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Executive Summary 

The increasingly complex nature of numerous long-term uncertainties that could impact 

power system planning calls for considering new methodologies that may be able to propose 

more cost-effective and potentially less risky infrastructure investment and development 

paths. In this context, this project explores the value of adaptive, flexible planning 

methodologies in power system infrastructure investment, focusing on addressing long-term 

uncertainty, risk, robustness, and resilience. The core objectives that have been addressed 

during the project are organized into five groups:   

A. Identifying optimal infrastructure investment solutions and optionality value with 

multi-stage stochastic planning.  

B. Assessing the robustness of transmission plans based on deterministic approaches 

compared to flexible planning.  

C. Quantifying investment risk associated with deterministic and stochastic 

methodologies and controlling investment risk.  

D. Proposing methodologies to assess and quantify the value of different infrastructure 

investment options in providing resilience to High Impact Low Probability (HILP) 

events.  

E. Preliminary assessment and comparison of the value of alternative technologies such 

as integrated electricity and hydrogen networks in long-term energy infrastructure 

planning. 

 

A. Flexible expansion plan based on multi-stage stochastic optimization 

This project delves into multi-stage stochastic planning for power system expansion under 

uncertain conditions, aiming to address the complexities associated with strategically 

expanding power systems. The stochastic planning model generally uses a scenario tree (see 

Figure 0.1) to capture the uncertainty in various parameters, such as load profile and 

evolution, renewable energy installed capacity, conventional generation unit decommission, 

technology investment various operation costs (e.g., associated with fuels), and so forth. Each 

node in the tree represents the operation and investment for a specific year, considering the 

uncertainty in the aforementioned variables. The expansion planning problem seeks to 

minimize the total expected costs associated with investment and operation decisions made 

in each node of the scenario tree. The optimization problem is subject to various constraints, 

including investment constraints (“non-anticipativity” and potential rules of investment 

across options), power system constraints (energy balances, reserve provision, power flow, 

and transmission limits), and unit-commitment constraints (including technical characteristics 

of conventional units). 
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The study utilizes data from the 2022 Integrated System Plan (ISP) developed by the 

Australian Energy Market Operator (AEMO) and covers a 20-year decision horizon (operation 

is modelled using 6 representative weeks per year with hourly resolution). It includes factors 

such as distributed energy resources, virtual power plants, grid-scale generation, energy 

storage systems, and electrification of transport. The ISP methodology models the future 

through a set of scenarios and sensitivities, aiming to find the least-cost development path 

for each scenario separately. It then identifies the least-regret development path across all 

scenarios using a least-worst weighted regret (LWWR) approach, taking scenario weights into 

account to reduce the impact of unlikely scenarios. The specific scenario tree adopted in the 

project to illustrate the different methodologies proposed was built upon the four scenarios 

used by AEMO in their ISP 2022. However, it should be noted that the aim of the project was 

not to compare results with those obtained by the ISP, also because only a few representative 

time series profiles were used, but rather to illustrate the features and potential benefits of 

alternative approaches.  

The first part of the project focused on using data from the ISP 2022 to inform and validate 

the stochastic planning model previously developed by the project team at the University of 

Melbourne. This was then used to determine optimal portfolio of investment options using 

multi-stage stochastic optimisation for power system expansion under uncertain conditions. 

The core of the analysis was centred on the expected cost minimization considering decisions 

on new transmission investments (the 34 major candidate lines as described in the ISP 2022 

are depicted in Figure 0.2), with some extensions to the co-optimisation of transmission and 

storage assets too. The results may be effectively illustrated via the cumulative probabilities 

of the total (investment and operation) cost across the different scenarios, as for instance 

shown in Figure 0.3. In this particular example, the optimal solution for the transmission-only 

 

Figure 0.1. Scenario Tree 

 

Figure 0.2. Transmission candidate investment options 
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instance resulted in a total expected cost of some $23 billion for 20 years of operation and 

investment in new transmission lines, as highlighted by the vertical dotted line in the figure. 

 

Figure 0.3. Distribution of total costs of operation and investment for each of the 18 scenarios included in the scenario tree 

Key findings of the study include the identification of the backbone of the future network's 

reinforcement based on flexible investment options. The majority of investments aim to 

reinforce QLD and NSW internally and increase interconnection capacity between VIC and 

TAS. We also showed how the representation of operation in modelling affects the expected 

costs and optimal portfolio of transmission reinforcements. In particular, when fewer typical 

days or weeks are used to represent annual operation of the system, the resulting total 

investment and operation costs are substantially smaller. However, the resulting optimal 

portfolio performs very badly when tested against a larger representation of operations, 

suggesting the importance of suitably modelling representative operational conditions to 

develop robust infrastructure investment plans. 

The case study incorporating additional (on top of the capacity considered in the ISP) battery 

energy storage systems (BESS) as an investment option resulted in a slightly lower expected 

cost, by some 0.3%, compared to the case without BESS investment options. However, the 

problem considering BESS investment took more than three times longer to solve.  

In conclusion, the optimal transmission investment decisions are heavily influenced by the 

representation of operation and to a lesser extent by the inclusion of additional storage 

options.  

B. Deterministic planning 

Deterministic planning models are widely used in transmission expansion methodologies 

around the world. These models analyse various scenarios from a deterministic perspective. 

Some approaches then use an additional metric to select the optimal plan based on the 

results. Two deterministic-based metrics used by major system operators in the world, most 

noticeably AEMO in Australia and National Grid Electricity System Operator (ESO) in Great 

Britain, are Least-Worst Regret (LWR) and Least-Worst Weighted Regret (LWWR). 
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Originally adopted by National Grid ESO, LWR decisions use regrets, which indicate the 

difference between the cost of applying a specific portfolio of investment options and the 

reference cost, as a measure of proximity to the optimal solution. The methodology involves 

several steps: selecting scenarios and investment options, determining the optimal portfolio 

for each scenario, calculating the investment and operational costs, determining the specific 

development path that produces the lowest cost, calculating the regret for each development 

path, finding the worst (maximum) regret, and finally, selecting the development path with 

the least-worst regret. LWWR is a recently proposed variant of LWR, currently adopted by 

both AEMO and National Grid ESO, that incorporates scenario probabilities to account for 

different likelihoods of occurrence. This approach aims to include the impact of scenario 

probabilities in the LWR method, which otherwise assumes equal probability for all scenarios. 

A quantitative comparison between LWR, LWWR, and a stochastic planning approach was 

conducted in the project for the first time. The study involves the disaggregation of a 32-node 

scenario tree into 18 deterministic scenarios. For each scenario, the optimal development 

path is determined using the same set of transmission investment options as for the 

stochastic problems. The cost matrix, which includes the investment and operational costs 

for each scenario and development path, is then calculated. Applying the LWR and LWWR 

metrics allows to identify the best development path resulting from the deterministic analysis 

of all scenarios, which turns out to be the same for both LWR and LWWR. 

As pointed out before for the case study performed, the stochastic planning approach 

resulted in an optimal expected total cost of $23 billion over the next 20 years, while the 

deterministic-based approach using the Least-Worst Regret (LWR) metric identified a 

development path that had $1.5 billion higher expected total costs and a $4 billion more 

expensive worst-performing scenario compared to the stochastic approach. These results are 

depicted in Figure 0.4.  

 
Figure 0.4. Comparison between optimal stochastic results and the LWR optimal development path (ODP)  

The results demonstrate how the stochastic planning approach exhibits superior 

performance, relative to deterministic-based methodologies such as LWR and Least-Worst 
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Weighted Regret (LWWR), in addressing planning uncertainty. Minimizing the worst regret 

may lead to riskier portfolios compared to stochastic plans, suggesting that categorizing LWR 

as a risk-averse metric might only be appropriate in a deterministic context, while superior 

risk-hedge strategies could be identified through stochastic plans. The different objectives of 

each metric can result in significantly divergent investment strategies under conditions of 

profound uncertainty, as demonstrated in the case study discussed in this report. Overall, the 

results illustrate how a stochastic planning approach can provide a much more cohesive 

perspective across all future scenarios and hence devise development paths that are 

intrinsically both less expensive and less risky relative to an aggregate view across decisions 

performed over multiple independent deterministic scenarios. 

C. Controlling the risk of the portfolio 

The next part of the project aimed to highlight the importance of incorporating risk 

management principles when uncertainty is present in the process of defining the optimal 

portfolio of investments for the system. This is particularly important as risk assessment and 

analysis are not clearly modelled or even just captured in current methodologies. One of the 

ideas was also to study how while controlling expected cost and risk are generally competing 

objectives in portfolio optimization, introducing new investment alternatives, such as flexible 

technologies, could eventually reduce both expected costs and extreme outcomes 

simultaneously. 

A risk-aware stochastic planning model was proposed, which includes a risk parameter (β) to 

represent different risk appetites. This model allows decision-makers to balance their position 

on risk, with a more risk-averse approach favouring risk minimization at the expense of 

increasing the expected total cost, while a risk-neutral approach focuses solely on minimizing 

expected cost. The use of such a risk parameter allows to determine efficient frontiers where 

each point represents the optimal balance of cost and risk, in turn enabling the definition of 

an optimal risk-aware portfolio for the system. 

Understanding risk metrics is crucial for this process. Several risk metrics were discussed 

during the project, but the final analysis focused on what was deemed to be the most relevant 

metric in the context of the studies performed here, namely, the Conditional Value-at-Risk 

(CVaR). More specifically, while the Value-at-Risk (VaR) metric provides information about a 

predefined “worst-case” cost threshold (e.g., the 95% cost threshold across all scenarios), 

CVaR informs about the expected cost of those worst-case scenarios (e.g., the expected cost 

of the worst 5% scenarios), thus implicitly also providing information about their distribution. 

In fact, CVaR was preferred for its ability to identify low-probability but high-cost scenarios, 

making it an attractive risk measure for transmission expansion planning problems, especially 

where resilience against high-impact, low-probability events is also important. 
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Figure 0.5. Distributions of total cost comparing the risk neutral (beta = 0, blue) and risk averse (beta = 1, red) cases 

The case study carried out explored the impact of risk metrics on investment decisions using 

a CVaR-95% risk metric, which means that the expected value of the 5% worst-performing 

scenarios is considered. The study compares risk-neutral and fully risk-averse approaches and 

the distributions of results for each case are presented in Figure 0.5. The fully risk-averse 

approach (β=1) reduces the CVaR by $1.87 billion but also increases the expected cost by 

$1.86 billion. By exploring the efficient frontier (see Figure 0.6), the specific study finds that 

an intermediate risk-aversion would lead to a better trade-off, reducing risk by almost as 

much as the fully risk averse case ($1.868 billion), but with a smaller premium to be paid in 

terms of expected cost (only $0.3 billion). 

 

Figure 0.6. Efficient frontier for the case ISP22_32N_1W with CVaR-95% as risk metric 

While the results here are purely illustrative, the efficient frontier analysis may be an 

important tool to explore the benefits of alternative investment options and their cost-risk 

implication. In this regard, a further study investigated the role of storage in risk-aware 

planning. By co-optimizing investment in storage along with transmission lines, the portfolio 

risk could be reduced by close to $140 million while only increasing the expected cost by close 

to $57 million. This additional storage helps accommodate more renewable energy, reducing 

operation costs and enhancing system performance in the most expensive scenarios, further 

reducing risk. This also suggests that the proposed risk-aware stochastic planning approach 
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can be suitably adopted to reveal cost-risk trade-offs and benefits that integrated investment 

in a wide range of technologies (beyond transmission-only assets) could bring. 

D. Methodologies to incorporate resilience analysis in stochastic planning 

Extreme (weather) events affecting power systems have caused significant economic damage 

to the countries in which they have occurred, calling for a comprehensive understanding of 

their impact on power system infrastructure. Power system resilience, which refers to a 

system's ability to withstand, arrest and recover from high-impact, low-probability (HILP) 

events, recover quickly, and adapt for future events, has become a focal point for researchers 

and policymakers in the past few years. 

Various frameworks, methodologies, and measures have been proposed to improve power 

system resilience, including stochastic optimization, hardening infrastructure, and risk 

aversion in network design and operation. In this context, in the project we proposed a set of 

resilience-oriented planning methodologies that could build on the stochastic planning 

framework. 

