confined to the United 
States’ [13]. These studies were presented at a recent OECD 
workshop examining science productivity and AI [11]. 

There will be many policy interventions needed to solve 
the productivity slump in science. However, the recent 
surge in AI capability and adoption is likely to play an 
important role. Recent years have seen AI substantially 
improve the speed, quality, safety and cost-effectiveness 
of scientific research. AI is already enabling discoveries 
which were hitherto beyond reach. Although AI has 
been used by scientists since the 1960s, it hasn’t been 
mainstreamed until the last several years. The last few 
years have seen a huge increase in AI development 
and application in all scientific fields. AI is likely to be 
one of the most important mechanisms for boosting 
science productivity and escaping the slump. The need 
for science to reinvent itself, and problem-solve for 
industry and society, is likely to be a driving consideration 
for AI development and adoption into the future.
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Our bushfire simulation 
software Spark models bushfire 

spread to help plan for and 
manage bushfires.
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4.1	 Enablement or transformation?
To demonstrate the potential of AI to impact knowledge 
discovery, let us consider the case of electricity generation 
via nuclear fusion. According to the International 
Thermonuclear Experimental Reactor organisation in 
France, nuclear fusion creates 4 million times more 
energy than chemical reactions such as burning coal, 
oil or gas [59]. Electricity generation via nuclear fusion 
represents one of the most important (future) scientific 
discoveries for humanity. If discovered, nuclear fusion 
would provide an abundant and practically inexhaustible 
source of clean energy. Nuclear fusion does not produce 
the high-activity and long-lived nuclear waste associated 
with nuclear fission. Nuclear fusion provides greatly 
enhanced safety, substantially reduced financial costs 
and reduced risk of weaponisation [59]. Nuclear fusion 
can help solve climate change while supplying abundant 
energy for ample food, water and mineral (via mining and 
recycling) production. It is a game changer for humanity. 

The main problem with electricity generation via nuclear 
fusion is that it currently cannot be accomplished in a 
practical and industrial way. The scientific community has 
been trying for decades. However, it appears this capability 
is getting closer. In early 2022 British scientists reported 
the production of 59 megajoules of energy sustained for 
5 seconds from a nuclear fusion reaction; while the duration 
is minuscule by industrial electricity generation standards, 
this is nevertheless a major improvement upon previous 
records [60]. Another significant breakthrough came from 
the field of AI at about the same time. In February 2022 
the results of a collaboration between DeepMind and 
the Swiss Plasma Center were published in Nature [61]. 
In this project reinforcement learning, a type of machine 
learning, was used to control the super-heated suspended 
plasma needed for the nuclear fusion reaction within a 
device called a tokamak. Reinforcement learning was used 
to control voltage in the tokamak and, thereby, the shape 
of the suspended plasma, ensuring it met experimental 
requirements while not touching the walls of the tokamak. 

This is a well-understood but extremely difficult‑to‑solve 
optimisation problem for nuclear physicists. Reinforcement 
learning was able to identify plasma configurations 
not previously known. As reported in Wired magazine 
[62], Ambrogio Fasoli (fusion and plasma physicist 
and director of the Swiss Plasma Center) says this 
represents a ‘significant step’ on the pathway to nuclear 
fusion and that AI enables ‘us to explore things that 
we wouldn’t explore otherwise, because we can take 
risks with this kind of control system we wouldn’t dare 
take otherwise’ and that ‘if we are sure that we have a 
control system that can take us close to the limit but not 
beyond the limit, we can actually explore possibilities 
that wouldn’t otherwise be there for exploring’ [62]. 

For scientists working on nuclear fusion, AI has provided 
a big boost. It has removed one of the critical barriers on 
the pathway to discovery; the ability to control the plasma 
within the tokamak. The future impact of AI on science 
and knowledge discovery can be viewed as a continuum 
of possibility. At one end of the continuum is enablement: 
the useful application of AI tools to help scientists do what 
they are already doing faster, cheaper, safer and better. 
At the other end of continuum is transformation: the use of 
AI to remove major barriers to scientific progress leading 
to paradigmatic shifts, new approaches to knowledge 
discovery and new possibilities for problem solving. 

The case for enablement is well demonstrated through 
thousands of published AI studies within practically all 
science fields over recent decades. Our observations in 
this report, that the share of global scholarly publishing 
on AI has risen since 2020 from 1.2% to 5.7% and AI 
is now applied in virtually all disciplines, provide 
evidence of the usefulness of AI to scientists and 
researchers. The extent to which AI will (in the future) be 
transformative and associated with paradigmatic shifts 
in approaches to knowledge discovery and major leaps 
in problem‑solving capability is less clear. However, some 
AI scientists see this as a distinct possibility. 

4	Artificial intelligence and 
knowledge discovery
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Hiroaki Kitano is a Japanese AI scientist and is the director 
of both the Systems Biology Institute and Sony Computer 
Science Laboratories in Tokyo. Writing in Nature [63], 
Kitano proposes the ‘Nobel Turing Challenge’, which ‘aims 
to develop a highly autonomous AI system that can perform 
top-level science, indistinguishable from the quality of 
that performed by the best human scientists, where some 
of the discoveries may be worthy of Nobel Prize level 
recognition and beyond’. In this paper Kitano also argues 
that future AI science ‘may be an alternative form of science 
that will break the limitation of current scientific practice 
largely hampered by human cognitive limitation and 
sociological constraints’ and that such approaches ‘could 
give rise to a human-AI hybrid form of science that shall 
bring systems biology and other sciences into the next 
stage’ [63]. Kitano is connected with a team at the Alan 
Turing Institute in the United Kingdom which is delivering 
a project (‘The Turing AI scientist grand challenge’) 
which tackles similar and related objectives [64]. As stated 
on the Alan Turing website, this ongoing project started 
in January 2021 and is, among other things [64, 65]:

•	 reviewing current autonomous systems capable 
of performing scientific research with a focus on 
AI approaches capable of pushing disciplinary 
science beyond the current cutting-edge

•	 developing a multi-year roadmap charting 
a scientific and technical pathway for AI for 
science with milestones identified in materials, 
biomedicine and environmental sciences.

A related line of inquiry pursued by researchers working 
on the philosophy of science is about the possibility 
of theory-free, data-intensive science [66-68]. Starting 
in the early 2000s ‘this approach is supposed to be 
data driven, strongly inductive, and relatively theory 
independent’ [69]. Data-intensive science can be 
considered transformative as it represents a paradigm 
shift challenging existing approaches to knowledge 
discovery. The idea comes from the successful application 
of data science for forecasting in fields like meteorology 
[70], economics, energy, and demographics [71]. 
The idea has credence because sometimes data can 
work better than theory for modelling and predicting 
system behaviour [71]. However, science philosophers 
have criticised the idea of theory-free data‑intensive 
science [72]. Some have argued that researchers using 
‘big data’ approaches (akin to data-intensive science) 
may sidestep the critical hurdle of causality and rely 
upon statistical correlation to explain and predict system 
behaviour [73]. The concern about sole reliance on 

data-intensive approaches is they (a) fail to draw upon 
existing theory, and (b) fail to establish and understand 
causality [73]. This can lead to errors and accidents. 

Recent perspectives suggest that ‘data versus theory’ 
is a false dichotomy and that there is no competition 
between the two [69]. Instead, data science approaches 
are inextricably linked to theory and have unique 
application in practically every field of science [74]. 
Techniques such as linear regression analysis have long 
been used by scientists to understand and explain 
real‑world phenomena. When linked with other tools 
and ideas, these techniques can lead to confirmation of 
existing theories or the development of new theories. 
Scientists have always used data, and as the tools of 
data science get better, they are getting better at using 
data. Theory and causality haven’t vanished; they remain 
critically important. The observations about data-intensive 
science are likely to apply to AI-intensive science. Data 
science often uses AI, and AI almost always uses data 
science; the two fields are increasingly inseparable. 

4.2	 Case studies – Artificial 
intelligence applications for science
In this section we describe case studies where 
AI has improved the efficiency and effectiveness 
(the productivity) of scientific research. A more 
detailed, comprehensive and up-to-date repository 
of case studies is available on the CSIRO website 
(www.csiro.au/en/research/technology-space/ai). 

The case studies also illustrate how AI is enabling science 
and research in diverse fields of study. This includes 
examples of enablement and transformation, where 
AI has enabled scientists to solve complex problems 
and has created an elevated platform of capability and 
knowledge discovery. Overall, AI and its constituent 
technologies (such as pattern recognition and machine 
learning) appear to considerably enhance and accelerate 
the scientific process by allowing: (a) faster processing of 
data, (b) handling of very large and datasets, (c) handling 
of disparate datasets, (d) offloading of menial tasks, 
(e) deeper and wider exploration of the experimental 
space, (f) more accurate predictions due to better models, 
and (g) faster and more reliable detection of salient 
and/or anomalous patterns or events. However, the 
enhancement and acceleration of science via AI is largely 
predicated on relevant data being available in digital 
format, thereby necessitating that any physical experiments 
need to be designed and executed such that the primary 
objectives include data acquisition in digital format. 
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4.2.1	 Predicting the 3D structure 
of proteins

Proteins are essential for the growth and maintenance of 
all cells and tissues [75, 76]. Understanding their structure, 
or the way they fold, is key to identifying their function – 
a time-consuming and challenging problem that scientists 
have spent decades trying to solve [75, 76]. AlphaFold 
is a neural network system developed by Google’s 
DeepMind that can map the 3D structure of proteins 
with significantly greater accuracy than conventional 
methods [75, 77]. AlphaFold has been applied to map 
the human proteome (the entire set of proteins that 
make up the human body) and was able to predict the 
structure of 98.5% of human proteins [77]. Together with 
the European Molecular Biology Laboratory’s European 
Bioinformatics Institute, DeepMind has developed the 
AlphaFold Protein Structure Database to make these 
predictions available to the scientific community [78]. 
This technology can potentially support future advances 
in biological research and drug development.

4.2.2	 Accelerating solar panel research

Researchers at CSIRO have developed a research robot 
that can autonomously test flexible solar panel samples 
[5]. These researchers developed the autonomous system 
during the ‘second wave’ of COVID-19 in Melbourne in 
2020. Before this, researchers could manually test up to 
20 solar cells per day and had to be physically present 
in the lab [5]. The new automated research system is 
controlled remotely and could test 12,000 cells in 24 hours, 
which represents a 600-times improvement in productivity 
[5]. AI and machine learning is also being applied to 
efficiently analyse and predict parameters for solar cell 
manufacturing of organic solar cells [77]. These applications 
illustrate how autonomous testing, combined with machine 
learning, can increase the efficiency of scientific research 
and accelerate the development of new technologies, 
even while scientists are working from home [5]. 

4.2.3	 Enhancing the reach of citizen science

AI is being applied in citizen science, assisting civic 
educators and scientists in engaging the community in 
scientific endeavours and collecting large datasets on 
rare or difficult to access phenomena. Examples include 
iNaturalist, a platform run by the California Academy of 
Sciences and National Geographic where members of the 
public can submit photos of the natural world, including 
animals and plants [79]. This platform uses computer 
vision and a machine-learning model previously trained 
on an existing research-grade dataset of images [80, 81]. 
Citizen science can enhance the spatial and temporal 
resolution of data in ecological monitoring projects 
relative to traditional methods [82]. Using AI systems can 
improve the cost efficiency of collecting, processing and 
analysing data generated by the public [82] enabling more 
researchers to leverage the benefits of citizen science.

4.2.4	 Predicting the replicability of 
scientific studies

The replicability of scientific findings was brought into 
question with a series of publications demonstrating that 
a large share of studies in psychology, economics, and 
medicine could not be replicated [83-85]. Non-replicability 
can impede scientific progress, hinder public support and 
trust in science, and waste finite funding resources [86]. 
Researchers from Northwestern University used machine 
learning to accurately estimate the replicability of a study; 
meaning the extent to which it is possible to replicate 
the methodology but not necessarily whether (or not) 
the results hold-up. The machine-learning approach 
performed as well as expert survey predictions, which 
is the current gold-standard, but resource-intensive, 
method of assessing replicability [86]. While this research 
is preliminary, it suggests that AI can potentially be used to 
test the replicability of scientific findings without imposing 
additional time and resource requirements on scientists.
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4.2.5	 Discovering and developing 
new materials

AI is being widely applied across materials science to 
accelerate the rate at which scientists can discover and 
develop new materials [87]. An early example is the 
Autonomous Research System developed by researchers 
from the Air Force Research Laboratory, UES Inc. and 
Lockheed Martin Advanced Technology Laboratories 
[88]. This system combines robotics, AI, data science, 
and in situ technologies to design, execute, and analyse 
experiments faster than traditional human-driven 
approaches [88]. This approach has been used to explore 
the synthesis of carbon nanotubes – a well-suited material 
for electronics applications that scientists have spent 
decades trying to understand [88]. Through autonomous 
experimentation, AI can increase the speed and cost of 
materials science research, increase the productivity of 
scientists, and maximise the value that can be derived 
from complex multi-dimensional datasets [87]. 

4.2.6	 Untangling mathematical 
relationships 

Advances in mathematics depend on the ability of 
mathematicians to discover new patterns and formulate 
statements around the potential relationship between 
objects (referred to as a conjecture) [89]. These insights 
are then used to develop new mathematical proofs [89]. 
AI can assist mathematicians in the initial step of detecting 
patterns between objects, which can help guide them in 
developing mathematical formulae and theorems [89]. 
A team of researchers from DeepMind, the United Kingdom 
and Australia have applied AI to study the algebraic 
and geometric structure of knots – a longstanding 
mathematical challenge [90]. The machine-learning 
approach enabled the researchers to discover novel and 
surprising patterns, and develop new conjectures [89].

4.2.7	 Improving the efficiency in 
conservation science

Like many aspects of science, conservation research 
operates in a resource-constrained environment. 
Conservation managers need to determine the most 
effective way of managing these finite resources and 
identify when to stop efforts to manage and survey an 
endangered species population. Still, they often have 
insufficient information for making these decisions [91]. 

To provide better intelligence, deep-learning techniques 
have been used to count the number of endangered species 
animals from aerial survey images [92, 93]. Using images 
collected from motion-sensor cameras placed in natural 
habitats, researchers found that a deep-learning system 
can identify animals as accurately as a human observer 
[93]. The use of AI here to classify around 5.5 million 
images saved over 8.4 years in human labour [93]. 
This demonstrates the significant cost and time savings 
that AI can provide in conducting conservation research.

4.2.8	 Predicting high-impact research

The impact of scientific outputs is typically measured 
through citation metrics, such as h-indices and journal 
impact factors. These metrics can be discipline‑specific, 
biased, or reflect lag quality indicators [94, 95]. 
With trillions of dollars invested in research globally each 
year, having reliable predictors of impactful research is 
critical. Researchers from the Massachusetts Institute 
of Technology have developed a DELPHI framework 
(Dynamic Early-warning by Learning to Predict High 
Impact), which uses machine learning to predict the 
likely impact of scientific publications [96]. It draws upon 
a rich collection of publication, journal and citation 
data [96]. The model was able to predict high-impact 
research the year it was published with 77% accuracy, 
and it was a better predictor than citation metrics [96]. 
This work demonstrates how AI can potentially be used 
to inform funding decisions to maximise the return 
on investment and impact of scientific research.

4.2.9	 Decoding the human brain

The human brain is arguably the most complex system 
known to humankind, but AI is helping scientists to crack 
the neural code. AI provides scientists with opportunities 
to directly explore the functioning of healthy, neurotypical 
human brains, which has previously been limited, if not 
impossible, due to practical or ethical considerations 
[97]. For example, researchers from the Massachusetts 
Institute of Technology have used deep neural networks 
to demonstrate the hierarchical structure of the human 
visual system [98]. The neural-network model can 
identify objects as well as a human and exhibits a similar 
pattern of neural activity to a monkey brain performing 
a similar task [98]. Similar applications have been used 
to show the hierarchical organisation of the human 
auditory cortex [99]. These neural-process models can 
help scientists generate hypotheses around certain brain 
functions and inform their experimental design [97].
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4.2.10	 Identifying drugs for 
antibiotic‑resistant bacteria

AI has been applied in a range of medical contexts, and 
increasingly, it is being used to accelerate the discovery 
of new drugs [100]. Improving the efficiency of drug 
discovery research is particularly critical in the face of 
the increasing prevalence of antibiotic-resistant bacteria 
and the diminishing returns on investment and high risk 
associated with drug discovery [101-103]. Researchers have 
used deep learning to develop a model that can identify 
candidate molecules capable of inhibiting the growth of 
Escherichia coli (E. coli) – a common bacteria associated 
with antimicrobial resistance [101]. Similarly, scientists have 
also used AI to rapidly identify and test novel compounds 
that can inhibit discoidin domain receptor 1 (a common 
receptor implicated in fibrosis and other diseases) [104]. 
This emerging work demonstrates how deep-learning 
models can lead to faster and more cost‑effective 
experiments than traditional approaches [100].

4.2.11	 Representing spatial phenomena

Geospatial AI is an emerging field that combines spatial 
science with AI methods to derive rich insights from 
big spatial data [105]. These approaches can be used to 
understand the environmental factors that people may 
be exposed to at a given geographical location and time 
and how this exposure may impact their health [105]. 
A group of researchers from the University of Southern 
California used this approach to develop a model 
that can predict air quality (i.e. particulate matter air 
pollution <2.5 μm in diameter, or PM2.5) [106]. The model 
accurately predicted PM2.5 concentration levels without 
relying on prior domain knowledge and quantified the 
impact of various geographic features (e.g. parking 
lots, commercial buildings) on air quality [106]. The fine 
spatiotemporal resolution of this model provided 
insights into the impacts of air pollution (e.g. health or 
environmental outcomes) on specific populations [106].

4.2.12	 Automating literature reviews and 
bibliometric analyses

Scientists are under increasing strain to keep up with 
the ever-growing number of scientific publications, as 
are editors and peer-reviewers [107]. Moreover, scholarly 
works are usually written for expert audiences in specific 
academic fields, limiting their use beyond academia, or 
even other academic fields. Emerging AI tools can assist 
with reviewing, appraising and summarising scientific 
publications. Examples include the Artificial Intelligence 

Review Assistant, launched by open-access publisher 
Frontiers in June 2020, which can screen the language 
quality, integrity of figures, instances of plagiarism 
and potential conflicts of interest in submissions [108]. 
Other AI-enabled systems use natural language processing 
tools to synthesise academic papers into language that 
a 7-year-old child can understand [109]. These tools 
can potentially improve the productivity of academics 
and publishers and assist them in identifying and 
evaluating relevant and impactful research [107, 108].

4.2.13	 Identifying archaeological samples

In archaeology, deep-learning approaches have been 
increasingly applied to make sense of often unstructured 
and disparate datasets, and to derive new insights 
from archaeological records [110]. Traditional sampling 
methods can be time and resource-intensive [111]. Existing 
applications have used pattern recognition and AI to 
identify patterns in pottery and engraved wooden artifacts 
[111, 112] as well as to sort and filter images and identify 
objects in images (e.g. rock art, tools, shell or animal bone) 
[110]. With advances in large-scale lidar, satellite and aerial 
imagery, archaeologists have access to richer geospatial 
data for archaeological mapping of sites [110]. As a result, 
using machine learning to analyse geospatial data can help 
archaeologists profile the landscape characteristics without 
physically accessing archaeological sites [110, 113, 114].

4.2.14	 Faster chip design

When designing computer chips (such as CPUs and GPUs), 
various components must be placed in a floorplan that 
satisfies many operational requirements, including metrics 
such as power consumption, performance, and chip 
area. This typically requires considerable manual effort 
over many months to generate manufacturable layouts. 
To address this problem, researchers at Google designed 
an AI system for automatic floorplan generation based on 
reinforcement learning (a type of machine learning which 
learns from its past mistakes) that required a training dataset 
of 10,000 chip layouts of varying quality. The trained system 
was then able to automatically generate floorplans in only 
6 hours, with the resulting floorplans having comparable or 
better metrics than human‑designed floorplans [115]. Similar 
reinforcement‑learning approaches may be applicable 
in science domains where experimental designs require 
time‑consuming trials to explore the space of many possible 
outcomes. The potential time savings may allow researchers 
to focus on higher level tasks and hence be more productive; 
substantial time savings may also lead to discoveries 
that hitherto were too time-consuming to pursue.
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The Healthy Country Dashboard, we developed 
in collaboration with the Kakadu Rangers 
and Microsoft, analyses drone footage to 
autonomously identify magpie geese and 

provide an accurate estimation of the area’s 
bird population. Image: Microsoft
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In this section we explore temporal patterns of AI application and development 
during 63 years from 1960 to 2022 in science application domains. This shows 
how the field of AI has moved beyond computer science into other scientific 
and academic research disciplines. Overall, AI continues to be increasingly 
adopted across all areas of science, as evidenced by the increasing share of 
AI publications relative to total publications. This trend is likely to continue 
for some time until AI usage is normalised within science domains and as 
researchers grapple with the ever-increasing volume of scientific data.

5.1	 Data sources and methods 
(bibliometric analysis)
We applied bibliometric analysis to explore trends in 
AI adoption [116]. Bibliometric analysis involves the 
examination of terms and phrases in research literature 
to understand important trends or patterns. Bibliometric 
analysis is becoming increasingly popular as the body 
of published research continues to expand [117, 118]. 
The volume and rate of publishing in some fields makes 
comprehensive literature reviews by human researchers 
difficult or infeasible. Semi-automated literature searches 
which augment human researchers are increasingly needed 
to achieve up-to-date coverage of all relevant publications. 