Besides introducing different approaches to model high-impact low-probability events with 

different occurrence characteristics within scenario trees, as key part of the project three 

methodologies were proposed for studying the effect of extreme events in power system 

planning: 

1. Risk-averse planning for resilience enhancement: This approach leverages the 

implicitly more robust investment portfolios identified by risk-averse planning to 

mitigate the risk of high-cost operational conditions that might emerge from the 

occurrence of extreme events, but without considering them explicitly in the planning. 

2. Resilience-aware stochastic power system planning: This methodology explicitly 

represents high-impact low-probability events in the description of the system's 

future evolution by modifying the scenario tree structure. It shifts the focus from a 

reliability-oriented approach to a resilience-oriented one while still maintaining the 

constraints and considerations that guarantee reliability under expected conditions. 

3. Two-step resilience-aware stochastic power system planning: This methodology (see 

Figure 0.7) involves two steps - first, planning the system for reliability using an 

adequacy and security standard approach, which results in the reliability-oriented 

portfolio. Second, high-impact, low-probability scenarios are overlaid on the original 

scenario tree to identify new optimal plans for the remaining transmission options, 

resulting in the resilience-oriented portfolio. A budget limit may also be included to 

ensure financial feasibility and justify additional assets and investment levels for 

greater resilience. 
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Figure 0.7. Illustration of the two-step methodology to determine resilience-oriented portfolios (methodology 3) 

Various case study applications were considered to demonstrate the resilient planning 

methodologies proposed, including different HILP event occurrences within the scenario tree. 

The results show how incorporating resilience aspects into the planning approach can change 

the investment portfolios. Importantly, the stochastic planning approach can reveal the need 

for anticipative investments and early system reinforcements in anticipation of extreme 

events. Comparing stochastic planning to deterministic planning, more variation in 

investment decisions and greater flexibility can be recognised in the stochastic approach, 

while maintaining the expected costs relatively stable across different cases. This suggests 

that, in the context of formally introducing resilience in the planning exercise, the adaptable 

investments that stochastic planning naturally proposes could enable additional investments 

to protect the system in the face of extreme events, but without significantly increasing total 

costs. 

A further dive-in on models and approaches that could be adopted to incorporate resilience 

into planning, and stochastic planning in particular, was also provided by the Electric Power 

Research Institute (EPRI), with focus on industry-oriented projects in the United States. The 

analysis performed by EPRI further underscores several key points, especially the importance 

of modelling in detail the characteristics of extreme events that may affect the system and 

the need to manage the computational complexity that might naturally emerge in this kind 

of studies. Overall, “planning for resilience” can still only be considered in its infancy, and 

substantial further research is needed on this topic in the future, especially for real-world 

practical implementations. 

E. Role of hydrogen infrastructure 

In the final part of the project, an integrated electricity and hydrogen transmission 

infrastructure planning model developed by the University of Melbourne team within the 

Future Fuels Cooperative Research Centre was used to quantify the impact of large-scale 
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green hydrogen production on the investment planning. The modelling was assessed, as an 

initial proof of concept, on a case study consisting of proposed provisional corridors 

connecting renewable energy zones (REZ) and large hydrogen export demand in the 

superpower scenario of AEMO’s ISP for the years (epochs) 2027, 2032, and 2037.  

Under the cost and technical assumptions of the specific case study, looking into the most 

cost-effective greenfield infrastructure design that could connect REZ to large-scale green 

hydrogen demands, preliminary results show that hydrogen pipelines may generally be more 

cost-effective than their electricity counterparts under the specific corridor lengths and 

energy volumes considered. Specifically, the optimal solution, which consists of hydrogen 

pipelines exclusively as transport infrastructure, has a net present value (NPV) that is some 

40% smaller than one with only HVAC transmission links and some three times smaller than 

one with only HVDC options. As the longest corridor is this greenfield case study has a length 

of 480km, these results are congruent with HVAC vs HVDC comparisons in existing literature, 

which identify a break-even distance of around 600km, beyond which HVDC becomes more 

cost effective. Overall, these initial results suggest that for envisaged developments of large-

scale green hydrogen demand hubs, hydrogen pipelines may merit consideration alongside 

electricity corridors to achieve an overall cost-efficient whole-system planning. Nonetheless, 

these preliminary findings in this part of the project are not intended to provide 

recommendations for AEMO to co-optimise electricity and hydrogen infrastructure networks. 

More rigorous studies are needed to better quantify the value of including hydrogen pipeline 

options in the co-planning enterprise. 
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1 Introduction 

1.1 Context 

The uptake of large-scale and distributed renewable energy sources (RES) and the 

electrification of different sectors in power systems around the world are producing massive 

changes and creating unprecedented operational and planning challenges. In particular, there 

is increasing uncertainty as to what new network users will connect to the system, and when 

and where. As envisaged by the recent integrated system plan (ISP) [1], some scenario with 

large-scale adoption of hydrogen technologies for clean fuel export might even lead to a 

complete transformation and upsizing of the energy system. Planners are thus required to 

perform the daunting task of striking a balance between ensuring security and reliability and 

minimising cost while facing very large long-term uncertainty.  

Major open research problems of high immediacy are the development of risk-aware 

planning methodologies and metrics to deal with the challenges associated to large-scale, 

long-term uncertainty. Practical steps in this direction have already been undertaken by a few 

system operators, most noticeably the National Grid Electricity System Operator (ESO) in 

Great Britain and AEMO here in Australia, through the adoption of metrics such as least-worst 

weighted regret (LWWR) [1]. An even more powerful approach would consider to make 

decisions in a fully stochastic setting, where adaptive and flexible decisions could enable the 

decision maker to better respond to unfolding uncertainty, enhance the control and minimise 

the investment risk introduced by some scenarios, and reveal the full “option value” of 

proactive or delayed investments. 

In this project, supported by UoM’s stochastic planning methodology and tool, we aim to 

study the representation of long-term uncertainty and how investment flexibility resulting 

from the stochastic approach further decreases the planning risk, how and why the results 

from a flexible plan stemming from stochastic analysis would differ from more established 

approaches such as LWWR, how HILP events could be incorporated into planning and how 

the resilience value of different investment options could be assessed, and the role and value 

of operational flexibility options such as based on Distributed Energy Resources (DER) and 

hydrogen-related assets. In doing so, UoM will also be supported by the Electric Power 

Research Institute (EPRI), particularly to receive inputs and feedback from their planning work 

with different utilities in North America and worldwide and to jointly propose suitable 

methodologies to assess the value of different infrastructure options to provide system 

resilience. 

1.2 Aims and objectives 

This project aims to study the value of an adaptive, flexible planning methodology in 

improving the robustness and assessing the risk of infrastructure investment decision making 
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by adequately modelling deep long-term uncertainty relative to more established approaches 

used by system operators based on deterministic approaches. The analysis also includes 

exploring suitable methodologies to incorporate resilience to extreme events in planning. 

These tasks can mainly be framed within research programme 1 “Long-term uncertainty” as 

described in [2], also interacting with several project in research programme 4 “Decision-

making”.   

The core objectives of the project are organized in 5 groups, which are addressed in the same 

order in this report: 

A. Identify the optimal infrastructure investment solutions, and their optionality value, 

yielded by an adaptive, flexible plan based on multi-stage stochastic planning. 

B. Assess the robustness of a transmission plan based on deterministic approaches such 

as least-worst weighted regret (LWWR) analysis relative to flexible planning. 

C. Quantify the investment risk associated with deterministic and stochastic 

methodologies and possible options to model and control investment risk. 

D. Propose suitable methodologies to assess and quantify the value of different 

infrastructure investment options in providing resilience to HILP events. 

E. Assess and compare the value of investment in alternative technologies, like DER and 

hydrogen as a means to defer investment-intensive assets.   

In the context of [2], Figure 1.1 depicts the completion stage of each relevant research activity 

covered by the end of this project. 

 

Figure 1.1. Expected progress for the research activities considered in the initial research plan by the end of the current 

ongoing project. 

This document also presents a review of literature and industry practices on the different 

objectives described before. The literature review includes the following aspects: 

• the review of scholarly body of knowledge on new advancements in planning 

methodologies to address the challenges faced by system operators around the world  

• a review of industry practices in different jurisdictions worldwide, highlighting their 

considerations behind the representation of uncertainty and the main components 

of their transmission investment methodologies 

PROGRAMME STREAM  PROJECT CODE Project Progress

Long-term Uncertainty
Scenario development for 

planning studies

Modelling long-term uncertainty in power system planning

with the consideration of HILP events (adequacy and

security) and critical operation conditions

R1S1P3 Ongoing 15%

Modelling competing objectives, sources of risk, and risk

appetite of different stakeholders in power system planning.

Determination of metrics to value cost and risk

R4S1P1 Ongoing 25%

Modelling investment flexibility in power system planning

decision making by enhancing the decision structure and the

representation of scenario trees 

R4S2P2 Ongoing 50%

Distributed Energy 

Systems
Multi-energy systems 

Modelling the impact and flexibility embedded in the

interactions between power systems and other energy

systems for planning studies

R5S1P1 Ongoing 10%

Metrics, objectives and 

risk modelling of different 

stakeholders

Decision Making
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• an assessment of the new methodological developments to include resilience1 within 

power system planning approaches, and 

• a review of recent efforts to consider hydrogen assets in the portfolio of expansion 

options in power system planning. 

1.3 Report Structure 

Section 2 presents a review of the literature about planning methodologies, the current 

efforts in the realm of resilience considerations within power system planning and the 

development of hydrogen infrastructure within power systems. Section 3 describes the 

theoretical foundations of the model used in this work, the input data that is used to build 

the case study applications and introduces the results for the base cases that are used in the 

different sections of this report. Section 4 presents and discusses the differences between 

deterministic and stochastic planning approaches, highlighting their effects on the portfolios 

found by each methodology. Section 5 analyses the effect of controlling risk within a 

stochastic planning framework. Section 6 discusses potential methodologies to introduce 

resilience criteria in the stochastic planning framework. Section 7 examines approaches and 

relevant considerations to include hydrogen infrastructure planning as an alternative to the 

traditional deployment of transmission lines to transport bulk energy across the system. 

Section 8 delivers the main conclusions of this work. 

  

 

1 CIGRE defines resilience in power systems as the “Ability to limit the extent, severity and duration of system degradation 

following an extreme event”. 
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2 Literature review 

2.1 Power system expansion planning 

2.1.1 General overview of power system expansion planning 

In general, the possibility to represent the expansion of the system under uncertainty through 

a monolithic or deterministic equivalent problem is limited due to the large number of 

competing investment options, uncertain variables, and the need of representing the 

operation of the system with high levels of detail. Despite the great advances in off-the-shelf 

optimisation software and high-performance computing, the computational requirements of 

this problem impose the need to use decomposition techniques to address the challenge. In 

this section the state-of-the-art in these topics is presented. 

A key concept behind the discussion of power system expansion planning is investment 

flexibility, which corresponds to the capacity of investment options to add value to the system 

across different scenarios. The work in [3], [4] discusses this concept with special focus on 

how to adequately represent the uncertainty and investment decisions to capture that 

flexibility. One fundamental aspect of capturing investment flexibility is the representation of 

the operational flexibility of the different assets, either existing or candidate assets. Flexibility 

in operation can only be assessed if the underlying operational model is able to represent the 

limitations and strengths of the different units, for instance, specific technical constraints of 

thermal synchronous units. Understanding the impact of different models of operational 

flexibility in the expansion planning model has been addressed by multiple authors in the 

past. The authors in [5], [6] investigate the impact of operational flexibility in the design of a 

generation portfolio and [7]–[11] also aim to model operation flexibility to describe the 

appropriateness of investing in transmission and storage assets. It is clear that, in an attempt 

to capture more operation flexibility, a price is paid in computational burden due to the need 

to have a more detailed operation of the assets (more constraints) and/or a denser 

representation of the operation (more variables). The work in [12] utilises multi-cut Benders’ 

decomposition to assess the impact of unit commitment (UC) constraints in a two-stage 

generation expansion problem. Various reviews [13]–[16] on expansion planning highlight 

multiple works that describe -among other things- different approaches to account for 

operational flexibility in generation and transmission expansion modelling. 

Another source of complex operational constraints corresponds to the case of expansion 

planning of storage, transmission and generation assets with the consideration of frequency 

security constraints that can differentiate among frequency response resources, namely, 

inertia, fast frequency response (FFR), primary frequency response (PFR), secondary 

frequency response (SFR), among other frequency service denominations. The work in [17] 

introduces a generation expansion model that considers the effect of inertia and PFR to limit 

frequency nadir. The model does not consider the effect of the natural frequency response 
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coming from demand, or the effect of FFR in the allocation of frequency response resources, 

however it does consider the risk observed for each portfolio using conditional value-at-risk 

(CVaR) as metric. The authors in [18] consider the demand damping factor in the frequency 

response constraints including inertia and PFR in the context of a generation expansion 

planning. Recently, [19] proposed a generation expansion model that considers unit 

commitment constraints, a second-order cone approximation of the AC optimal power flow, 

and introduces inertia requirements via rate of change of frequency (ROCOF). The work in 

[20] presents a model capable to expand generation considering a generalised N-1 security 

criterion which allocates droop-controlled response, but it fails to consider inertia which limits 

the capacity to account for frequency extrema requirements. As seen here, it is possible to 

say that the expansion planning of low carbon power system with consideration of fast 

frequency response resources remains broadly unexplored. In general, new challenges in 

power systems, such as system strength issues and reactive power provision, coupled with 

emerging technologies like electrolysers, add complexity and bring about additional 

modelling challenges for power system analysis overall, and specifically for power system 

investment planning. 

Including complex operational constraints in a highly detailed model of the operation of the 

system, in the context of the expansion planning under uncertainty, creates a very large 

monolithic problem. Different works on stochastic planning models have relied on advanced 

decomposition techniques to overcome intractability of large MILP models. Recent work on 

Dantzig–Wolfe decomposition and column generation-based algorithms have provided an 

approach to handle the size of this problem. A multi-stage stochastic capacity problem is 

solved by applying a “variable splitting” technique in the column generation algorithm [21]. 

In [22], UC constraints have been incorporated in the operational problem for solving a 

generation expansion problem, in [23] the same is done for the expansion of transmission 

and storage assets applied to a real instance of the Australian power system, and in [24] gas 

network constraints have been integrated into a stochastic planning problem. A welfare-

maximising approach for transmission capacity expansion considering an oligopoly where the 

companies compete on the amount of output (in this case transmission capacity) using 

column generation to solve the problem is presented in [25]. In [26] authors underscore that 

developing computationally efficient methods to address non-convexities when considering 

high operational details in planning is an important research avenue to be able to fully capture 

the benefits of smart grid technologies in real-size planning problems. 

Although effective in dealing with the size challenges, the column generation algorithm 

usually displays three important issues: slow convergence during the final iterations, 

commonly known as tailing-off effect; the plateau effect, which describes the process in 

which the master problem solution value remains relatively constant for several iterations, 

and the bang-bang effect, a source of instability in the convergence process, where the dual 

solutions jump from one extreme to another, slowing down convergence [27]. Different 
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methods [28]–[30] have been applied to tackle these effects, which in general involve 

restricting or relaxing the master problem. 

2.1.2 Uncertainty in electrical power system Transmission Expansion Planning (TEP) 

2.1.2.1 Uncertainty sources 

When dealing with long-term planning of power systems it is of upmost importance to 

identify the sources of uncertainty that will condition the needs of the system. Any power 

system is heavily influenced by changes in energy policy, development of new technologies 

and evolution of new business models. All these lead to high and growing uncertainty. This 

section reviews the main uncertainty sources influencing transmission expansion planning 

(TEP). CIGRE’s review on uncertainty in optimal power system planning [31] is the starting 

point of this analysis. More uncertainty factors can be considered in specific system, but the 

list is otherwise comprehensive in the factors that most influence planning decisions. 

1. Load growth: Uncertainty in demand growth has been traditionally one system 

planners’ main concerns. In fact, most planning methodologies already include some 

level of uncertainty in demand. Currently, demand patterns are expected to change 

due to electrification of end-uses (e.g., cooking, heating) and the appearance of new 

technologies (i.e., electric vehicles, electric heat pumps). Furthermore, these new 

technologies can potentially be responsive to system conditions through demand side 

management (DSM), distributed storage, etc. In this context, there are high levels of 

both short-term (e.g., higher variability and uncertainty, price-responsive demand) 

and long-term (e.g., levels of electrification of other sectors, energy efficiency 

measures) uncertainties associated with the demand side. 

2. RES growth: The penetration level of renewable energy sources is increasing in the 

system due to energy policies and cost reduction, especially in the case of Distributed 

Energy Resources (DER), which has changed the traditional view of the distribution 

network as a passive network. These new elements need to be included in both 

network operation, considering the increase in variable and partly unpredictable and 

non-dispatchable generation, and therefore increasing operational uncertainty, as 

well as network planning, considering the uncertainty in volume, location and timing 

of RES connection. 

3. Commercial technologies: Traditionally, power systems have required high 

investments and considerable lead times to implement network changes. 

Nevertheless, new technologies (i.e., DSM, battery storage, etc.), can result in lower 

investment costs and shorter lead times compared to traditional infrastructures. 

However, they are characterised by cost functions that are largely based on 

operational cost (which are typically uncertain) rather than investment costs as for 

traditional asset. This creates issues in how to compare these two types of assets 

(traditional investment-heavy infrastructure with relatively small operational costs 
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and low-investment asset with considerable operation costs associated with the 

availability and activation of the corresponding commercial strategy), also considering 

that, depending on the regulatory framework, new technologies may not belong to or 

be operated by the system operator.  

4. Regulatory and energy policy environment: Energy policy and regulation are 

currently under continuous revision in most countries, being a great source of long-

term uncertainty. A few of the most remarkable ways in which regulation and policy 

might affect power systems are the following: 

▪ Influence the cost of certain technologies by directly supporting their 

development using subsidies or by taxing other technologies. For instance, 

subsidies to promote residential PV are a common practice in many regions of 

the world. 

▪ Introduce new schemes which affect the paradigm of the sector. For instance, 

enforcing the consideration of environmental issues, promoting the 

development of certain regions, addressing social license issues, or considering 

interconnection objectives with other countries. 

5. Electricity markets and regulation: Closely related to energy policy, in regions with 

high decarbonisation targets there is an ongoing revision of power market structures 

and mechanisms that can have crucial effects on economic dispatch and power flows. 

Furthermore, new technologies have triggered the appearance of new markets, which 

are currently under study. For instance, the increase of renewable penetration level 

and the full retirement of coal plants by 2025 is challenging NGESO to fulfil its role of 

reliably operating the GB power system. However, the GB electricity wholesale market 

does not offer enough incentive to build relatively low-carbon conventional 

generators, e.g., combined cycle gas turbines and biomass plants, which are required 

to enable adequate reserve margin in winter peak periods. Therefore, a capacity 

market mechanism has been introduced to give extra financial support to peak 

capacity contributor since 2014 [32]. Similar challenges are being faced in other 

jurisdictions worldwide, for example in Australia. 

6. Generation mix: Changes in the generation mix are a source of long-term uncertainty 

as well. As has been mentioned throughout this section, new technologies have 

emerged and are being introduced with high penetration in power systems 

worldwide, changing the generation mix in most regions. This change may be driven 

by policies (e.g., subsidies for renewables), extreme events (e.g., catastrophic events 

leading to closure of nuclear generation), new ancillary services requirements in the 

presence of renewables and asynchronously connected resources (e.g., requirements 

for faster frequency response and minimum system inertia), etc. However, not only 

new technologies drive the uncertainty of the generation mix: for example, the timing 

of synchronous unit decommitment is both highly uncertain and critical to 
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determining what the optimal investment portfolio is for the current and future 

network. 

7. Investment cost: Uncertainty in (reduction of) investment costs of new technologies 

greatly influence investment decisions, as it might change the optimal investment 

option (both in resource portfolios as well as in assets to facilitate the development 

of new resources) in a few years. For instance, the cost reduction of new technologies 

such as high voltage direct current (HVDC) might lead to a totally different optimal 

design of reinforcement. The substantial cost reduction of renewable generation and 

batteries could also substantially impact the planning exercise. 

8. Weather and climate change: is a major challenge on the horizon. The changing 

climate means power systems are impacted by increasingly severe and frequent 

extreme events such as heatwaves, wildfires, and freezing temperatures. Low water 

availability, both for hydropower generation and for cooling in thermal generation is 

another, more persistent effect that is becoming more common as the climate 

changes. Transmission planners increasingly need to anticipate multi-contingency 

events caused by climate uncertainty, rather than the random failures of one or two 

components. 

9. Fuel prices and availability: particularly natural gas, is another major source of 

uncertainty. The price of gas determines the economic dispatch of generation, which 

in turn influences the operating flexibility of the system. Disruptions to the fuel supply, 

pipelines, or storage facilities create contingencies that transmission can possibly 

alleviate, so planners have given additional focus to gas price sensitivity.   

Hence, in this rapidly evolving and highly uncertain context there are several opportunities 

but also risks. Planning the electricity network using a modelling framework capable of 

considering all these uncertainties is therefore key to providing cost-effective solutions. 

2.1.2.2 Uncertainty factors in TEP 

As mentioned above, there are nine key uncertainty factors that have been identified in the 

TEP process. Based on [1], [33]–[42], which describe the current TEP practices of seven 

countries across five continents, Table 2.1 summarises the uncertainty factors currently being 

considered or which are material but are not considered by corresponding network planners.  

It can be noticed that load growth and RES uncertainty is being considered in all countries, 

although State Grid considers the increasing penetration of RES in a deterministic way, as the 

planning of renewable energy in China is under the jurisdiction of the National Energy Agency. 

As for generation mix, this uncertainty factor has been widely acknowledged by all nine 

network planners that have been reviewed. The Australian Electricity Market Operator 

(AEMO) and EirGrid have made relevant considerations on the impact of evolving generation 

mix, e.g., by setting new frequency response requirements and inertia constraints, limiting 

the maximum output of a single generator in reducing contingency size, etc. National Grid has 

also begun to assess the impact of increasing renewable penetration by including ROCOF in 
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its economic dispatch modelling. MISO has recently completed its renewable integration 

impact assessment (RIIA) which is among the most comprehensive studies to date 

investigating the complexity of renewable integration [43]. Among the major findings of RIIA 

is that the complexity of renewable integration increases rapidly after 30% penetration as 

new risks are created and the important periods of grid stress shift and become more severe.  

With regards to new technologies and commercial solutions, such as batteries and demand 

response, although there are relevant technology deployments in France, UK, Australia and 

Ireland, these alternative options are just starting to be considered systematically in 

transmission network planning to defer or avoid investments of traditional infrastructures 

(i.e., power lines, substations, etc.). The Pennsylvania-New Jersey-Maryland Interconnection 

system operator (PJM) in the US, however, is shifting to treat storage as a transmission asset 

and has developed effective load carrying capability (ELCC) ratings for intermittent resources, 

storage, and hybrid facilities to reflect the value of storage in managing the hourly loss of load 

probability (LOLP) profile [44]. The Midcontinent Independent System Operator (MISO) 

examines storage and demand response extensively, along with reliability and market 

implications, in the RIIA report, and California’s Independent System Operator (CAISO) has 

initiated a special study for the 2022 cycle to examine high electrification policies [45]. 

As for the uncertainty in investment costs of new technology, this factor may directly 

influence the planning decision of holding or proceeding with specific reinforcement options. 

However, most network planners do not thoroughly consider economic risks and benefits of 

holding investment decisions, as for example carried out in the NOA and the ISP process. It is 

worth mentioning, however, that State Grid in China has a department which focuses on 

monitoring and predicting costs of equipment, and this information is used in technology 

selections for reinforcement.  

The uncertainty of regulatory and policy environment is commonly embedded within the 

scenario design process. For example, governments’ policies on decarbonisation target can 

be interpreted as various expected futures, such as high renewable energy penetration levels, 

electrification of different sectors, widespread retirement of coal plants, etc. These actions 

determine key projections in different scenarios, as in the case of National Grid’s Two Degrees 

scenario. 