Previous studies have used bibliometric analysis to explore 
AI research patterns. One such study used Microsoft 
Academic Graph [119] to examine the extent to which social 
science research fields are cited within AI publications [120]. 
The authors found social science fields such as geography, 
art and philosophy were under-represented in AI research. 
They conclude ‘the gap between social science and AI 
research means that researchers and policymakers may 
be ignorant of the social, ethical and societal implications 
of new AI systems’ [120]. In another bibliometric study, 
web-of-science data was used to examine AI research 
efforts across countries, sponsors, institutions and 
disciplines [121]. This study found that AI technology 
development has arisen from high levels of interdisciplinary 
research. TheStanford University AI index report also uses 
bibliometric analysis to measure AI publishing intensity [14]. 

Our work contributes to this body of knowledge by using 
a novel, large, comprehensive and up-to-date dataset of 
scholarly publishing. We use a broader definition of AI with 
a larger and more diverse set of search phrases developed 
by the OECD [122] via expert consultation. Our bibliometric 
analysis is focused on AI application within other research 
fields; not the mirror (opposite) issue covered in earlier 
work [120] about how other fields have been used within 
AI research. Our analysis uses a formal, comprehensive 
and granular classification of research covering all major 
fields of physical, natural and social sciences and arts and 
humanities. We take a historical perspective examining 
AI publication trends from 1960 to 2022. We also examine 
patent citations relating to AI technologies and how 
different types of AI technology have evolved over time. 

Our bibliometric analysis of AI research trends across 
various scientific application domains is based on 
The Lens database [123]. The Lens is a product of a 
collaboration between the Queensland University 
of Technology and a not-for-profit Brisbane-based 
firm Cambia. It received funding from the Bill and 
Melinda Gates Foundation, the Rockefeller Foundation 
and other organisations. As of 20 September 2022, 
The Lens database contained 249 million scholarly 
publications and over 143 million patent records. 

5	 Science domain 
adoption trends
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The Lens has previously been used to analyse science 
trends relating to genetics [33] and COVID-19 [124]. 
The Lens draws upon data from the following databases:

•	 CrossRef 

•	 The Open Researcher and Contributor IDentifier (ORCID)

•	 PubMed 

•	 Impactstory 

•	 COnnecting REpositories (CORE) 

•	 Microsoft Academic (which ceased 
operations on 31 December 2021) 

•	 European Patent Office (EPO) 

•	 United States Patent and Trademark Office (USPTO) 

•	 Intellectual Property (IP) Australia 

•	 World Intellectual Property Organization (WIPO). 

We extracted bibliometric data from The Lens using their 
Application Programming Interface (API) with Python 
scripts during 18–29 April 2022 (to capture the 1960–2021 
time period) and on 20 September 2022 (for the last, partial, 
year of data of 2022). The last year, therefore, contains 
data for 72% of the year. Whilst the absolute numbers 
of AI publications are likely to rise and change over the 
remaining days of the year, the relative shares (percentages) 
are likely to remain stable. The Lens database contains 
records on all scholarly publications in all fields of research 
by the whole world over all history. As such it is a large, 
complex and continually evolving database. The content, 

Each publication was classified by field of science using the 
All Science Journal Classification (ASJC) system. The ASJC 
is a three-level hierarchical taxonomy that represents a 
comprehensive classification of global research covering 
all fields of study and is maintained by Elsevier (Table 
1). The top level has four categories (health sciences, 
life sciences, physical sciences, and social sciences and 
humanities), the second level has 26 categories, and the 
third level has 333 categories. The ASJC codes are assigned 
by Elsevier’s team of in-house experts at the time of 
publication. The assignment of the code is based on the 
aims, title and content of the publication [47]. A single 
publication can be assigned multiple ASJC codes. 

structures and definitions/rules of the database are likely 
to be changing. This means that future extractions of 
the data could yield different results but are unlikely to 
change the main implications/results from our study. 

To identify AI-related publications, we used a set of 214 
AI search phrases developed by the OECD via expert 
consultation (Appendix B). AI-related publications had 
to contain one or more of the 214 search phrases in 
the publication title, abstract or keywords. We limited 
our analysis to scholarly publications that were journal 
papers, books, book chapters, conference proceedings 
and conference proceedings articles; all of which are 
peer-reviewed. This search strategy returned 3.35 
million AI-related scholarly works published between 
1 January 1960 and 20 September 2022 (Figure 10).

Figure 10. Identifying artificial intelligence scholarly works from 1960 to 2022.

Data source: The Lens [32]. 

All scholarly publications during 
January 1960 to September 2022

(249,019,130)

Limited to peer-reviewed 
journal papers, books, book 

chapters and conference 
proceedings/papers 

(154,895,108)

Limited to documents with 
arti�cial intelligence phrases 
in title, abstract or keyword 
(3,354,619)
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Table 1. All Science Journal Classification (ASJC) categories [47].

First-level research field Second-level research field Number of third-level research fields

Health sciences Dentistry 7

Health professions 17

Medicine 49

Nursing 24

Veterinary 5

Life sciences Agricultural and biological sciences 12

Biochemistry genetics and molecular biology 16

Immunology and microbiology 7

Neuroscience 10

Pharmacology toxicology and pharmaceutics 6

Physical sciences Chemical engineering 9

Chemistry 8

Computer science 13

Earth and planetary sciences 14

Energy 6

Engineering 17

Environmental science 13

Materials science 9

Mathematics 15

Physics and astronomy 11

Social sciences and 
humanities

Arts and humanities 14

Business management and accounting 11

Decision sciences 5

Economics econometrics and finance 4

Psychology 8

Social sciences 23
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5.2	 Publishing intensity and 
volumes – all research fields
In this section we examine temporal patterns in AI 
publishing across all ASJC fields of research. We found the 
volume of AI publishing continually increased over history, 
both in terms of the total number of AI publications and 
the relative share of total publications (Figure 11). The only 
exceptions were 1964 and 1971, where the number of 
publications contracted, before returning to growth in the 
following year. Interestingly, we did not find convincing 
evidence of a decline in AI publications associated with 
1974–1980 and 1987–1993, the periods corresponding 
to the first and second AI winters, respectively (Figure 
12). However, our analysis is not exhaustive and there 
may be time lags, spatial patterns and impacts on 
specialised AI fields worthy of further consideration. 

Growth in AI publishing has been greatest in the past 
5–6 years, with the relative share of AI publishing rising 
from 2.9% of all publications in 2016 to 5.7% of all 
publications in 2022. The total number of AI publications 
rose from 159,426 to 344,265 over this time period 
which equates to a 2.2-times increase. In most fields of 
research, the amount of AI adoption in the past several 
years roughly equals what happened over all preceding 
history. Across all fields of research, the volume of 
peer-reviewed publications on AI in the past 7 years 
(1.6 million documents) exceeds all prior AI publishing 
over the proceeding 55 years (1.5 million documents).

Assuming these trends continue, it is likely that a much 
greater share of publishing will be on the topic of AI by 
2030. Our analysis of AI-related publications suggests that 
we are currently on the steepest part of the adoption curve 
and there are no signs of a slowdown. As such, the full 
potential impact of AI on science and research domains 
lies ahead. AI will become increasingly integrated into 
routine research practices. As AI becomes normalised 
researchers may apply AI tools and concepts without 
using AI phrases in the title, abstract or keywords. 

5.3	 Adoption trends in 
application domains 
In this section we explore AI publishing intensity within 
the four first-level (Figure 13) and 26 second-level (Table 2) 
research fields. We report AI publishing intensity as the 
percentage of AI-related publications out of the total 
number of publications. We also report the AI publication 
counts in absolute terms. Physical sciences account for 
the bulk of AI publishing in relative and absolute terms. 
In 2021, there were 461,000 AI-related publications in the 
physical sciences, accounting for 9.4% of total publication 
output. AI-related publishing was roughly evenly 
distributed across other first-level fields of science, with 
the social sciences and humanities, life science and health 
sciences making up 3.9%, 3.4% and 2.6%, respectively. 

We examined trends in AI publishing intensity over time to 
find evidence of AI winters across specific fields of research. 
There is evidence of an AI winter from 1974 to 1980 in the 
field of computer science (the first winter), with publishing 
intensity dropping and then plateauing during this period. 
Across all other fields of research, there is no clear evidence 
of a similar pattern during either the first or second AI 
winter. This suggests the first AI winter may have been 
isolated to the computer science domain. Beyond this we 
did not find evidence of domain-specific slow-downs in AI 
publishing associated with either of the two AI winters. 

Looking across the second-level research fields, we 
found that computer science dominates AI publishing, 
with one-quarter of all publications in the field on AI. 
Mathematics (14%), engineering (11%) and decision 
sciences (11%) also have a high AI publishing intensity. 
A similar pattern was also observed when looking at 
the number of AI publications across fields of research. 
The lowest level of AI penetration was observed within 
dentistry, nursing, veterinary science, pharmacology 
toxicology and pharmaceutics, where publishing intensity 
ranged from 1% to 2%. However, this appears to be 
changing, as AI publishing has increased in these fields 
(and most other fields of research) in recent years.

26	 Artificial intelligence for science



Figure 11. Peer-reviewed research publications on artificial intelligence.

Data source: The Lens [32]. Date range is from 1 January 1960 to 20 September 2022.

Figure 12. Annual change in peer-reviewed AI-related publications (%) over time.

Data source: The Lens [32]. 
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Table 2. Artificial intelligence publishing intensity by research field (percentage).