With regards to the uncertainty embedded in energy markets and regulation, National Grid, 

AEMO and EirGrid simulate wholesale and balancing services market operation by 

implementing, with different levels of approximation, dispatch and redispatch processes and 

bidding behaviour in their operational model, which gives their network planning process the 

capability to capture the potential impact of market changes. In contrast, CAISO conducts 

sensitivities for its energy imbalance market, but given the complexities of interregional cost 

allocation, and the flexibility market participants having to leave the market, CAISO 

recommends against using market effects to justify projects [46]. 
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Weather and climate change can impact several aspects of future operation of power 

systems. Chile, Australia and MISO already consider different scenarios for hydro inflows 

available for hydro-power generation. Other aspects of the power system can be affected due 

to increasing temperatures, for instance, efficiencies of energy generation units (thermal, PV, 

etc.) will decrease as temperature increases. 

Fuel prices represent an important source of uncertainty in power system planning. In 

general, all planning methodologies under consideration in this review consider future fuel 

prices as a relevant component of uncertainty to be represented in the different scenarios. 

Only China does not consider it as an uncertainty factor. Recent events associated to the 

Russian-Ukrainian conflict have shown how critical fuel prices can become in the operation of 

a power system, which ought to be considered in the context of transmission planning.   

Table 2.1. Uncertainty factors of TEP considered by different transmission network planners ([33]–[42], [47], [48]) 

“✓”: exist and considered; “”: exist but not considered. 
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France (RTE) ✓ ✓    ✓   ✓ 

China (State Grid) ✓    ✓     

UK (National Grid) ✓ ✓    ✓ ✓  ✓ 

Chile (CEN) ✓ ✓      ✓ ✓ 

Australia (AEMO) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ireland (EirGrid) ✓ ✓ ✓   ✓ ✓  ✓ 

US (PJM) ✓ ✓ ✓ ✓  ✓ ✓  ✓ 

US (CAISO) ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

US (MISO) ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

2.1.2.3 Modelling Uncertainty through Scenarios 

Scenarios allow planners to model different evolution of uncertain variables as well as their 

correlations. This strategy is preferred in most decision-making problems that tackle planning, 

as it provides a balance between analysing a broad range of futures and (technical) detail in 
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such analysis. Furthermore, they can be applied to some of the most common methodologies 

used in decision making, including, potentially, methodologies based on probabilistic 

approaches (in which scenarios have specific associated weights). Scenario analysis or 

“scenario-based” approach is currently used by most system planners around the world to 

model the uncertain future [34].  

The number of characteristics of scenarios used in the selected countries are listed in Table 

2.2. It can be noticed that most planners prefer to use less than five scenarios to represent 

plausible futures, e.g., envisaging nuclear or coal plants retirement, increase of DER 

penetration, electrification of heating and transport, etc.  

In some cases, the system planner builds scenarios or performs further studies to represent 

(technical and economic) sensitivities around core scenarios. For example, AEMO has 

developed 12 additional sensitivities around its scenarios to represent possible important 

opportunities/risks in the future [1]. Terna, the system operator in Italy, also uses two extra 

scenarios to represent sensitivity of potential futures rather than the expected future [49]. 

National Grid is currently using a probabilistic load flow approach in the security assessment 

of the “Two Degrees” scenario, to add robustness in the analysis of the boundary transfer 

capability with/without proposed reinforcements, as this scenario is considered as the one 

with highest network stress among all four scenarios. In Swissgrid’s Strategic Grid 2025 

proposal [50], two marginal scenarios, “Sun” and “Stagnancy”, are built to check the long-

term robustness of reinforcement options proposed in the two core scenarios, whilst the two 

marginal scenarios are not used to identify any additional network reinforcement 

requirement.  

MISO has created three futures [51] which it uses across its planning studies including the 

regular transmission planning cycle [52], the long-range transmission plan (LRTP) studies [53], 

and the renewable integration impact assessment (RIIA) [43]. These studies each include their 

own sensitivities. RIIA, for instance, includes milestones for each 10% increment of renewable 

integration, with additional sensitivities for the type and geographic distribution of renewable 

generators. The long-range transmission plan (LRTP), aimed at finding a tranche of multi-value 

projects in the 20-to-40-year horizon, includes further sensitivities into higher gas prices. 

CAISO, in addition to its standard sensitivities [46] of load, hydrological conditions, and gas 

prices, conducts special studies to explore relevant scenarios in more detail. These include 

the out of state wind study and the offshore wind study in the 2021-2022 cycle [54], the high 

electrification future study and the reduced gas storage study in the 2022-2023 cycle [55], 

and the 20-year transmission outlook study [56]. The number of these new sensitivity studies 

varies as not issues are identified as needing further study. Often, the key details of such 

studies are incorporated into the normal planning process rather than maintaining the study 

as a standalone sensitivity. PJM follows a similar approach to CAISO by including key 

sensitivities in the normal planning cycle [57], and conducting special studies on specific issues 

that are identified, such as the offshore wind integration study [44]. But because the PJM grid 
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is largely filled out, such projects do not impose the same challenges and are simpler to 

conduct compared to CAISO and WECC. 

Given the complexity of both technical and economic analysis associated with scenario-based 

planning, as well as the unfolding of uncertainty, some system operators have also envisaged 

to reduce the number of scenarios that are considered in the process. For example, the 

Chilean ISO has decided to decrease the number of scenarios from five to three from 2020, 

while EirGrid has removed the “Slow-Progress” scenario from its Tomorrow’s Energy 

Scenarios 2019 [35].  

As an important point to note, of the planning organisations listed in Table 2.2, AEMO [1] and 

MISO [58] explicitly consider weighting scenarios in their CBA process  [58], and NGESO does 

consider the use of weights in specific parts of the NOA process [39]. [58]Stakeholders provide 

weights based on their views about the likelihood of each scenario, and MISO uses these 

weights to combine the scenario-specific costs and benefits into a probabilistically weighed 

cost-benefit ratio [59]. And while the other ISOs and RTOs do not conduct probabilistic 

planning studies, they do occasionally partner with universities to conduct such studies, with 

WECC being a notable example [60], [61] 

Table 2.2. Number of scenarios used in transmission planning in ten selected countries ([1], [33]–[35], [37], [38], [40], [44], 

[46], [49], [50], [56], [62], [63]) 
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2.1.3 Industry practices 

Other than identifying existing uncertainty factors and scenarios in several countries, the 

technical details of the TEP models used by the seven selected countries already discussed 

above are listed in Table 2.3. The table is divided into four sections, which follow the 

methodology of TEP explained for the NOA process in [39] which is considered common 

practice worldwide. More specifically, the economic and security zonal boundary analyses are 

first performed to identify additional power flow requirements in order to avoid network 

congestion in the future. Then, candidate reinforcement options are tested with different 

security constraints (e.g., steady-state thermal and voltage limits). Finally, reinforcement 

options are applied in the operational model to generate system operational cost in the 

relevant scenarios, whose results are then fed into the CBA process to determining the best 

option for reinforcement. 

As shown in Table 2.3, the planning horizon is generally in the range of 15 to 20 years, except 

for Swissgrid and CAISO which only define a transmission expansion plan for the next 10 years. 

However, Swissgrid would then perform a technical analysis against the robustness of its 
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reinforcement options for a 20-year horizon, and CAISO conducts a separate 20-year 

transmission outlook study to explore grid requirements and coordinate with other entities 

over a longer time horizon [56].  

For the economy transfer capability analysis, the time resolution of simulation varies from 

15 minutes to few hours across different countries. One practice to be highlighted is that both 

Chile and Australia use load-block techniques which can reduce simulation time steps by 

clustering several time periods, but only for the periods with similar demand level rather than 

adopting it with a fixed time length. This action can increase computational efficiency while 

only marginally affecting the accuracy of the results compared to fixed-time clustering. At the 

same time, China and Chile perform simulations only with typical day(s) of each month and 

then scale them up to represent transfer volume variation or annual operational cost.  

For the security assessment of boundary transfer capability, there are countries which 

perform more than a winter peak snapshot analysis. For example, Chile not only performs 

Winter/Summer peak snapshots, but also analyses specific snapshots that are likely to be 

associated with maximum levels of power transfer across relevant boundaries.  

With regards to the security assessment of the combination of reinforcement options shown 

in Table 2.3, most countries prefer to perform the analysis at various demand levels to mimic 

different system operating condition besides the peak snapshot. In addition, National Grid’s 

NOA comprehensively covers network security criteria in the analysis. On the other hand, 

other ISOs perform extra tests such as reactive power management and frequency stability 

assessment, like in the case of AEMO. MISO not only selects the summer and winter daily 

peaks, but also the night-time peaks to monitor the system without solar and with different 

load patterns; MISO also uses snapshots from the shoulder seasons to explore thermal, 

voltage, and dynamic stability issues with minimal thermal availability for reactive support 

and with different renewable dispatches [52]. CAISO uses various off-peak and renewable 

snapshots, as well as dry hydrological conditions and extreme event contingencies such as 

those caused by heatwaves or wildfires [54]. And PJM includes contingencies for natural gas 

pipeline failures that could result from cyber-attack or natural disasters [44]. 

For the operating cost assessment of reinforcement options, which is used in CBA process, 

different countries use different sampling period varying from 2-3 years by National Grid up 

to 10 years by State Grid and Swissgrid. Additionally, with regards to the modelling of system 

operation, some countries use simple economic dispatch, while other countries adopt unit 

commitment analysis to better capture the technical characteristics of conventional 

generators (minimum up- and down-time, start-up/shut-down activities, etc.). The technical 

constraints of system operation also vary in the simulation performed by different planners. 

In terms of modelling of the network, the maximum flows of individual transmission lines are 

typically calculated according to thermal, voltage and fault-clearing standards, then the 

results are mapped as numerical constraints in economic-dispatch/unit-commitment. 

However, static transfer capability is used by State Grid in its economic dispatch process. With 
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regards to ancillary services, most countries model these as “lumped” spinning reserve 

through derating online plant capacity, while AEMO also models the requirement of minimum 

inertia level due to ROCOF, which can be crucial for low-inertia system operation.  

Most importantly, for investment decision-making tools, only a few planners (NG, MISO, 

CAISO) use LWR. MISO uses a probabilistically weighted benefit to cost ratio in a normal 

planning cycle and the least regret approach to identify projects in long-range transmission 

planning studies [58], [59]. CAISO uses a least regret approach to identify projects that best 

balance several objectives, such as cost and renewable integration policies [46]. Other 

countries use deterministic approach to obtain the best reinforcement option that brings net 

present value (NPV) maximisation in each scenario. However, from the review conducted it is 

unclear how a final, integrated decision across scenarios would be made. 

In the following section we will focus on assessing the implication of using different decision-

making tools. 
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Table 2.3. International practice of technical modelling characteristics in TEP process ([1], [33]–[39], [49], [50], [62]–[66]) 

Simulation 

Stage 
Features 

Countries/Jurisdictions 

UK (NGESO) 
France   

(RTE) 

China 

(State 

Grid) 

Chile  (CEN) 
Australia 

(AEMO) 

Ireland 

(EirGrid) 

Switzerland 

(Swissgrid) 

US         

(PJM) 

US      

(CAISO) 

US         

(MISO) 

Planning horizon (years) 20  15  15 20  20+  20 10(20)  15 10 (20) 20+ 

Zonal boundary 

assessment 

(Economy) 

Software PLEXOS ANTARES SPER AMEBA PLEXOS 
Not 

available 

N/A 

PROMOD 
ABB 

GridView 

PROMOD, 

PLEXOS 

Resolution 

and 

timescale 

3-6h (up to 1 

hour); whole 

year 

Hourly; 

whole year 

15 mins to 

hourly; 

typical day 

in each 

month 

Few hours (8 

blocks per 

day); typical 

weekday/ 

weekend in 

each month 

Few hours 

(few load 

blocks); from 

snapshot to 

whole year 

Hourly; 

whole year 

Hourly; 

whole year 

Hourly; 

whole year 

Hourly; whole 

year 

Zonal boundary 

assessment 

(Security) 

Software POUYA 
CONVER- 

GENCE 
PSD-BPA Powerfactory  PSS/E  PSS/E, DSA PSS/E, TARA 

GE PSLF, 

PowerGem, 

TARA 

PSS/E, POM, 

TSAT, TARA 

Timescale 
Winter peak 

snapshot 
Snapshots 

Typical 

snapshots 

Winter / 

summer and 

transfer peak 

snapshots 

Multiple 

Snapshots 

Peak and 

other 

demand 

snapshots 

Summer / 

winter peak, 

light load + 

high wind 

Peak Load, 

Net Peak 

Load, Off 

peak 

Summer / 

winter peak, 

Light load, 

Shoulder load 

System 

condition 
N-1 N-1 N-1 Intact/N-1 Not available N-1 N-1 N-1 N-1 
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Reinforcement 

options 

assessment 

(Security) 

Software 
Power-

factory 

CONVER- 

GENCE 
PSD-BPA Powerfactory PSS/E PSS/E, DSA 

Not 

available 
PSS/E, TARA 

GE PSLF, 

PowerGem, 

TARA 

PSS/E, POM, 

TSAT, TARA 

Timescale 

and 

sampling 

frequency 

Winter peak 

snapshot - 

every 3 

years 

Snapshots; 

Not 

available 

Snapshots; 

every 

typical 

year 

Peak demand 

snapshots; 

every year 

Peak/low 

demand and 

VRE output 

snapshots; 

every year 

Peak and 

other 

demand 

snapshots; 

Not 

available 

Peak 

congestion 

snapshots; 

every 10 

years 

Summer/Wi

nter peak, 

Low load, 

natural gas 

pipeline 

contingen- 

cies 

Summer 

peak, winter 

peak, winter 

off-peak 

spring off-

peak 

2, 5, 10 year 

+ selected 

sensitivities 

Summer & 

Winter peak 

day & night, 

Spring/Fall 

light load 

day& night 

Fall/Spring 

Shoulder Load  

Constraint 

Voltage 

Thermal  

N-1/N-1-
1/N-D 

Fault outage 

Voltage 

Thermal  

N-1/N-1-
1/N-D 

Fault outage 

Voltage 

Thermal  

N-1/N-1-
1/N-D 

Fault 
outage 

Voltage 

Thermal  

N-1/N-1-1/N-
D 

Fault outage 

Voltage 

Thermal  

N-1/N-1-1/N-
D 

Fault outage  

Frequency 
stability 

Voltage 

Thermal  

N-1/N-1-
1/N-D 

Fault 
outage 

Not 

available 

Voltage 

Thermal 

N-1, N-1-1, 
N-2 

Fault 

 

Voltage 

Thermal 

N-1, N-1-1, 
N-2 

Fault 

Extreme 
Event 

Voltage 

Thermal 

N-1, N-1-1, N-
2 

Fault 
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Reinforcement 

options 

assessment 

(Economy) 

Software BID3 ANTARES SPER Ameba PLEXOS 
Not 

available 

Not 

available 
PROMOD 

ABB 

GridView 
PROMOD 

Sampling 

frequency 

Every 2-3 

years 

Not 

available 

One in 

next 5-10 

years and 

one in next 

10-15 

years 

Every year Every year 
Every 5 

years 

Every 10 

years 

Every 3 to 4 

years, 4 

total. 

Year 5 and 

10 

Every 5 years, 

4 total 

Resolution 

and 

timescale 

3-6h (up to 1 

hour); whole 

year 

Hourly; 

whole year 

15 mins to 

hourly; 

typical day 

in each 

month 

Few hours (8 

blocks per 

day); typical 

weekday / 

weekend in 

each month 

Daily energy 

limit to hourly 

power 

balance; 

whole year 

Half 

hourly; 

whole year 

Hourly; 

whole year 

Hourly; 

whole year 

Hourly; 

whole year 

Hourly; whole 

year 

Operational 

model 

Economic 

dispatch 

Unit 

commitment 

Economic 

dispatch 

Economic 

dispatch 

Simplified unit 

commitment 

Economic 

dispatch 

Economic 

dispatch 

Unit 

commitment 

Unit 

commitment 

Unit 

commitment 
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Constraints 

Network 
constraints 
(thermal, 
voltage and 
fault outage) 

Lumped 
spinning 
reserves 

Network 
constraints 
(thermal, 
voltage and 
fault outage) 

Lumped 
spinning 
reserves 

Static 
network 
constraints  

Lumped 
spinning 
reserves 

Network 
constraints 
(thermal, 
voltage and 
fault outage) 

Lumped 
spinning 
reserves 

System inertia 
constraint 

Network 
constraints 
(thermal, 
voltage, fault 
outage, and 
system 
strenght) 

Lumped 
spinning 
reserves 

System inertia 
constraint 

Not 

available 

Not 

available 

Network 
constraints 
(thermal, 
voltage and 
fault outage) 

Lumped 
spinning 
reserves 

System 
inertia 
constraint 

Network 
constraints 
(thermal, 
voltage and 
fault outage) 

Lumped 
spinning 
reserves 

System 
inertia 
constraint 

Network 
constraints 
(thermal, 
voltage and 
fault outage) 

Lumped 
spinning 
reserves 

System inertia 
constraint 

Reliability 

index2 
LOLE 

LOLE/LOLP/ 

EENS 
EENS EENS EENS 

Not 

available 

Not 

available 
LOLP, ELCC LOLE ELCC, LOLE 

Decision making tools LWWR 
Not 

available 

NPV 

maximi-

sation  

NPV maximi-

sation 

Weighted net 

market 

benefits and 

LWWR 

Not 

available 

Not 

available 
NPV NPV 

Probabilisticall

y weighted 

benefit to 

cost, Least 

Regret 

 

 

 

2 The reliability indexes considered here are the Loss of Load Expectation (LOLE), Loss of Load Probability (LOLP), Expected Energy not Supplied (EENS), and Effective Load Carrying Capability 

(ELCC) 
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2.1.3.1 Considerations on international best practices for TEP  

Based on the review performed, key takeaways can be highlight as follows: 

• Planning uncertainty is typically dealt with by scenario-based approaches. 

• Most countries adopt a (very) limited number of scenarios in their planning 

methodologies, often building sensitivities around main scenario(s) rather than new, 

very different scenarios per se. 

• In general, probability weights are rarely associated with the considered scenarios, 

possibly because the scenarios are only sensitivities. AEMO, MISO, and to some extent 

NGESO, are the exception to this rule. In the case of MISO, scenarios are weighted, 

and projects are selected based on the weighed benefit to cost ratio [59]. 

• Scenarios seem to be typically analysed independently and then planning options are 

chosen based on specific rules to make an integrated decision across several 

scenarios. National Grid and AEMO perform an integrated analysis across multiple 

scenarios via LWR/LWWR. MISO uses a least regret approach for its long-range 

transmission planning tranche [53]. CAISO also uses least regret to balance conflicting 

objectives [46]. 

AEMO, National Grid’s and MISO seem to represent the state of the art of planning under 

uncertainty. This is to be considered in light of increasing operational complexity and 

uncertainty these system are incorporating in their methodologies. Similarly, inclusion of new 

operational characteristics and constraints, such as ones associated with low-inertia 

conditions, could be desirable. 
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2.2 Resilience in power system planning 

Extreme events (usually weather-related) have resulted in substantial economic damages in 

the power grid. As weather events become more extreme, there is a growing need for a better 

understanding of their impact so as to reduce their negative effect on power system 

infrastructure. In this context, resilience in power systems has not only become a hot research 

topic but also an issue of extreme importance for countries worldwide, due to the need to 

better understand the events, their impacts on the operation of the grid and the solutions to 

reduce their negative effects on the operation of the system. This review does not aim to 

cover all the aspects associated with power system resilience (discussion about definition, 

operational planning to improve resilience and investment to increase power system 

resilience), but to focus on those challenges associated with investments to increase 

resilience.  

Let’s start by defining power system resilience: the capacity of a power system to endure high 

impact and low probability (HILP) events (for instance, terrorist attacks, extreme weather 

events, natural disasters), recover from such disruptive events in a timely manner and, in the 

long run, adjust its operation strategies and available assets to mitigate the impacts of events 

of similar nature in the future [67], [68]. In this context, resilience can be defined as [69]: “The 

ability to withstand and reduce the magnitude and/or duration of disruptive events, which 

includes the capability to anticipate, absorb, adapt to, and/or rapidly recover from such an 

event”.  CIGRE (C4.47 WG Members) has recently defined power system resilience as: “the 

ability of a power system to limit the extent, severity, and duration of system degradation 

following an extreme event”. 

A framework to understand power system resilience is presented in [70] where also the key 

actions that can be conducted to improve network resilience are discussed. Power system 

resilience and its link to natural disasters is studied in [71], and several metrics to quantify 

resilience with consideration of fragility, survival and restoration in power systems are 

introduced in [72]. [73] extends the triangle to describe resilience and introduces the 

multiphase resilience trapezoid, also describing novel metrics to quantify resilience in each of 

the collapse-recovery phases. A framework to design and operate resilient networks with the 

consideration of risk aversion is presented in [74], which aims to decrease the exposure to 

extreme weather conditions and natural disasters. [75] proposes a resilience assessment 

methodology that considers four stages: threat characterisation, vulnerability assessment of 

system components, system response and system restoration. On the other hand, [76] 

introduces a resilience assessment method dividing this time in 3 steps: hardness before 

disasters, resistance during disasters and capacity of restoration after disasters. Besides the 

description of resilience events from a temporal perspective, [77] develops a fragility  
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 model of the transmission system that focuses on the impact of multiple regions on the 

probabilistic assessment of resilience. Resilience after earthquakes and mitigation strategies 

are studied in [78] with case study applications on the Chilean power system. [79] addresses 

the challenge of understanding resilience and designing mitigating strategies for HILP events 

using distributed energy resources. 

Several operational and investment measures have been proposed to improve power system 

resilience [70], [74], [78], [80]–[85]. Power system planning considering resilience is discussed 

in several references, which include, but are not limited to, [82], [86], [87]. In particular, [86] 

proposes a transmission expansion problem using a multi-level optimisation model 

(describing the actions of an attacker and the strategies of a defender) to make investment 

decisions under terrorist threats. More relevant to this project is the study conducted in [82] 

which proposes a two-stage stochastic program and a solution algorithm to optimise 

investments that improve resilience in the context of seismic events. Another two-stage 

stochastic optimisation model is also proposed in [87], highlighting stochastic optimisation 

approaches as a promising tool for appropriate resilient decision making. [88] proposes a two-

stage stochastic framework to identify network enhancements to improve resilience against 

earthquakes, using an optimisation and simulation solution approach. This approach enables 

capturing a very high level of detail and complexity in the simulation stage, including a 

comprehensive set of operational constraints and the sequential process of disconnection 

and reconnection of loads, which is key in evaluating the dynamics of resilience. [89] looks 

into the value of hardening existing infrastructure to improve resilience. This goes beyond the 

standard approach of looking at reinforcing the network with new/expanded assets to deal 

with low probability events. It highlights the difficulty behind this exercise as hardening of 

assets changes the outage probability associated to them. The methodology uses a scenario 

tree to model uncertainty, it characterises the threats using historical data, and assesses the 

vulnerability of components using fragility curves.   

  



 

36 

 

2.3 Integrated gas-hydrogen-power expansion planning 

Many transmission system planners in countries with an abundance of renewable energy, 

including AEMO in Australia, are now considering the opportunities of large-scale green 

hydrogen in their scenarios. Depending on the evolution of hydrogen technology, its industry 

uptake, and the State and Federal Governments’ support schemes and strategies, the impact 

on the planning of the electricity system can be substantial. AEMO’s “Hydrogen Superpower” 

scenario in the 2022 integrated system plan (ISP) [90] predicts that the National Electricity 

Market (NEM) would need approximately 269 GW of wind and approximately 278 GW of solar 

- 34 times its current capacity of variable renewable energy (VRE) – to export green hydrogen, 

and support decarbonisation of heavy industry (e.g., green steel making), gas-fired generation 

(through hydrogen turbines), and end-use (by progressively switching households with gas 

connections to hydrogen-gas blend). This monumental scale of development will require the 

NEM to deliver eight times its current energy delivery by 2050. 