Fields of Research (Second-Level ASJC) 1970 1980 1990 2000 2010 2015 2020 2021 2022*

Agricultural and biological sciences 0.1 0.1 0.3 0.7 1.2 1.5 2.5 2.8 3.5

Arts and humanities 0.0 0.1 0.3 0.4 0.6 0.7 2.3 3.2 2.7

Biochemistry genetics and molecular biology 0.1 0.1 0.2 0.4 1.3 1.9 3.2 3.8 4.8

Business management and accounting 0.5 0.5 0.9 1.3 2.2 2.6 4.8 5.0 6.3

Chemical engineering 0.1 0.0 0.2 0.7 1.0 1.1 4.1 4.8 5.4

Chemistry 0.0 0.1 0.2 0.4 0.6 1.0 2.7 3.2 3.6

Computer science 3.7 1.9 6.9 12.4 16.0 17.1 22.7 25.7 29.5

Decision sciences 2.3 1.4 2.1 4.5 7.1 8.5 9.8 11.3 14.9

Dentistry 0.0 0.0 0.1 0.3 0.3 0.3 0.9 1.7 1.6

Earth and planetary sciences 0.1 0.2 0.5 0.9 1.7 2.5 4.4 5.5 7.3

Economics econometrics and finance 0.0 0.1 0.3 0.8 0.9 1.1 2.7 3.5 3.9

Energy 0.1 0.2 0.3 0.8 1.5 2.1 4.5 5.2 6.0

Engineering 0.3 0.4 1.6 3.0 4.4 5.2 10.1 11.3 12.4

Environmental science 0.1 0.2 0.3 0.7 1.3 1.7 2.9 3.3 4.0

Health professions 0.1 0.2 0.4 1.1 1.4 2.2 3.2 4.1 7.3

Immunology and microbiology 0.1 0.1 0.1 0.3 0.7 1.4 1.9 2.3 3.1

Materials science 0.1 0.1 0.3 0.5 0.7 0.9 4.2 4.1 4.2

Mathematics 0.6 0.8 1.9 4.9 7.9 9.0 12.7 14.1 15.3

Medicine 0.0 0.1 0.2 0.3 0.8 1.1 2.2 2.7 3.5

Neuroscience 0.1 0.1 0.5 1.1 2.3 3.5 5.1 6.1 8.3

Nursing 0.0 0.0 0.1 0.2 0.3 0.5 1.1 1.2 1.9

Pharmacology toxicology and pharmaceutics 0.0 0.0 0.1 0.3 0.6 0.9 1.7 2.0 2.2

Physics and astronomy 0.1 0.2 0.6 0.8 1.2 1.7 5.6 7.0 7.2

Psychology 0.2 0.4 0.7 1.2 1.7 2.2 2.7 2.9 3.6

Social sciences 0.1 0.1 0.3 0.4 0.8 1.2 2.8 3.6 4.1

Veterinary 0.0 0.0 0.1 0.1 0.2 0.4 1.0 1.1 1.4

Level of AI publishing intensity Low Medium High

* Final year of data captures publishing activity within 1 January to 20 September 2022 only. 
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The AI publishing intensity within a field of science 
is influenced by the overall publishing volume; both 
metrics are important. For example, while medicine has 
comparatively lower AI publishing intensity relative to 
other fields (2.6% of publications were AI-related in 2021), 
it accounts for a substantial share of AI publication volume. 
In 2021 there were 55,374 AI-related publications within the 
field of medicine, which accounts for 8.4% of all AI-related 
publications. This makes medicine the third-largest field 
by publication volume after computer science (25.5% of all 
AI-related publications) and engineering (18.1%). As such, 
medicine represents an important area for AI science 
and technology development. Within the overall field of 
medicine, the usage and development of AI technologies 
is most pronounced within the third-level fields of health 
informatics, as well as radiology, nuclear medicine and 
imaging, where access to digital data is readily available.

The development and adoption of AI technology started 
within the areas of computer science, mathematics, 
engineering and decision sciences, with the AI publishing 
intensity picking up in these areas from the early 1980s 
or before. Most other fields do not show substantial 
uptake until the 2000s or 2010s. What is consistent 
across all fields of research, however, is a sudden and 
substantial surge in AI publishing intensity from 2017 to 
2021 (Figure 14 to Figure 18). Except for materials science, 
publishing intensity has continued to rise, or accelerate, 
in all fields of research during the COVID-19 pandemic. 
Overall, AI is having a greater impact in the current era, 
compared to all history, for the physical sciences, life 
sciences, health sciences, social sciences and humanities. 

Figure 13. Artificial intelligence publishing intensity by main research domains.

Data source: The Lens [32]. Data sourced from January 1960 to September 2022.

0%

2%

4%

6%

8%

10%

12%

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Health sciences

Life sciences

Physical sciences

Social sciences and humanities

Se
pt

 2
0

22

SHARE OF TOTAL PUBLISHING ON ARTIFICIAL INTELLIGENCE

29



Figure 14. Artificial intelligence publishing intensity in the physical sciences (1–5 fields).

Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 

Figure 15. Artificial intelligence publishing intensity in the physical sciences (6–10 fields).

Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 
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Figure 16. Artificial intelligence publishing intensity in the health sciences.

Data source: The Lens [32]. Data is sourced from January 1960 to September 2022. 

Figure 17. Artificial intelligence publishing intensity in the life sciences.

Data source: The Lens [32]. Data is sourced from January 1960 to September 2022.
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Figure 18. Artificial intelligence publishing intensity in the social sciences and humanities.

Data source: The Lens [32]. Data is sourced from January 1960 to September 2022.

5.4	 Artificial intelligence 
technology diffusion trends
In the early stages of its development AI research mostly 
occurred within the computer sciences field and, to a lesser 
extent, engineering, mathematics and decision sciences. 
However, the usefulness of AI was soon discovered by 
scientists in many other fields of research. The pattern 
via which AI technologies developed by computer 
scientists were adopted in other fields can be considered 
technology diffusion, a sub-field of research in the 
discipline of technology economics [125]. In this section 
we explore the diffusion of AI technology. We do this 
by analysing time-series data on the concentration of AI 
activity and temporal patterns of AI adoption. We analyse 
the most granular level of the ASJC classification, the 
third‑level, which contains 333 unique fields of research. 

Our analysis of the concentration of AI publishing over 
time uses the Gini Coefficient (GC). The GC is a measure of 
concentration for any variable across multiple categories, 
such as how evenly wealth is distributed among individuals 
within society. We used the GC to measure the extent to 

which AI is concentrated in a few fields of research versus 
evenly distributed across all fields, an approach taken 
in earlier AI technology diffusion analyses [120]. The GC 
ranges from 0 to 1, where 1 implies all AI publications 
are in one field of research and 0 implies a perfectly 
equal distribution of AI publishing across all fields. 

We found that from 1960 to 1980 the GC fell from 0.9 to 
0.7 as AI diffused beyond the foundation disciplines of 
computer science, mathematics and engineering into 
a much broader range of application domains (Figure 
19). This level of AI diffusion has been sustained over 
the following four decades. The main reason the GC 
hasn’t fallen further, indicating a more even distribution 
of AI activity, is that computer science has increased 
AI publishing faster than other research fields. 

The number of fields of research using AI has increased over 
the same time period, with close to all fields publishing 
on AI by 2021; up from 70% in 1980 (Figure 20). It took 
roughly 25 years from 1960 to 1985 for AI technologies 
to be represented in over 80% of all research fields. 
We can see from these data that AI has been embedded 
and applied in most fields of research for decades. 
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Figure 19. Concentration of artificial intelligence publishing across research fields.

Note: The Gini Coefficient is a statistical measure of concentration. It is used here to measure the level of concentration 
of AI publishing across fields of research. A higher value represents increased concentration. 

Figure 20. Diffusion of artificial intelligence technology into research fields.

Note: There are a total of 333 third-level All Science Journal Classification research fields. The graph shows 
the number of research fields with artificial intelligence publishing from 1960 to 2021. 
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5.5	 Trends in artificial 
intelligence technologies
In this section we explore publishing trends across various 
subfields of AI. We analysed publication counts for the 
214 OECD AI phrases (Appendix B) from 1960 to 2021. 
The majority of AI technologies saw publishing volumes 
increase over time, with some developing faster than 
others. The top six AI technologies with strongest growth 
over the past 20 years were convolution neural networks, 
followed by deep learning, random forest, generative 
adversarial networks (defined as ‘adversarial network’), 
sentiment analysis and transfer learning (Figure 21). 
Deep learning accounts for the greatest share of AI 
publications in 2021 (7.6% of total AI publications) and has 
shown the strongest 20-year increase, growing 25.4 times 
from 2002 to 2021. Looking at the past 5 years alone, the 
strongest growth has been observed across ‘generative 
adversarial networks’ and ‘transfer learning’ (growing 
by 2.3 and 5.3 times during 2016–2021, respectively). 

We also examined the extent to which various AI 
technologies have been translated into commercially 
valuable and socially useful products. We did this by 
examining the number of patent citations attributed 
to research publications containing an AI-related 
search term in the title, abstract or keyword. Patent 
citations were taken as a proxy measure of commercial 
(and societal) impact, where a greater number of 
patent citations is assumed to indicate greater impact. 
The analysis revealed that scholarly publications which 
included reference to ‘neural network’, ‘convolutional 
neural network’, ‘deep learning’, ‘machine learning’ 
and ‘computer vision’ generated the greatest number 
of patents (Figure 22). These AI subfields are associated 
with the most significant commercial value and impact. 

Figure 21. The six fastest-growth artificial intelligence technologies over past 20 years.

Data source: The Lens [32], OECD [122]. Note: The graph shows the number of peer-reviewed publications with the search term 
appearing in the title, abstract or keywords for journal papers, conference papers, books and book chapters. 
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Figure 22. Patent citation counts for the top 20 artificial intelligence phrases for 2017–2021.

Data source: The Lens [32].
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Year 6 students from a Sydney 
public school test out the 

Smart Bin’s recycling skills.  
Image: Keith McInnes Photography
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6.1	 Software, hardware and 
open access resources
Hardware and software toolkits available to scientists 
and researchers wanting to apply AI in their work are 
continually improving. This will boost the productivity of 
advanced AI developers and researchers with limited AI 
knowledge seeking to perform a particular AI function 
or procedure. The technology upgrades are having 
the impact of democratising and industrialising AI. 
They will play an important role in the diffusion of AI 
technology across all fields of science and research. 

AI accelerators are computing processors specifically 
designed to handle matrix algebra operations used in 
machine learning. AI accelerators improve the speed 
and reduce the latency of AI computations. They enable 
more time-efficient and cost-efficient development of 
AI systems. Over the past few years, the number of AI 
accelerators available on the market has increased in 
quantity and diversity. They are used in applications such 
as autonomous vehicles, speech recognition, natural 
language processing and video object detection [126]. 
A recent review [126] of AI hardware accelerators by the 
Massachusetts Institute of Technology describes over 70 AI 
accelerators under several categories: (a) research chips, 
(b) very low power chips, (c) embedded chips and systems, 
(d) autonomous systems, (e) data centre systems, (f) data 
centre chips and cards. The last category is further broken 
up into CPUs (with new low-level instructions targeting 
AI/ML workloads), FPGA-based accelerators, GPU-based 
accelerators, and dataflow chips, such as Google’s Tensor 
Processing Units (TPUs). In addition to those already on 
the market, the study reviews 12 AI accelerators that have 
been announced for future release in the short term, 
including accelerators from Qualcomm, a large company 
in the mobile/cellular phone space. The future is likely 
to see continued improvement in computational power 
and efficiency of AI systems with an increased diversity of 
specialised processors suited for various applications. 