Hydrogen can be produced from renewable energy through the power-to-gas (PtG) process 

[91], and transported and stored in liquid or compressed forms, or as a chemical compound 

such as ammonia [92]–[95]. This imminent advent of large-scale green hydrogen production 

raises the central question of which of the two options, transporting green hydrogen from 

distributed hydrogen producers co-located at the renewable energy zones (REZ), or 

transporting green electricity from REZ to a central hydrogen production hub, is the most 

cost-effective one across different distances, for different renewable energy portfolios, and 

subject to local availability of water and multi-vector storage options. The role of hydrogen 

as a way to transport renewable energy over long distances was identified in a 2018 report 

from IRENA [96], in light of the emissions reduction targets outline in the Paris Agreement. In 

this report, IRENA’s roadmap for the energy transition towards low-carbon emissions is 

centred on key green hydrogen production technologies as the main drivers, particularly 

proton exchange membrane (PEM) electrolysers and fuel cells, which are approaching 

technical maturity and economies of scale. According to a recent study by CSIRO, the cost of 

PEM hydrogen electrolysers is projected to drop to nearly a third of its current costs by 2035 

[97]. 

There are several studies on the design of hydrogen supply chains (HSC) in specific regions 

such as France [98] and Germany [99]. In particular, the work in [98] uses a multi-objective 

optimisation to design the HSC deployment scenario where three different objectives are 

considered to minimise total cost, CO2 emissions, and safety risk. The work in [99] formulates 

the problem as a mixed-integer linear programming (MILP) problem that minimises the total 

cost of HSC, taking into account emission constraints. Moreover, a two-stage stochastic MILP 

is proposed in [100] for designing a liquid HSC while considering uncertainty in future 

hydrogen demand. 
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In order to overcome the fluctuations in hydrogen production from renewables, seasonal 

storage technologies can be incorporated into the HSC modelling [101], [102]. A multi-

objective optimisation is also adopted in [103] to analyse a HSC network with the objectives 

of maximising the net present value and minimising greenhouse gas emissions. The work in 

[104] investigates the impact of co-deployment of hydrogen and CO2 infrastructure on the 

transition of the heating sector from natural gas to hydrogen. In the supply chain, hydrogen 

transportation is the backbone that links production to utilisation, with tanker trucks, tube 

trailers, and hydrogen pipelines currently being the top three options [105]. Out of these 

three, hydrogen pipelines have been demonstrated to be the most cost-effective means for 

transporting large volumes of hydrogen over long distances [106], [107]. As an example, the 

work in [108] investigates the lowest cost of centralised hydrogen production and pipelines, 

whereas the pipeline network, including sizing and hydraulics, are studied by [109] and [110]. 

However, the above research is limited in scope as only the HSC is analysed, with no 

consideration of electricity infrastructure options. In the context of green hydrogen, including 

the electricity infrastructure as an option in the framework could unlock superior designs. 

This is especially true when considering the specific features associated with RES, and in 

particular when they are clustered in large-scale renewable energy hubs where wind and solar 

farms may be located far from the location of hydrogen utilisation. In this context, the key 

question arises as to whether it is better to locally generate hydrogen from renewable energy 

and transport it in pipelines, or transport electricity via transmission lines and then convert it 

to hydrogen at the location of the hydrogen export or demand, while also considering water 

availability, geographical constraints, and potential electricity and/or hydrogen storage 

options. 

Such integrated planning of electricity and hydrogen networks has only been studied in recent 

years by a handful of researchers. A multi-objective MILP optimisation model is presented in 

[111] to design the integrated multi-vector energy networks for Great Britain (GB) in which 

energy can be transported as electrons by electricity transmission line or as molecules via gas 

pipelines, whereas [112] implements an MILP optimisation model to evaluate the optimal 

design of a hydrogen-based energy system in Germany in which only a pipeline transport 

option is considered. Moreover, the work proposed by [113] is used to design integrated 

wind-hydrogen-electricity networks to be used primarily for supplying the demand from the 

transport sector in GB. On the other hand, the model discussed in [112] is further extended 

in [114] by adding high-voltage direct current (HVDC) transmission lines to the energy 

transport options. However, these studies did not model the detailed dynamics of the gas 

system and therefore may be unable to capture the inherent storage capabilities of the 

pipelines (i.e., linepack). Furthermore, factors such as pipeline diameter and operating 

pressure are not incorporated into the mathematical model, thus, their influence on 

maximum energy transport capacity is not properly captured.  
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The study conducted in [115] designs and analyses a wind-powered hydrogen supply system 

considering both transmission connectivity between wind turbines and existing network and 

hydrogen transportation mode. However, the operation of each system, which is key in the 

presence of variable RES, is not captured in the model, thereby affecting its accuracy and 

optimality. Additionally, none of the above studies have modelled hydrogen production 

constraints due to regional water availability, which may be a key factor in real world 

applications. Furthermore, in [115], key physical parameters associated with the system 

capacity, e.g., diameter of a pipe or voltage level of an electricity line are not considered. Such 

capacity planning with assessments on different candidate capacity options is not analysed 

by [113] or [114] either. 

The model developed by [116] incorporates both existing electricity networks and HSC to 

determine the optimal investment in electrolysers and hydrogen storage. However, there is 

no consideration of the (integrated) planning of electricity and hydrogen transmission 

infrastructure. On the other hand, the work in [117] compares the renewable energy 

transportation options including electricity transmission through HVDC and hydrogen 

transportation through pipelines. However, the inherent temporal variability of renewable 

energy production is not captured, which may subsequently alter the findings in the paper. 

Furthermore, the impacts of the system operation on the planning result are not considered 

either.  

Recently, the importance of hydrogen production from renewable electricity in the transition 

to a net-zero energy system was discussed in the vision presented in the European hydrogen 

backbone (EHB) [118], [119], where a dedicated hydrogen pipeline network is proposed for 

connecting hydrogen supply and demand across many European countries. The majority of 

the proposed EHB pipeline network will be based on repurposing existing natural gas 

infrastructure, and it is anticipated to grow to a length of 39700 km by 2040. The EHB will be 

utilised to transport hydrogen produced from offshore wind farms and solar PV within 

Europe, as well as hydrogen imports from outside Europe. The work in [120] also investigates 

options for transporting RES across long distances. The study compares between two energy 

carrier options, namely, transporting RES as electrons via high-voltage alternating current 

(HVAC) lines or as molecules via hydrogen pipelines. In more detail, the renewable electricity 

transported through HVAC transmission line is used to produce green hydrogen at the 

demand location, whereas in the hydrogen pipeline option, green hydrogen is produced at 

the location of RES and then transported to the hydrogen demand point. However, the study 

in [120] only considers one RES location and one demand point and neither considers HVDC 

options nor models the storage capability of the linepack. The work in [121] also compares 

options of transporting hydrogen produced from offshore wind farms to onshore hydrogen 

production but the work disregards HVAC options, hydrogen storage, and does not consider 

the effect of the linepack in capturing the variability of the RES.  
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An insight into the anticipated hydrogen ecosystem development is given by [122], which 

states that scaling up hydrogen production in combination with proper regulatory 

frameworks could lead to a rapid decline in renewable hydrogen cost. This reduction in cost 

can be attributed to the anticipated drop in the cost of renewable generation. However, [122] 

also identifies that the drop in renewable cost is not enough to achieve low-cost clean 

hydrogen since the scaling of value chain of electrolysis is also a defining factor. Furthermore, 

it is widely believed that a cost-efficient hydrogen transmission and distribution infrastructure 

is key to unlocking large-scale hydrogen applications. Nonetheless, there is no 

straightforward solution for determining the optimal hydrogen transport option since it 

depends on many factors such as distance, terrain, and end-use application. Nonetheless, it 

is possible to achieve very low hydrogen transport costs for short and medium range 

distances if the existing pipeline networks were retrofitted to accommodate hydrogen. 

However, this in turn depends on the availability of an existing pipeline network that is 

suitable for retrofitting, as well as a higher rate of pipeline utilisation. Alternatively, in 

scenarios of low or fluctuating hydrogen demand, transporting hydrogen in trucks, in liquid 

or gaseous form, is more attractive. Over very long distances and international transport, 

transporting hydrogen at scale in new or retrofitted subsea pipelines may provide a cheaper 

option than shipping. Alternatively, if pipelines are not available, transporting hydrogen in 

liquid form or in chemical compounds is another viable option. An overview of hydrogen 

transportation costs is given Table 2.4, where different transport options are analysed for 

different distance ranges [122]. Note that the costs of ammonia and liquid organic hydrogen 

carriers (LOHC) include reconversion to hydrogen. 

Table 2.4: H2 transportation cost ($/kg) using different options in [122] 

 
Distance range (km) 

0–50 51–100 101–500 >1000 >5000 

Pipeline 
Retrofitted  <0.1 <0.1 <0.1 0.1–1 N/A 

New <0.1 <0.1 0.1–1 0.1–1 N/A 

Shipping 
Liquid H2 N/A N/A N/A 1–2 1–2, >2 

Ammonia  N/A N/A N/A 1–2 1–2, >2 

Trucking 

LOHC N/A N/A N/A 1–2 1–2, >2 

Liquid H2 1–2 0.1–2 1–2 N/A N/A 

Gaseous H2 0.1–1 0.1–1 1–2 N/A N/A 

A recent study in [123] analyses different routes for shipping transportation of hydrogen and 

concludes that ammonia ($0.56/kg-H2) and methanol ($0.68/ kg-H2) are the least expensive 

hydrogen derivatives to transport, followed by liquified natural gas ($1.07/ kg-H2), liquid 

organic hydrogen carriers ($1.37/ kg-H2) and liquid hydrogen ($2.09/ kg-H2). The authors in 

[123] acknowledge that cost profiles, demand factors, end uses, and economics are all 

expected to change rapidly in the coming years, which is why they developed an open-source 
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(Excel-based) tool to enable users to include a wide array of relevant costs for any shipping 

route globally, with the ability to update costs as the industry develops. 

In summary, a systematic analysis of the fundamental drivers affecting infrastructure planning 

decisions across the two energy vectors and sets of technology has not been discussed in any 

work so far. In particular, the literature discussed above is either limited in scope to HSC 

without considering electricity infrastructure options or limited in the variety of considered 

infrastructure technologies. Other relevant works also ignore essential aspects such as 

voltage levels, pipeline diameters, pressure drops, linepack, and water availability, which can 

profoundly impact the optimal infrastructure design. To the best of our knowledge, [124] is 

the only work that incorporates essential nonlinearities such as voltage drops due to losses in 

HVAC and high-voltage direct current (HVDC) transmission lines, losses in HVDC converter 

stations, reactive power flow, pressure drops in pipelines, and linepack, all of which play an 

important role in determining the optimal infrastructure investment decision. 

2.3.1 Comparison of transport options in the literature 

Surprisingly, a direct comparison of the cost of energy transmission by electricity and by other 

types of energy carriers is addressed by only a handful of existing literature. In 2018, the work 

in [125] directly compared the relative costs of transporting electrical and chemical energy 

and determined that the costs of transporting electricity are substantially higher than the cost 

of transporting hydrogen. The same general trends are echoed in a recent work in [126], albeit 

with different estimates of the costs of individual energy carriers. This difference is due to the 

different assumptions in the underlying infrastructure options such as fluid velocity at 

minimum pressure (m/s) and capital costs ($/km), as well as the different assumptions and 

methods underlying the computation of capital costs. In more detail, [126] includes taxes and 

financial interest whereas [125] uses a simple capital recovery method in which the capital 

cost is levelised over the total amount of energy transported through the energy 

transportation option over the specified number of years. A summary comparison between 

the findings in [125] and [126] is shown in Table 2.5. 

Table 2.5: Comparison of the results in [125] with the ones in [126] for 1000 miles (1609.34 km)3 

 H2 pipeline (900mm)  Electricity (HVDC) 

 [125] [126]  [125] [126] 

Maximum pressure/voltage (MPa,kV) 10 10  500 500 

Fluid velocity at minimum pressure (m/s) 15 18.6  NA NA 

Capital cost ($M/km) 1.99 0.87  1.43 2.42 

Capital cost ($/MW-km) 210.1 103.1  480.2 933.3 

Total cost ($/MWh-1609km) 4.0 5.0  4.4 41.5 

 

3 The total costs is the amortized cost in $/MWh per 1609km which combines the total of the operating costs and the amortized capital 
construction cost of a new line. 
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The differences in H2 pipeline costs between [125] and [126] are less pronounced than the 

NG pipeline costs. This is mainly due to a smaller change in H2 flow velocity between 

compression stations. The estimate cost for H2 pipelines in [126] is slightly lower than of a NG 

pipeline. This lower cost is a result of using less compressor stations for H2 pipelines (9 

compressor stations per 1609 km) compared to NG pipelines (11 compressor stations per 

1609 km). Additionally, since H2 transmission is associated with a smaller pressure drop 

compared to natural gas transmission for the same distance, the volumetric flow rate is higher 

in H2 pipelines than in natural gas pipelines. This explains why the estimate of the transport 

capital cost of H2 in [126] is only marginally higher than that of natural gas.  