A related development in computing hardware is the 
rise of quantum computing. Quantum computers use 
theories of quantum physics to store and analyse data. 
Unlike conventional computers, which use a binary (on/
off) system to represent data, quantum computers use 
qubits which can be in many states at any given point 
in time. Writing in Nature in 2019, Google scientists 
reported that their quantum processor called ‘sycamore’ 
can solve a problem in 200 seconds that would take a 

state-of-the-art classical supercomputer 10,000 years to 
solve. They refer to this as an ‘experimental realisation of 
quantum supremacy’ [127]. The researchers conclude that 
‘as a result of these developments, quantum computing 
is transitioning from a research topic to a technology 
that unlocks new computational capabilities’ and that 
‘we are only one creative algorithm away from valuable 
near-term applications’ [127]. Quantum computers may 
eventually have the capacity to solve AI problems beyond 
the reach of conventional computers. This can potentially 
lead to a paradigm shift and step change in AI capability. 

In addition to improved hardware, the AI field is seeing 
the rapid growth of software frameworks to support AI 
operations. Examples of popular frameworks include 
PyTorch, Tensorflow, Keras and Caffe. Using these 
frameworks in environments such as Python and R, 
researchers can design and/or adapt machine-learning 
algorithms relatively quickly, often without the need to 
delve into the low-level details of the algorithms. This is 
how many researchers are likely to develop and apply 
AI within their fields of expertise. These AI frameworks 
have played, and will continue to play, an important role 
in facilitating AI technology diffusion across all fields of 
physical, natural and social sciences. We are also seeing 
the emergence of code-free AI software tools delivered 
through graphic user interfaces (GUIs). A research team 
from Moorfields Eye Hospital in the United Kingdom 
recently evaluated code-free AI tools for training 
machine-learning algorithms from corporations such as 
Amazon, Apple, Clarifai, MedicMind and Microsoft [128]. 
The code-free deep learning (CFDL) software tools 
were used for the classification of medical imagery. 
They conclude ‘that CFDL platforms have the potential 
to improve access to deep learning for both clinicians 
and biomedical researchers, and represent another 
step towards the democratization and industrialization 
of AI’ [128]. Furthermore, mass-market software tools 
such as Microsoft Excel and Microsoft Power BI are 
increasingly making code-free machine-learning functions 
available to users to perform common tasks [129, 130]. 

The open-access frameworks for AI computations are 
supported by a large and growing number of platforms 
which enable knowledge sharing. Examples include 
GitHub, Bitbucket, SourceForge, Gogs, Gitbucket, AWS 
CodeCommit, Beanstalk, Phabricator, Gitea, Allura, 
Rhodecode, CodeGiant, Cloud Source Repositories 
(by Google), Azure DevOps Services, Google Developers 
and Trac [131]. There are many other such platforms. 

6	Future development pathways 

37



These are powerful information resources which speed 
up and assist scientists developing software code for 
AI. The volume of material and continuously improving 
search tools allow a software developer to find a code 
snippet, library or dataset to quickly solve a problem 
they’re working on. These platforms also facilitate 
Q&A style discussions where software developers can 
turn to their community for help. Furthermore, there 
are platforms such as Kaggle and ImageNet which host 
competitions for AI experts to access datasets and solve 
problems. Competitions on these platforms have fast 
tracked AI problem solving in many areas [132, 133]. 
Collectively these open-access resources will provide a 
big boost to AI application in diverse fields of science. 

Lastly, the rise of accessible cloud-based computing 
services is also facilitating the adoption of AI across all 
fields of research and world regions. A recent report 
by information technology (IT) consulting firm Gartner 
finds that the global cloud computing market grew from 
US$270 billion in 2020 to a (forecast) US$397 billion in 
2022 with 23% growth during 2021 [134]. The analysts 
observed that the pandemic fuelled the growth of cloud 
computing with many business operations moving online. 
A similar pattern is likely to have occurred within the global 
science and research community as remote work was 
needed due to movement and/or quarantine restrictions. 
Market research by ReportLinker forecasts the continued 
growth of the cloud rising at an annual compound annual 
growth rate of 16.3% during 2021 to 2026 and reaching 
US$948 billion per year [135]. The science sector is an 
enthusiastic adopter of cloud computing [136]. The field 
of genetics, for example, depends on cloud computing for 
storage, sharing and analysis of vast quantities of data for 
cross‑organisational and international science teams [137]. 

6.1.1	 Implications for science and 
research organisations

Science organisations seeking to uplift AI capability will 
need to make decisions about hardware, software and 
computational infrastructure upgrades, including the access 
to cloud computing services. These tools have improved 
substantially over recent years. They are likely to follow 
a pathway of ongoing improvement in the future. There 
are many unknowns about quantum computing; it could 
potentially lead to a step change and paradigm shift in 
AI resulting in substantially elevated capability. Quantum 
computing services are already available to AI developers 
and science organisations will need to factor this into 
their longer-term AI capability development strategies. 

6.2	 The quest for better data
We are living in the era of ‘big data’, where the volume, 
variety and velocity of data inflows continue to expand. 
Big data have supported the training of machine‑learning 
algorithms. For example, vast image datasets (labelled by 
users through search terms) supported the development 
of image recognition systems able to accurately 
identify dogs, cats, birds or practically any object 
within an image. Speech recognition, face recognition 
and emotion/expression recognition systems have 
benefited similarly from vast volumes of labelled data. 

However, big data can be problematic. Big data contain 
considerable noise in addition to the signal. Big data 
can contain spurious entries which are camouflaged and 
hard to identify amid the other entries. This can degrade 
the accuracy and reliability of machine-learning models. 
For example, a recent analysis of 62 published scientific 
studies using machine learning on chest radiographs and 
CT scans to detect and prognosticate COVID-19 found that 
‘none of the models identified are of potential clinical use 
due to methodological flaws and/or underlying biases’ 
[7]. Most of the problems related to duplication and 
quality issues in the datasets used for machine learning:

•	 Incorrectly sourced datasets – In these cases 
data were incorrectly sourced from demographic 
age groups that led to biased and inaccurate 
results when applied at the population level.

•	 Frankenstein datasets – In these cases public datasets 
were assembled from numerous other datasets and 
then redistributed under a new name. This meant 
algorithms were being trained on multiple identical 
or overlapping datasets with significant duplication. 

•	 Biased datasets – In these cases images shared 
publicly and/or contained within published 
documents often have a form of selection bias. 
For example, people with certain conditions and/
or disease severity may be more/less likely to share 
their images. This leads to bias in the data. 

The masses of data, which on the surface looked like a 
powerful resource for training machine-learning algorithms, 
had serious limitations which in every case made the 
model unusable in clinical settings. Similar problems have 
been observed in earlier reviews of AI-based models for 
COVID-19 diagnosis and prognosis. For example, another 
review of 169 studies containing 232 machine‑learning 
models found ‘all models were rated at high or unclear 
risk of bias, mostly because of non-representative 
selection of control patients, exclusion of patients who 
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had not experienced the event of interest by the end of 
the study, high risk of model overfitting, and unclear 
reporting’ [138]. Most of these problems stemmed from the 
incorrect use of datasets that were not fit-for-purpose. 

Given such findings the AI science community in 
healthcare, and other domains, is likely to invest greater 
effort in developing higher quality and fit-for-purpose 
datasets. Professor Luciano Floridi from the University 
of Oxford and Alan Turing Institute recently published 
a paper [139] on the near-term future for AI. One of the 
trends he identifies is the move from ‘big data’ to ‘small 
data’ – and he defines small data as being higher quality, 
well curated and provenance assured. He gives the 
example of an AI-based system developed by Google’s 
DeepMind in partnership with Moorfields Eye Hospital 
in London. Historically, medical imaging diagnostics 
based on AI typically relied on ‘databases of millions of 
annotated images’. However, the system was successfully 
trained using only 14,884 eye scans for early detection 
of sight‑threatening eye diseases and was found to 
reach or exceed diagnostic accuracy by experts and is 
considered clinically applicable [140]. The dataset of 
14,884 scans represents a considerably smaller‑than‑usual 
dataset. The dataset wasn’t just smaller; it was also well 
curated, labelled by experts, reviewed/examined by 
experts, provenance assured, and fit-for-purpose [140].

6.2.1	 Implications for science and 
research organisations

The ability of a research organisation to achieve 
competitive differentiation and problem-solve with AI 
will, in large part, be determined by the quality of its 
datasets. Vast volumes of publicly available data have 
been, and will remain, important for the development 
of AI. For example, a CSIRO team used machine learning 
to identify COVID-19 virus mutations with likely impact 
on disease severity [141]. This was done on only 0.3% of 
the available viral data points due to a lack of patient 
information for the rest [142]. This illustrates the rate-
changing potential for high-quality datasets. Specifically, 
future AI capability uplift will require investments in high-
quality data which is fit-for-purpose, provenance assured, 
validated, up-to-date, and ethically obtained. As such, it 
is likely to be critical for an organisation to know what 
datasets it owns, their provenance, reliability and suitable 
uses, as well as detailed metadata of those datasets.

This means science and research organisations seeking 
to upgrade AI capability will need to become adept at 
acquiring, storing, protecting and recording metadata 

on the right (top-priority) datasets. Some of the 
datasets needed will be novel and will require new 
investment/capture. Other datasets will be historic and 
may require formatting, validating and fixing. The data 
imperative means that research organisations, like any 
organisation, need to move towards becoming increasingly 
data‑driven. This implies changes to business processes, 
infrastructure, skills and organisational culture. 

Strategies about how to become a data-driven organisation 
are well covered in the management sciences literature 
[143, 144]. Data-driven organisations need strong 
capacity to acquire, analyse, interpret protect, store, 
share and communicate data. Furthermore, data-driven 
organisations demonstrably use data in decision making 
to achieve organisational objectives. They also know the 
value of their current and future-planned data assets. 
Research organisations need to acquire these traits 
to achieve aspirations for AI capability upgrades.

6.3	 Education, training 
and capability uplift
The surge in AI development and application is being 
accompanied by a surge in AI training and education. 
An analysis of 18 universities across 9 countries found 
that the number of undergraduate courses teaching 
students skills necessary to build and deploy AI models 
doubled from 2016 to 2020, and increased by 42% 
for postgraduate courses [14]. Similarly, enrolments 
in introductory courses for AI or machine learning 
have grown by close to 60% over the same time [14]. 
Data from the OECD AI Policy Observatory shows the 
number of AI courses (delivered in English) worldwide 
increased 80.1% during 2018–2021, and AI now comprises 
27.3% of all computer science and IT courses [145].

In Australia the number of AI courses offered by universities 
has grown 1.2 times over the past 4 years, with 235 courses 
on offer in 2021 [145]. The University of Queensland and 
the University of Sydney are ranked among the world’s top 
100 academic institutions in AI according to the Nature 
Artificial Intelligence Index. These institutes are placed in 
55th and 76th positions, respectively [146]. The universities 
ranked in the top 10 positions are all in the United States, 
Germany and the United Kingdom [146]. Australian 
institutions such as the Australian Institute for Machine 
Learning at the University of Adelaide are also expanding, 
with the number of staff increasing from 80 in 2017 to 140 
in 2021 [147]. Tertiary educational and vocational training 
institutes in Australia are offering a growing range of 
studying opportunities for people seeking to gain AI skills. 