The most notable difference between the findings in [125] and [126] is in the estimation of 

HVDC transport costs. In particular, the capital cost ($M/km) estimates in [126] are 70% 

higher than those in [125]. This is mainly because [126] considers the cost of converter 

stations at both the sending and receiving ends of the HVDC line, whereas [125] does not. In 

addition, despite the same HVDC link capacity being used in [125] and [126], the $/MW-km 

cost estimates in [126] are 2x larger than those [125]. This is mainly due to transmission losses 

which are captured in [126] but not in [125]. The above factors, compounded by the 

differences in the capital cost amortisation methods, translate to estimates of HVDC transport 

costs that are almost 10x larger in [126] than in [125]. 

In summary, the differences in the amortised and capital cost estimates between [125] and 

[126] stem from a combination of the following factors: (i) different methodologies for 

computing the volumetric flow of the compressible gases in the pipelines, (ii) accounting for 

losses in the HVDC lines, and (iii) the different capital cost amortisation methodologies. A 

more detailed summary of the comparison between the electricity (HVDC) and H2 pipeline 

transmission infrastructure costs in the analysis of [126] is summarised in Table 2.6. 

Table 2.6: Cost estimates of electricity (HVDC) and H2 pipeline transmission infrastructure costs in the analysis of [126] 

 H2 pipeline (900mm) Electricity (HVDC) 

Total flow (kg/s, Amps) 69.54 6000 

Delivered power (MWLHV, MW) 8360 2656 

Capital cost ($M/km) 0.9 2.4 

Power loss in transmission 1.94% 12.9% 

Capital cost ($/MW-km) 103.1 933.3 

Amortised cost ($/MWh-1609km) 5 41.5 

It is worth noting that in both [125] and [126] the utilisation factor of all the transport options 

is assumed to be 100%, which entails that the given transmission method is assumed to be 

used continuously at nominal design capacity. 

HVAC transmission option is not included in Table 2.5 as it was found in [126] to be 

substantially higher than the cost of HVDC transmission. Nonetheless, recent work in [120] 

compares HVAC transmission lines to H2 pipelines as two infrastructure options to transport 
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4000MW renewable energy in west Texas over 400 miles (644km) to an H2 demand point in 

east Texas. In those two options, HVAC transmission lines transport renewable energy as 

electrons, which is then used to produce H2 at the demand point, whereas H2 can be produced 

at the location of renewable energy and then transported via an H2 pipeline to the demand 

point. In particular, the considered HVAC infrastructure consists of 5 double circuit 345 kV 

with 800 MW total capacity each. The reason behind choosing 345kV AC lines is that the 

majority of high-voltage transmission lines in Texas are 345 kV AC lines. As for the H2 pipeline 

infrastructure, a 36-inch diameter (900 mm) is used with an operating pressure of 600 psi (41 

bar). Under these parameters, the pipeline can transmit about 2.1M kg/day of hydrogen 

(equivalent to 3450 MW at an energy density of 141.7 MJ/kg, equivalently 12.78 MJ/m3). The 

results of the comparison are summarised in Table 2.7. 

Table 2.7: Cost estimates for a project lifespan of 20 years at 6% discount rate [120] 

 H2 pipeline (900mm) Electricity (HVAC) 

Maximum pressure/voltage (MPa,kV) 4.1 345 

# of pipelines/HVAC lines 1 5 

Total cost for 644km ($M) 1200 4000 

Capital cost ($M/km) 1.86 6.21 

Capital cost ($/MW-km) 466 1553 

Total cost ($/kg-644km) 0.14 0.46 

Total cost ($/MWh-644km) 3.47 11.62 

The cost estimates in Table 2.7 do not include the cost of inverters, transformers (and reactive 

power support), and compressors, which explains the large differences between the findings 

in [120] and [126] in Table 2.5. 

The scope of the works in [125], [126], and [120] is limited to the study of the cost of long-

distance energy transmission by electricity, gaseous, and liquid carriers under a set of 

consistent technical and financial assumptions, as shown in Figure 2.1. In other words, [125], 

[126], and [120] neither consider capacity factors of the renewable energy sources nor the 

impact of electrolysers on the overall cost and transport efficiency. This type of analysis was 

recently conducted in [117], whose scope is also shown in Figure 2.1. 

 
Figure 2.1: Scope of the existing works in [125], [126], and [120] delineated by the dashed red rectangle. The scope of the 

work in [117] is delineated by the dashed orange rectangle. 

In more detail, [117] compares the levelised cost of energy (LCOE) of an H2 pipeline and an 

HVDC link for a hydrogen supply chain scenario with 1000 MW of renewable power with a 
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capacity factor of 32.7% over a distance of 4000km, and the main findings are shown in Table 

2.8. The key assumptions behind the estimates in Table 2.8 are shown in Table 2.9. It can be 

seen from Table 2.8 that the LCOE estimate of the H2 pipeline is about 15% higher than that 

of the HVDC line in this specific scenario (according to [117]). Also, the LCOE of both the H2 

pipeline and an HVDC link are around 4x larger than the LCOE of renewable energy (78.67 

$/MWh from Table 2.9). 

Table 2.8: LCOE of an H2 pipeline and an HVDC link for a hydrogen supply chain scenario with 1000 MW of renewable power 

with a capacity factor of 32.7% over a distance of 4000km (Figure 2 in [117]).  

 H2 pipeline Electricity (HVDC) 

Pipeline/Cable ($/kg/4000km) 2.13 1.41 

Electricity ($/kg/4000km) 4.24 5.72 

O&M ($/kg/4000km) 2.28 0.04 

Electrolyzer ($/kg/4000km) 1.05 1.05 

Electrolyzer O&M ($/kg/4000km) 1.69 1.69 

Total ($/kg/4000km) 11.39 9.9 

Total ($/MWh/4000km) 341.7 297 

Table 2.9: Main assumptions behind the estimates in Table 2.10 (Table 1 in [117]). 

 H2 pipeline Electricity (HVDC) 

Transmission capacity (MW) 1000 1000 

Electrolyzer capital ($/kW) 1500 1500 

Cable/Pipeline normalised Cost (M$/km) 0.34 0.34 

O&M (%) 4.0% 0.1% 

Renewable electricity ($/MWh) 78.67 78.67 

Electrolysis efficiency 62.0% 62.0% 

Lifespan 40 years 40 years 

Capacity factor 32.7% 32.7% 

Capital interest 8.0% 8.0% 

Capital recovery factor (CRF) 14.9% 14.9% 

Capital payback 10 years 10 years 

Transmission efficiency 99.8% 86.0% 

Transmission distance (km) 4000 4000 

A major caveat regarding the estimates in [117] (Table 2.8) is that they were obtained from a 

predominantly parametric analysis that does not provide a detailed insight into the individual 

capital costs of associated converter and compressor stations. The exact diameter of the H2 

pipeline is not provided either. Only the carrying capacity of the pipeline in MW is provided. 
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3 Flexible expansion plan based on multi-stage stochastic planning 

This section focuses on describing three fundamental aspects of the work conducted in this 

project, namely a brief description of the theoretical modelling of stochastic expansion 

planning, the data inputs used to describe the case study applications, and the results 

obtained for the reference case study application on top of which the remaining sections of 

the report are built. 

3.1 Description of the stochastic planning model 

The planning of the system's expansion presents a challenge that demands careful 

consideration of operational details to evaluate investment options while facing the 

complexities associated with expanding power systems under uncertain conditions. This 

work initially focuses on solving the problem of minimising expected cost, to later modify 

the objective of the problem to assess planning risk. 

In the context of stochastic planning the uncertain parameters (e.g., load, renewable energy 

capacity, unit decommission, investment and operation costs) in the expansion model are 

depicted through a scenario tree. This tree captures the variables' uncertainty while 

maintaining the system's relevant interactions. The tree's nodes are organised into epochs, 

such as different years in the planning period, as illustrated in Figure 3.1. The example shows 

three scenarios with nodes covering the operation from start to finish of the horizon 

(Scenario 1: N1-N2-N4, Scenario 2: N1-N2-N5, and Scenario 3: N1-N3-N6).  

 

Figure 3.1. Scenario tree representing three yearly stages through six nodes, each of them containing three representative 

weeks. (PX-Y means period Y representing operation in node X) 

Each node in the tree depicts the operation and investment for a specific year where the 

different uncertain variables have been assigned a value. For instance, node 2 and node 3 may 

differ in the amount of expected demand and renewable energy capacity installed in year 2, 

Y2. The two paths followed between nodes 1, nodes 2 and 3 represent the branching in future 

uncertainty (stochastic component of the model), which are usually modelled though a 
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likelihood of each specific path to occur. The likelihood of each transition is expressed though 

a probability, and each set of paths stemming from a specific node must have a total 

probability of 1. If the paths between node 1 and node 2, and node 1 and node 3 are consider 

as likely to occur, then each of them will have a probability of 0.5. The probability of the 

transition between node 3 and node 6 is 1, as there is only one future expected to happen 

from node 3 onwards.  

The system's operation is modelled through a set of independent representative days, weeks, 

or months, which are assumed to be independent. For instance, in Figure 3.1 the operation 

of each node is represented through 3 typical periods, which are labelled PX,Y, where X is the 

node number and Y is the period number. To clarify this even further, this means that the 

operation in node 1 will be represented by 3 weeks (could be days or months) of operation, 

that are selected from the 52 weeks in the year under analysis for that node. The 3 weeks 

could correspond to one week with the highest demand, one week with the lowest demand, 

and the one with average conditions. These are to be determined through a clustering or 

inspection strategy aiming to find the right conditions to value the investment options under 

consideration. Each of the representative periods can have a different weight throughout the 

year. In this study, the operation is represented through representative weeks using hourly 

steps, which represent a good trade-off between modelling complexity and a long-enough 

period to determine the value of storage technologies, as well as thermal units’ technical 

constraints. Investment decisions for new assets are made at each node of the tree (which in 

this study covers a horizon of 20 years), considering models for each system element, which 

will be discussed in later sections.  

The stochastic tree can be expressed as a single optimisation problem, known as the 

deterministic equivalent problem. For expansion planning case studies up to a certain size, 

where the tree size and operation representation are not overly large, the associated 

problem can be solved using available mixed-integer linear programming solvers (e.g., 

Gurobi), assuming the nonlinear parts of the problem would have been suitably linearised. 

This is what is done in this project, given that the essential value is in the methodological 

aspects of the different approaches being considered. For larger problems, caused by 

various stochastic parameters (e.g., number of scenarios, number of decision 

variables/investment options, etc.), detailed operation modelling, etc., decomposition 

algorithms might be needed in case the monolithic approach were to become infeasible due 

to the high memory demand and slow convergence of the branch-and-cut algorithm used to 

solve mixed-integer linear programs4.  

 

4 Computational developments associated with the modelling are part of ongoing and future work. 
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3.1.1 Expansion planning problem 

This section describes the main components of the underlying mathematical problem that 

describes the expansion planning problem under uncertainty. First, Figure 3.2 depicts the 

general structure of the planning model. The optimisation problem aims to minimise the 

total expected costs associated to the investment and operation decision made in each node 

of the scenario tree. The operation component of the total costs also includes the cost of 

not serving energy to the customers at any given period, which in the context of this study 

is valued at the current market price cap for the National Electricity Market. 

  

Figure 3.2. General structure of the stochastic planning problem 

This objective function is subject to a set of constraints that includes: 

• Investment constraints: these include the so-called non-anticipativity constraints, 

which guarantee that an investment made at a certain node in the scenario tree will 

be present in the subsequent nodes connected to said node. These constraints also 

include the potential rules of investment across the portfolio of options, for instance, 

investment options that are mutually exclusive, investment options that must follow 

another investment option, or investment options that must be built simultaneously. 

• Power system constraints: these correspond to all the constraints associated to 

power system operation, including energy balances, reserve provision, power flow, 

transmission limits, etc. 