39



In Australia the fastest growth in AI course offerings was 
observed for master’s degrees [148]. The science and 
research sectors are in direct competition with industry for 
AI skills. An analysis of job postings in the United States in 
2019 found 9.1% of postings were for AI-related positions 
[149]. These AI-related jobs tended to be higher skilled 
positions with 80% requiring a 4-year bachelor degree as a 
minimum requirement [149]. In Australia, 37,587 AI-related 
job advertisements were posted in 2015–2019 by Adzuna – a 
leading job advertisement search engine [150]. These jobs 
tend to be concentrated in Australian states with the largest 
population, with the notable exception of the Northern 
Territory, which had a higher rate of AI jobs relative to 
its population. AI-related positions make up a fraction of 
the total job advertisements in Australia, accounting for 
0.5% of all postings made between 2015 and 2019 [150]. 

An analysis conducted by the OECD examined the 
prevalence of AI skills across occupations using LinkedIn 
member profiles in 2015–2020 [151]. This analysis found 
Australia ranked in the middle of the list (13th place out of 
26 OECD countries) with the highest penetration of AI skills 
in the United States, followed by Germany and Israel [151]. 
When it comes to the AI scientific workforce, as measured 
through the Global AI Talent Tracker by MacroPolo, the 
majority of AI scientists are currently based in the United 
States (59%), followed by China (11%) and Europe (10%) 
[152]. Most AI scientists completed their undergraduate 
degrees in China (29%), followed by the United States 
(20%) and Europe (18%). This reveals a strong net-inward 
movement of AI talent into the United States [152]. 

A growing number of students in Australia are graduating 
with degrees in IT or computer science and have skills 
suitable for AI-related occupations. The number of 
university graduates with degrees in IT, as a field of 
education, has been on a steep rise since 2017 after over a 
decade of slump [153]. Between 2003 and 2013 the number 
of IT graduates was mainly in decline, which was a warning 
trend for Australia’s transition to the digital economy [154]. 
In 2013, the trend reversed to a slow growth (2013–2017) 
and moved into a steep rise since 2017 [153]. By 2020, 
the number of IT graduates in Australia almost tripled 
compared to 2013, exceeding 31,700 people [153]. In 2020, IT 
became the fourth-largest field of education by the number 
of graduates after management and commerce, society 
and culture and health [153]. The growth was the highest 
among the postgraduate overseas students – the number 

of IT graduates in this sector grew over 5-times between 
2013 and 2020 to over 15,600 students [153]. This can be 
partly attributed to the COVID-19 pandemic as IT degrees 
may have been more easily shifted to online education.

Research has shown that workers who have a background 
in computer science and programming are more supportive 
of the development of AI [155], suggesting that AI literacy 
can be an additional important factor in encouraging 
adoption of AI across the science sector. While there is 
limited understanding around the level of AI awareness 
and understanding across the science sector in Australia, 
the majority of the Australian public report low (62%) or 
moderate (26%) subjective knowledge of AI [156]. Examining 
and improving the AI literacy of the workforce will help 
science and research organisations identify gaps in the 
current understanding of AI in the scientific workforce and 
future capability areas that require attention [155, 156].

Another dimension to AI upskilling is the importance 
of interdisciplinarity [157]. Research projects using AI 
typically require high levels of interdisciplinarity involving 
expertise in the science application domain along with 
specialised expertise in areas such as machine learning, 
natural language processing, computer vision, robotics 
and other sub-fields of AI. A study into the interdisciplinary 
nature of AI finds that ‘the relationship between AI and 
interdisciplinary research must be considered as a two-way 
street’ [157]. The authors of this study note that more effort 
is going in one direction (applying AI to other research 
fields) than the other (applying other research fields to 
AI). Other researchers using bibliometric analyses have 
observed similar patterns [120]. Both these studies identify a 
need for improved two-way interdisciplinarity collaboration 
to achieve improved outcomes from AI for science. 

Lastly, it is worth noting that the future AI talent pipeline 
for science and research organisations does not start at 
university. Education researchers have found an interest, 
motivation and capability for science, technology, 
engineering and mathematics (STEM) expertise – including 
mathematics and the foundational skills needed for 
AI – is typically acquired in early childhood learning 
[158, 159], primary school and high school [160, 161]. 
Therefore, a longer-term view of the AI talent pipeline 
requires investment in all lifelong stages of learning. 
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6.3.1	 Implications for science and 
research organisations

Research organisations will need strategies for talent 
acquisition and retention, given the strong demand for 
AI skills. Industry employers are often able to lure skilled 
AI workers with high salaries. Research organisations 
will need to offer competitive renumeration packages 
to attract and retain skilled AI workers. The feasibility of 
talent acquisition and retention will need consideration 
by research organisations while making decisions 
about whether to grow certain types of AI capability. 
At some point the supply of AI skills is likely to adjust 
to meet demand. Many industries are on the same 
steep AI adoption curves as we have shown for the 
science sector; they are hungry for the same AI skills. 

The number of, and variety of, education and training 
courses available to scientists seeking to upgrade AI 
capability is continuing to expand. There is a wide range of 
course formats: from micro-credentialling or flash courses 
to acquire specific skills for specific tasks and timeframes, 
through to longer in-depth courses designed to develop 
deeper skills and knowledge. Research organisations, 
and researchers, can take advantage of these educational 
offerings to upgrade AI capabilities. Furthermore, research 
organisations may already have staff with professional 
backgrounds which make them well-suited for a career 
transition into AI-focused roles. In addition to training 

and education, research organisations will need strategies 
to bolster two-way interdisciplinary collaboration in AI 
projects. This involves a flow of expertise from AI specialists 
into science application domains along with the flow 
of science domain expertise back into the field of AI.

Some of the upskilling required will exist beyond 
the organisation’s immediate sphere of influence. 
Longer term and broad-based development of the AI 
talent pipeline will involve developing foundational 
skills in mathematics and computational logic for 
children and teenagers in early learning, primary school 
and high school contexts. That’s when an interest, 
motivation and capability for advanced STEM skills 
begins to develop. Research organisations can work 
with schools and learning organisations to promote 
the foundational education needed for the future AI 
workforce. In the same way that science and research 
organisations have developed school engagement 
programs to raise awareness around STEM careers 
(e.g. CSIRO’s STEM Professionals in Schools program), 
similar efforts can be used to strengthen the knowledge 
and understanding around AI-related career opportunities.

There is also value in uplifting societal awareness and 
understanding of AI. Improving the general knowledge 
of AI will help create informed users who can better 
manage the risks, and harness the opportunities, 
associated with AI technology. It will also help society 
work towards effective policies, laws and regulations. 

WANDA uses AI to identify different species of fish as they’re caught in real time. We developed this new technology 
to support sustainable fisheries management and seafood supply chains.
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6.4	 Towards collaborative 
artificial intelligence
Initial predictions about the impact of technology on 
the workforce focused on the areas where technologies 
like AI would substitute and replace humans [162, 163]. 
However, increasingly the focus has shifted to how 
humans and AI can work together (augmentation). 
Human-AI collaboration is a field of research about how 
humans and AI can meaningfully interact and cooperate 
to carry out tasks to higher standards than either can 
achieve alone [164]. Human-AI collaboration can lead to 
significant productivity gains and expand the bounds of 
human capacity. IT company Accenture estimated that 
organisations that invested in human-AI collaboration 
would increase their revenues by 38% and employment by 
10% between 2018–2022 [165]. Human-AI collaboration is 
important within the science sector as per other industry 
sectors. The productive use of AI by scientists depends 
in large part upon the quality of human-AI collaboration 
and individual, team and organisational levels. 

How does human-AI collaboration happen? Partnership on 
AI, a global multistakeholder organisation, has developed 
a standardised framework to investigate and characterise 
human-AI collaboration [166]. Using seven case studies, 
the framework covers the following: the nature of the 
collaboration (e.g. the goals of the interaction, how the 
human and AI are engaged and their level of agency); the 
situational context of the collaboration (e.g. whether the 
human and AI are physically co-located, AI awareness, trust 
in AI system and potential consequences); the AI system 
characteristics (e.g. whether the AI system is interactive, 
adaptable, predictable, explainable and human-like); 
and the characteristics of the human collaborator [166]. 
Understanding and examining the nature of human-AI 
collaboration is critical to progressing the responsible 
design and governance required to ensure safe, reliable and 
productive design and development of collaborative AI.

FastMRI is an example of a human-AI collaborative system 
which aims to accelerate the rate at which doctors can 
acquire brain scans using magnetic resonance imaging 
(MRI) without compromising on the image quality [166]. 

This AI system, developed by Facebook and NYU School 
of Medicine’s Department of Radiology, interprets lower 
quality image data, which has been rapidly acquired, and 
predicts the missing data to create a higher quality image. 
This higher resolution image can then be interpreted by 
the doctor to determine whether an abnormality is present, 
increasing their productivity, reducing patient time in the 
MRI scanner and potentially increasing diagnostic accuracy.

Another emerging area of research related to human‑AI 
collaboration looks at how workers perceive future 
AI developments. Initial surveys and interviews of 
healthcare professionals, librarians and qualitative 
researchers, data scientists and the public have revealed 
a number of common themes around how workers view 
human‑AI collaboration [155, 156, 167-178]. First, there is 
a generally positive view towards the value that AI can 
provide. A 2019 survey of the American public found 
that 79% of participants were either supportive or 
neutral towards future AI developments, with support 
for AI strongest in higher educated and higher income 
cohorts, or those that have a computer science or 
programming background [155]. This share is even 
higher in similar surveys that have been conducted in 
Australia (85% supportive or neutral towards AI) [178]. 

The positive sentiment is driven by the perceived benefits 
of AI. A survey of clinicians in South Korea found that 
83.4% felt AI would be useful in medicine, particularly 
for diagnostic purposes [179]. The European Society of 
Radiology also found that radiologists felt that AI can 
potentially result in higher productivity, resulting in more 
available time to spend with patients [168]. AI also opens 
opportunities for researchers to access and derive greater 
value from existing large datasets that would otherwise 
be prohibitively resource-intensive to manually analyse 
[170-172]. Scientists traditionally use meta-analyses to 
synthesise findings from a large collection of scientific 
studies, a highly time and labour-intensive process. AI could 
provide a means to automate the process [171], helping 
researchers stay across the fast-moving research landscape.

Studies exploring perceptions of AI in the research 
community have found that most scientists and researchers 
do not think AI can, nor should, replicate the research 
process [169, 172]. Instead, AI systems and human scientists 
could operate in a ‘synergistic partnership’ [171-173, 180]. 
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This synergistic relationship acknowledges the unique 
and complementary strengths of humans and AI systems 
and provides opportunities to collaborate to address the 
limitations of humans and AI on their own [167, 169-172, 
175, 179-181]. Under a human-AI collaboration scenario, 
the human scientist would delegate tasks that can be 
completed more efficiently by an AI system, leaving the 
human scientist to invest their time and resources into 
tasks that rely on uniquely human cognitive abilities.

AI systems have an advantage over human workers when 
it comes to rapidly processing and analysing large masses 
of information and identifying patterns or relationships 
[171, 180]. By automating these manual tasks, scientists 
can have more time for creative and higher order 
tasks [170, 171]. Conversely, humans perform better in 
ambiguous or uncertain decision-making contexts [180]. 
Researchers are sceptical whether an AI system will be 
able to replicate a human’s ability to make complex 
associations or complete tasks that require subjective 
judgement or specialised knowledge [172]. This includes 
tasks that require prior knowledge around the data or 
domain [169] or those that require human judgement, 
such as reviewing scientific publications [169-172] or 
interpreting ambiguous medical results [179, 182].

Surveys of scientists have found that transparency and 
explainability are critical factors in determining trust in 
an AI system [169]. Without this transparency, researchers 
are concerned that AI could produce biased results or 
exacerbate existing societal inequalities [169]. A group of 
researchers from IBM and Rensselaer Polytechnic Institute 
have shown that ‘transparency features’ are critical 
in human-AI systems as they help build trust between 
the user and the machine [183]. These researchers used 
visualisations to enhance transparency, and in turn, user 
trust, around the data that goes into the model and the 
process through which the AI generates a predictive model.

6.4.1	 Implications for science and 
research organisations

The ability to capture value of human-AI collaboration 
rests upon buy-in from the scientific community and 
there are several factors that influence this. One of 
these is trust, particularly in non-data science domains, 
which relates to AI literacy. Research has shown that 
workers who have a background in computer science and 
programming are more supportive of the development 
of AI [155]. While there is limited understanding around 
the level of AI awareness and understanding across the 
science sector in Australia, the majority of the Australian 
public report low (62%) or moderate (26%) subjective 
knowledge of AI [156]. Examining and improving the AI 
literacy of the workforce will help science and research 
organisations build understanding and acceptance of 
AI [155, 156]. In general, a greater share of Australians 
places their trust in AI systems (41%) than other countries 
(e.g. 35% in the United Kingdom and 33% in the United 
States) [156]. To maximise the complementary strengths 
of human scientists and AI systems, AI applications need 
to be designed and evaluated with the human scientist 
workflow in mind. In certain cases, AI systems might be 
used to automate a discrete part of the workflow (e.g. 
pre-processing large datasets), or work in concert with 
the human scientists (e.g. validating previous analyses).

Addressing the productivity slump is an area of concern 
in the contemporary research sector. While AI presents 
an opportunity to do more with fewer resources and 
free scientists up for higher value tasks, it is important 
that this increase in productivity does not coincide with 
a decline in research quality or impact [171]. For example, 
using AI might speed up the rate at which scientists can 
collect and analyse data, but this may not contribute 
to meaningful advancements in the field if such tools 
are implemented in the absence of sufficient human 
oversight and specialised domain input. Multidisciplinary 
research teams involving data science and domain 
knowledge specialists will likely feature more heavily to 
support quality outputs from human-AI collaborations.
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6.5	 Artificial intelligence 
workforce diversity
There is a lack of gender and cultural diversity in the AI 
research workforce. This is evident in both technology 
corporations and academic/research organisations. 
For example, a recent study of gender diversity in AI 
research workforces based on analysis of arXiv publications 
by the National Endowment for Science, Technology 
and the Arts in the United Kingdom found [184]:

•	 Worldwide, 13.8% of authors on AI research papers are 
female and the portion of papers written by at least 
one female author has not increased since 1990.

•	 Less than 25% of AI researchers are female in most 
academic institutions with a few exceptions.

•	 There are relatively few female authors of AI research 
papers from technology corporations such as Google 
(11.3%), Microsoft (11.95%) and IBM (15.7%).

•	 AI research papers with at least one female author 
tended to be more applied and were more likely 
to use human terms such as ‘fairness, human 
mobility, mental, health, gender and personality’.

Gender disparity in the AI workforce is similar to the 
gender disparity in the broader field of computer science 
and within STEM disciplines. According to the 2021 STEM 
equity monitor by the Australian Government [185], 
28% of the STEM workforce are women, and males in 
STEM professions earn (on average) $28,994 per year 
more than females compared to a pay gap of 
$25,534 across all industries. The STEM equity monitor 
also records changes to gender disparity over time:

•	 During 2015 to 2019 the proportion of women 
enrolled in STEM courses at Australian 
universities increased from 34% to 36%.

•	 During 2016 to 2020 the proportion of 
women working across all STEM-qualified 
industries increased from 24% to 28%.

•	 During 2016 to 2020 the proportion of managers 
and senior managers in STEM roles who are 
female increased from 18% to 23%. 

In addition to gender issues the STEM workforce, likely to 
reflect the AI workforce, has a lack of cultural and ethnic 
diversity. For example, professional body Science and 
Technology Australia finds that ‘one in 200 Aboriginal or 
Torres Strait Islander people of working age have a STEM 
degree – while one in 20 non-Indigenous working age 
people have a STEM degree’ [186]. Australian mathematician 
Rowena Ball writing on the topic in Australian Quarterly 
in 2015 says that ‘unless this percentage of Indigenous 
enrolments in STEM is increased what does follow is 
that Indigenous people are being systematically locked 
out of high paying jobs in science related fields’ [187]. 
It also means that Australian science and technology 
is not capturing the full benefits of Indigenous science 
and knowledge. This knowledge can help us understand 
the world and problem-solve in many contexts. 

6.5.1	 Implications for science and 
research organisations

Many research organisations acknowledge the lack of 
gender and ethnic/cultural diversity in AI and STEM 
workforces as a challenge they are working to address. 
While there has been some progress, much remains 
to be done. Improving workforce diversity will be an 
important developmental pathway for AI capability uplift 
within research organisations over the coming decade. 
A review of Australia’s strategies to achieve gender 
equality in STEM was recently published by authors from 
several universities and non-government organisations 
(NGOs) [188]. This provides details on the outcomes 
associated with various strategies and priorities for the 
journey ahead. There are also initiatives to promote 
Indigenous science in Australia. For example, the national 
science agency of Australia, CSIRO, has an Indigenous 
science program which aims ‘to create Indigenous-
driven science solutions that support sustainable futures 
for Indigenous peoples, cultures and Country’ [189]. 
In one project under this program Microsoft, CSIRO 
and Kakadu National Park rangers are combining AI, 
science and Indigenous knowledge for environmental 
management and biodiversity protection [190]. 
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6.6	 The rise of ethical 
expectations and regulations
A recent review of AI ethics policies was published in 
January 2021 by researchers at the School of Public Policy 
at the Georgia Institute of Technology [191]. They identified 
112 documents prescribing AI ethics principles, frameworks, 
policies and strategies from 25 countries produced 
during 2016–2019. The documents were published by 
governments, companies and NGOs. The  top five (of 25) 
ethics topics covered in these documents were: (a) social 
responsibility; (b) transparency; (c) bias and fairness; (d) 
privacy; and (e) safety and reliability. The authors found 
that ‘public and NGO documents are more participatory 
in their creation and more engaged with the law’ and 
that ‘private-sector documents appear to be more 
concerned with client and customer-related ethical 
issues that may lend themselves to a technical fix’. 

Overall, the study points towards a substantial expansion 
in AI ethics expectations across all sectors with the public 
and NGO sectors leaning towards future legislative 
implications. It complements several earlier studies 
examining the development of AI ethics policies, laws, 
guidelines and frameworks across the globe [192-194]. 
One study found convergence around five ethical principles 
across the globe: (a) transparency; (b) justice and fairness; 
(c) non-maleficence; (d) responsibility; and (e) privacy 
[194]. All these topics feature in the AI ethics principles 
of the Australian Government, quoted as follows [195]:

•	 ‘Human, societal and environmental wellbeing: 
AI systems should benefit individuals, 
society and the environment.

•	 Human-centred values: AI systems should respect human 
rights, diversity, and the autonomy of individuals.

•	 Fairness: AI systems should be inclusive and accessible, 
and should not involve or result in unfair discrimination 
against individuals, communities or groups.

•	 Privacy protection and security: AI systems should 
respect and uphold privacy rights and data 
protection, and ensure the security of data.

•	 Reliability and safety: AI systems should reliably 
operate in accordance with their intended purpose.

•	 Transparency and explainability: There should 
be transparency and responsible disclosure so 
people can understand when they are being 
significantly impacted by AI, and can find out 
when an AI system is engaging with them.

•	 Contestability: When an AI system significantly 
impacts a person, community, group or environment, 
there should be a timely process to allow people to 
challenge the use or outcomes of the AI system.

•	 Accountability: People responsible for the various phases 
of the AI system lifecycle should be identifiable and 
accountable for the outcomes of the AI systems, and 
human oversight of AI systems should be enabled.’

These principles are identified by the Australian 
Government as voluntary and intended to be 
‘aspirational and to complement – not substitute – 
existing AI regulations and practices’ [195]. A recent 
review of the application of these principles 
was done by researchers at CSIRO [196].

As we look into the future and across the globe, it is 
possible that the currently voluntary and aspirational AI 
principles may become regulations and laws. A recent 
April 2021 paper in the Harvard Business Review [197] 
explores this issue and opens with the statement 
‘Over the last few weeks, regulators and lawmakers 
around the world have made one thing clear: New 
laws will soon shape how companies use artificial 
intelligence’. Examples of recent developments include:

On 31 March 2021 the five main financial regulators 
in the United States (including the Federal Treasury) 
issued an information request to financial institutions 
to provide detailed information on their use 
of AI and machine learning. They indicated the 
information provided is to help ensure ‘compliance 
with applicable laws and regulations’ [198]. 

On 21 April 2021 the European Union proposed the 
first legal framework on AI which includes fines of 
up to 6% of company revenue for non-compliance 
[197, 199]. Furthermore, the European Union’s general 
data protection regulation (GDPR) includes articles 
limiting the use of automated decision systems including 
requirements related to explainability and contestability. 

Clearly there is a considerable pathway ahead before 
AI-specific laws are enacted across the globe. Sectors 
such as finance and retail may be at the forefront of 
these regulations due to their extensive and routine 
handling of confidential customer data. However, over 
the coming years and decades AI policies, regulations 
and laws are likely to increase. The science sector will be 
impacted along with other sectors; research organisations 
will need to ensure they are compliant. Furthermore, 
AI ethics go beyond compliance. There are also rising 
expectations for ethical AI from society, investors 
and AI researchers and developers themselves. 
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We have worked with a range of stakeholders, 
including Google and the international Kaggle 
community, to explore ways to help with the 
monitoring and detection of crown-of-thorns 
starfish using machine learning.

However, ensuring that the development and application 
of AI is both compliant and meets (and exceeds) the ethical 
expectations of society can be challenging. The AI research 
community is still working to resolve the operational 
meaning of concepts such as explainability, transparency, 
repeatability and interpretability as they apply to 
machine‑learning systems. There is also considerable work 
underway to develop software and systems to deliver on 
AI ethics. For example, a recent study [200] identifies and 
reviews state-of-the-art technologies to enable explainable 
AI (XAI), including: (a) features-oriented methods, (b) global 
methods, (c) concept models, (d) surrogate models, (e) 
local pixel-based methods, and (f) human-centric methods. 
Another area of technological innovation to achieve 
improved AI ethics is privacy-preserving analytics. Recent 
review papers have been published on this rapidly emerging 
field [201, 202]. There is also a growing body of work and 
technology development on improved ways to identify 
and manage bias in machine-learning projects; a recent 
review paper describes 25 bias mitigation methods [203]. 

6.6.1	 Implications for science and 
research organisations

The implication arising from this AI development pathway is 
that the AI ethics performance bar is likely to be higher and 
more tightly regulated into the future. What are currently 
voluntary principles and guidelines could become laws 

in the future. Societal awareness about the issues and 
expectations for ethical AI is likely to rise. Over the last 
several years, governments, companies and not-for-profits 
have identified principles and expectations for ethical AI. 
There are high levels of agreement in these principles 
about transparency, fairness, explainability and privacy. 

However, merely signalling an intention to deliver 
ethical AI may not be sufficient. Delivering on complex 
ethical requirements will require improved scientific 
knowledge and technological capability. It will require 
skills and capability uplift within the AI workforce. 
Early investment in ethical capability – including 
technology, skills and cultures – will help research 
organisations stay ahead of the regulations. 

Lastly, there’s a complex balance between efforts to ensure 
the ethics of AI and the development of novel technologies 
which improve (or save) people’s lives. Effective approaches 
to AI ethics will ensure principles are upheld without 
limiting the pace or quality of innovation and discovery. 
Furthermore, many of today’s innovative technologies and 
approaches enabling improved ethical performance – as 
discussed above – have grown organically within the AI 
community. This has mostly happened in the absence of 
laws and regulations. There’s much evidence of a strong 
drive, coming from within the AI research and development 
community itself, to achieve improved ethical performance.
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The current surge in AI activity is not without historical 
precedent. Twice before in history AI research, investment 
and activity has surged. The peaks were followed by 
troughs; two AI winters are generally considered to 
have occurred during 1974–1980 and 1987–1993. Many of 
the conditions leading up to these two winters are 
present today; however, there are significant differences. 
The sheer size and momentum of the current AI boom is 
unlikely to end anytime soon. There’s so much AI-related 
investment, upskilling, organisational change and policy 
development that it will be some time before it levels-off. 

The uptake of AI technologies within science and research 
domains holds the promise of productivity improvement. 
This is much needed as the global science sector is amid 
an ongoing productivity slump where more research 
effort is being invested to achieve the same (or fewer) 
outcomes. The science productivity slump is causing a 
broader productivity slump across most industries and the 
entire economy. As a general-purpose technology, AI can 
improve productivity in all domains of science and research 
and, therefore, all industries. However, at this stage we still 
refer to this as ‘a promise’ for productivity uplift. There is 
much evidence from case studies that AI is improving 
the efficiency and effectiveness of science, enabling 
discoveries to happen faster, safer and at lower cost. 
However, this empirical evidence is currently not sufficient 
as incontrovertible proof of the productivity gains of AI. 

The implications for science organisations arising from 
this report are captured under the future development 
pathways of AI for science. Overall, science organisations 
have an imperative to upgrade AI capability to remain 
competitive and capable for the future. This will require 
education, training, hardware and software upgrades. 
It will require the development of data assets and 
changed ways of working to become a more data-driven 
organisation. It will also require ensuring the development 
and application of AI is ethically sound and responds 
to societal expectations, regulations and legislation. 

The notion that AI will be doing research by itself 
seems unlikely. Scientific research requires creativity, 
judgement, logic and communication skills that lie 
beyond the reach of current and foreseeable future 
AI capability. However, human scientists working in 
harmony with powerful AI technologies (where AI 
augments human capabilities), are likely to achieve better 
outcomes, such as a higher rate of scientific discovery.

The economic depression of 1920–1921 resulting from 
the ‘Spanish Flu’ of 1918–1920 was followed by the 
‘Roaring 20s’, a decade of unprecedented economic 
growth. Economic historians [204] studying the 
Roaring 20s identify the general-purpose technology 
of electricity as the primary driver of productivity 
growth in manufacturing. This productivity growth in 
manufacturing stimulated overall economic growth 
with spectacular results. It is possible that AI is the 
general-purpose technology of our time which leads to 
improved productivity in science which, in turn, improves 
productivity and growth in the whole economy. 

7	 Conclusion

This report has shown how AI application and development within computer 
science, and all other major fields of science and research, has increased 
substantially. The growth has been strongest over the past several years. 
The coming decade is likely to see the growth continue, and AI become more 
deeply and broadly adopted in most scientific research domains. References to AI 
techniques in the titles, abstracts and keywords of research papers are likely to 
(at some point) decline as the technology becomes commonplace. At this point 
AI technology will be subsumed into application domains as ‘business as usual’. 
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Considering the four types of science (natural science, 
social science, formal science and applied science) we 
identified corresponding occupations from the Australian 
and New Zealand Standard Classification of Occupations 
(ANZSCO). We sought occupations where the description 
involved research activity and was consistent with tasks 
comprising the scientific process. The occupations we 
identified (with ANZSCO codes in brackets) included: 

•	 science technicians (3114)

•	 natural and physical science professionals (234)

•	 economists (224311)

•	 social professionals (272499)

•	 mathematicians (224112)

•	 statisticians (224113).

Appendix A – 
Science occupations

The category of natural and physical science 
professionals contains sub-categories of 

•	 agricultural, fisheries and forestry scientists (2341)

•	 chemists, and food and wine scientists (2342)

•	 environmental scientists (2343)

•	 geologists, geophysicists and hydrogeologists (2344)

•	 life scientists (2345)

•	 medical scientists (2346)

•	 veterinarians (2347)

•	 and other natural and physical 
science professionals (2349). 

The ‘social professional’ category captures social scientists 
conducting research in diverse fields: anthropologists, 
criminologists, geographers, political scientists, 
sociologists and others. We note that some of these 
categories may contain relatively small numbers of 
non‑science occupations that we could not separate out. 

Some of our talented people who work on robotics and autonomous systems.
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During 2018–2019 the Organisation for Economic Co-operation and Development (OECD) held several expert working 
groups to identify, review and refine a set of phrases to search for artificial intelligence (AI) patents and scholarly 
publications. In the final meeting in 2019 the patent examiners and AI experts convened by the OECD went through 
the final draft list of phrases to validate and challenge them. The final set of phrases was published by the OECD [122]. 
We have also used these phrases to search for AI publications in this report. The phrases are listed below. 

action recognition

activity recognition

adaboost

adaptive boosting

adversarial network

ambient intelligence

ant colony

ant colony optimisation

artificial bee colony algorithm

artificial intelligence

artificial neural network

association rule

autoencoder

autonomic computing

autonomous vehicle

autonomous weapon

backpropagation

Bayesian learning

bayesian network

bee colony

biped robot

blind signal separation

bootstrap aggregation

brain computer interface

brownboost

chatbot

classification tree

cluster analysis

cognitive automation

Appendix B – 
Artificial intelligence phrases

cognitive computing

cognitive insight system

cognitive modelling

collaborative filtering

collision avoidance

community detection

computational intelligence

computational pathology

computer vision

convolutional neural network

cyber physical system

data mining

decision tree

deep belief network

deep convolutional neural network

deep learning

deep neural network

dictionary learning

differential evolution algorithm

dimensionality reduction

dynamic time warping

emotion recognition

ensemble learning

evolutionary algorithm

evolutionary computation

extreme machine learning

face recognition

facial expression recognition

factorisation machine

feature engineering

feature extraction

feature learning

feature selection

firefly algorithm

fuzzy c

fuzzy environment

fuzzy logic

fuzzy number

fuzzy set

fuzzy system

gaussian mixture model

gaussian process

generative adversarial network

genetic algorithm

genetic programming

gesture recognition

gradient boosting

gradient tree boosting

graphical model

gravitational search algorithm

hebbian learning

hidden Markov model

hierarchical clustering

high-dimensional data

high-dimensional feature

high-dimensional input

high-dimensional model

high-dimensional space

57



high-dimensional system

human action recognition

human activity recognition

human aware artificial intelligence

humanoid robot

human-robot interaction

image classification

image processing

image recognition

image retrieval

image segmentation

independent component analysis

inductive monitoring

industrial robot

instance-based learning

intelligence augmentation

intelligent agent

intelligent classifier

intelligent geometric computing

intelligent infrastructure

intelligent software agent

intuitionistic fuzzy set

Kernel learning

K-means

latent dirichlet allocation

latent semantic analysis

latent variable

layered control system

learning automata

legged robot

link prediction

logitboost

long short term memory (LSTM)

lpboost

machine intelligence

machine learning

machine translation

machine vision

madaboost

MapReduce

Markovian

memetic algorithm

meta learning

motion planning

multi task learning

multi-agent system

multi-label classification

multi-layer perceptron

multinomial naive Bayes

multi-objective evolutionary algorithm

multi-objective optimisation

multi-sensor fusion

naive Bayes classifier

natural gradient

natural language generation

natural language processing

natural language understanding

nearest neighbour algorithm

neural network

neural turing

neural turing machine

neuromorphic computing

non negative matrix factorisation

object detection

object recognition

obstacle avoidance

particle swarm optimisation

pattern recognition

pedestrian detection

policy gradient methods

Q-learning

quadruped robot

random field

random forest

rankboost

recommender system

recurrent neural network

regression tree

reinforcement learning

relational learning

robot

rough set

rule learning

rule-based learning

self-organising map

self-organising structure

semantic web

semi-supervised learning

sensor data fusion

sensor fusion

sentiment analysis

service robot

similarity learning

simultaneous localisation mapping

single-linkage clustering

social robot

sparse representation

spectral clustering

speech recognition
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speech to text

stacked generalisation

statistical relational learning

stochastic gradient

supervised learning

support vector machine

support vector regression

swarm intelligence

swarm optimisation

t s fuzzy system

Takagi-Sugeno fuzzy systems

temporal difference learning

text mining

text to speech

topic model

totalboost

trajectory planning

trajectory tracking

transfer learning

trust region policy optimisation

unmanned aerial vehicle

unsupervised learning

variational inference

vector machine

virtual assistant

visual servoing

wheeled mobile robot

xgboost
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