• Unit-commitment constraints: the operation of conventional units in the system is 

bound by their technical characteristics, for instance, ramping limits, minimum 

stable generation, start-up times, etc. 

The structure of the problem presented in Figure 3.2 can be translated into a comprehensive 

mathematical problem, although here we do not introduce those details. For further details 

on the modelling of power system operation, see [127] 

The objective function of the stochastic investment problems adds up all the investment and 

operation costs of the set of nodes (and associated representative weeks) in the scenario 

tree. Note that the operation of each representative week can be multiplied by a factor to 

reflect the weight of that representative week in the operation of the year associated with 
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the node that contains it. These costs are discounted from the year associated to each node 

to a reference year using a given rate of return. Also, since the approach considers expected 

cost minimisation, each node is weighted by its probability of occurrence.  

The different studies on expansion planning presented in this report use the information 

presented in the 2022 Integrated System Plan (ISP) [1]. Even though the expansion 

methodology presented in this project is fundamentally different from the ISP methodology, 

it is relevant to briefly describe the ISP approach to understand the input data of the study. 

Then, the input data used in the case study applications is introduced, along with the 

description of the representation of the future and uncertainty. 

3.2 Integrated System Plan 2022 methodology 

AEMO’s ISP process covers a decision horizon of 20 years and includes the effect of distributed 

energy resources (DER), virtual power plant (VPP), grid-scale generation, energy storage 

systems (ESS), high voltage transmission, the gas system, hydro resources, and the 

electrification of transport. The ISP2022 also considers the effects of the emerging global 

hydrogen economy in Australia. 

The ISP addresses the power system needs for reliability, security, public policy objectives and 

their supporting system standards. The transmission expansion decisions necessary to 

leverage the transition from a coal-fired generation dominated system to a low-carbon, low-

inertia system dominated by variable renewable energy sources (VRES) and DER are made 

using a least-cost and least-regret approach. 

 

Figure 3.3. ISP scenarios (Source [1]). 

In order to determine the optimal transition path for the system, the ISP models the future 

through a set of scenarios (see Figure 3.3) that are characterised by varying load levels (LOAD) 

and supply profiles (VRES and DER), energy storage parameters and investment costs, the 

behaviour of the gas and electricity markets, etc. Figure 3.3 allows to understand how each 
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scenario balances the decentralisation and the underlying operational demand seen by the 

transmission network in each scenario. On top of the four scenarios, the methodology 

considers additional sensitivities on future scenarios, including considering higher discount 

rates, lower gas prices, stronger electrification, etc. 

The methodology aims to find the least cost development path for each scenario and 

sensitivities separately. Each deterministic least cost development path is determined using a 

generation and transmission expansion model resulting in hourly dispatch outcomes that are 

then tested for security criteria (fault levels, dynamics, voltage compliance, etc.) using 

electromagnetic transient analysis software. Then, using those results, it determines the 

least-regret development path across all scenarios, as described in Figure 3.4. 

 

Figure 3.4. Steps for the calculation of the least-regret path in the ISP2022. 

As seen in steps described in Figure 3.4, after calculating the weighted net market benefits 

for each scenario a least-worst weighted regret (LWWR) approach (originally proposed in 

[128]) is used by AEMO for ranking candidate development paths in the optimal development 

path determination process. The LWWR approach identifies the path with the least regret 

from under- or over-investment considering uncertainties across scenarios. The LWWR 

approach takes scenario weights into account to reduce the impact of unlikely scenarios, as 

opposed to the standard LWR approach which is equivalent to considering equal scenario 

weights [128]. AEMO calculates regrets by determining the largest net market benefit for each 

scenario and comparing it to other candidate development paths for the system. The greater 

the deviation from the least-cost development path, the greater the regret.  

All the information necessary to run the steps described above is available to the public, 

including the partial results of each step of the methodology. This work uses the information 

associated with the generation investment plan and retirements in each scenario, the 

demand data (which already considers the effect of electric vehicles and behind-the-meter 

storage), transmission and storage investment options and associated capital costs. The 

following section describes the details about the input data describing each of the scenarios. 

Calculate the net market benefits for each candidate development path in each scenario

Identify the least-cost development path and determine the net market benefit by 
comparing it to the counterfactual development scenario (where no new investments occur)

Calculate the regret cost for each of the least-cost development paths by comparing the 
market benefits with the other least-cost development paths

Use the scenario probabilities to determine the expected regret for each of the values found 
in the previous step

For each least-cost development path determine the worst weighted regret

Select the optimal development path by finding the one with the least-worst weighted 
regret 



 

49 

 

 

a) Subregions in ISP 2022 

 

b) Transmission candidate investment options 

 Figure 3.5. NEM system regions and transmission candidate investment options modelled in the ISP 2022 

3.3 Input data 

The system under consideration corresponds to the Australian NEM as defined in the input 

assumptions database associated to Integrated System Plan (ISP) 2022 [1]. Some of the data 

used in this work is obtained from the results associated to the optimal development path 

found in the ISP2022, which corresponds to the candidate development path 12.  Figure 3.5a 

depicts the 10 subregions under consideration in the ISP for the expansion planning exercise.  

Figure 3.5b highlights the candidate lines (black segments) considered in the ISP 2022 (the 

picture excludes commercial solutions also considered in the ISP 2022).  

3.3.1 Initial system and trends 

The existing generating units are grouped into clusters of equivalent (or close to equivalent) 

generators per technology per subregion to reduce computational effort while maintaining 

very good operational resolution [129]. Table 3.1 presents the techno-economic parameters 

of the synchronous units in year 2022.  

▪ Central & North Queensland (CNQ) is represented through a cluster of coal units, two 

cluster of gas- fired units, a cluster of Diesel units and one group of hydro units.  

▪ Gladstone Grid’s (GG) synchronous units are represented through a coal-fired cluster 

and a gas unit.  

▪ Southern Queensland (SQ) is represented through four coal clusters and three gas-

fired clusters 
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▪ North New South Wales (NNSW) only has renewable energy technologies operating 

in it. 

▪ Central New South Wales (CNSW) considers one cluster of coal units and a different 

cluster to represent the Diesel capacity available in the subregion. 

▪ Sydney, Newcastle & Wollongong (SNW) synchronous fleet is represented through 

two clusters of open-cycle and combined cycle gas units. 

▪ Southern New South Wales (SNSW) consists of a cluster of open-cycle gas turbines 

and one cluster of hydro units. 

▪ Victoria (VIC) is modelled using three clusters: one cluster of brown coal units and two 

clusters of gas turbines. 

▪ South Australia’s (SA) generation fleet is modelled using two clusters of open-cycle 

gas-fired units, one cluster of combined cycle gas turbines and two clusters of Diesel 

units. 

▪ Tasmania (TAS) is represented using three clusters of gas-fired units and one cluster 

of hydro resources. 

Figure 3.7 shows the evolution of coal units’ retirements by scenario. The clusters including 

coal units are modified depending on the specific changes in the generation fleet described 

in the optimal development path found in the ISP 2022. 

Table 3.1. Referential techno-economic parameters of units available in 2022 (Source [1] 

Technology Coal Hydro OCGT CCGT 

Number of units 48 110 93 10 

Variable cost [$/MWh] 12-42 7.3 95-490 65-79 

Start-up costs [k$] 46-93  0.4-6.5 12-46 

Rated Power [MW] 354-744 25-127 33-500 180-644 

Forced outage rate [pu] 0.77-0.87 0.975 0.88-0.98 0.98 

Minimum Stable Generation [MW] 141-300 5-25 8-165 44-190 

Ramp rate [MW/min] 3.5-6  3 2-10 

Inertia constant [s] 4 2.5 4 4 

Min up time[h] 8-16   4-6 

 

Figure 3.6. Coal fired capacity retirements by scenario (Source [1]). 
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Non-synchronous generation is split into large scale wind, large scale solar PV and rooftop 

solar PV, represented each as a single unit in each state. The capacity of these units changes 

in the different nodes of the tree to reflect the growth in installed capacity. In order to have 

access to the most precise information about demand in the system (e.g., to account for its 

natural response after frequency changes for the sake of calculating reserve requirements), 

rooftop solar PV is modelled as a separate unit hence avoiding the need to subtract it from 

the gross demand for each state. The installed capacity for the different generation 

technologies for scenario Step Change (considered the most likely scenario) is depicted in 

Figure 3.7. 

 

Figure 3.7. Installed capacity by technology by scenario (Source [1]). 

The transmission system considers 11 existing links between the different subregions, whose 

forward and reverse maximum active power transfers are specified in Table 3.2. The table 

also includes project EnergyConnect between SA and SNSW, which although under 

development, it is considered to start operations in 2026. Following the ISP’s approach, 

Kirchoff’s voltage law is not modelled, which in general is not an issue, as the network is 

mainly radial, with the exception of the loop seen between SA, NSW and VIC. This 

approximation might affect the valuation of investment options across the system, but in 

particular those connecting NSW and VIC. . 

AEMO models four different types of storage systems: behind-the-meter storage, 

coordinated distributed storage, and both battery energy storage systems (BESS) and 

pumped-hydro storage systems (PSS) with different charging depths. The effect of behind-

the-meter storage is included in the demand profiles. Controllable distributed storage is 

handled as a virtual power plant (VPP) equivalent generator with dispatchable capacity to 

only perform arbitrage in the system (no provision of frequency response).  
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Table 3.2. Characteristics of existing and expected transmission lines 

Transmission line Region A Region B 
Transfer limit [MW] 

A to B B to A 

CNQ->GG CNQ GG 1050 1100 

SQ->CNQ SQ CNQ 1000 2100 

QNI NNSW SQ 745 1170 

Terranora NNSW SQ 50 200 

CNSW->NNSW CNSW NNSW 910 1025 

CNSW->SNW CNSW SNW 7625 6125 

SNSW->CNSW SNSW CNSW 2950 2590 

VNI VIC SNSW 1000 400 

Heywood VIC SA 650 650 

Murraylink VIC SA 220 200 

Basslink TAS VIC 478 478 

Project EnergyConnect SNSW SA 800 800 

The ISP organises utility-scale storage in three categories: shallow, medium, and deep. 

Shallow storage considers a storage capacity of less than 4 hours, medium storage units cover 

the range between 4 and 12 hours, and deep storage considers units with more than 12 hours 

of storage capacity. Current storage levels by type include 570 MW and 100 MW of medium 

and deep storage in Queensland, respectively. NSW has 50 MW of shallow storage, 80 MW 

of medium and 150 MW of deep storage. Shallow storage in VIC is currently 120 MW and in 

SA 470 MW. In general, for existing and new BESS, the round-trip efficiency is considered 82%, 

while for existing pumped-storage hydro the round-trip efficiency is 72%. In Figure 3.7 it is 

possible to see the optimal storage capacity (dispatchable and behind-the-meter) determined 

by AEMO for the step scenario.  

In our stochastic plan modelling exercise, the optimal dispatchable storage capacity identified 

by AEMO is included in the description of the system as an input. Additionally, some case 

study applications also consider the possibility to invest in additional storage in order to 

observe the effects on the flexible plan of allowing the model to choose investment options 

other than transmission lines. 

From the point of view of frequency security, the model allocates primary and secondary 

frequency response to comply with a settling frequency (quasi-steady state frequency, QSSF) 

value of of 49.5 Hz in low-frequency events; secondary frequency response is allocated to 

bring frequency back inside the frequency dead-band (above 49.85 Hz). For simplicity, 

although it is possible to enable such constraints in the modelling [130], no frequency extrema 

constraints or rate of change of frequency (ROCOF) constraints were used in this study.  

Demand in the system is obtained from the database associated with [1]. The information is 

used to run the model considering hourly periods. In this case study application, a 10% 
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probability of exceedance (POE)5 demand scenario is used, and, as pointed out before, it 

includes the effect of behind-the-meter storage in each scenario. 

3.3.2 Investment options 

Investment options include transmission lines (and in some cases, BESS). All investment 

related cash flows manipulations (annuities, discounting, etc.) are calculated using a capital 

cost of 10%. 

The stochastic planning model has the capacity to model real transmission options6, that is, 

the specific projects that are considered in the ISP and the relationships among projects. In 

this sense, the portfolio of options can be represented both considering mutually exclusive 

projects and must follow projects. The consideration behind mutually exclusive sets is that 

only one option can be built if this results in benefits for the overall expected cost 

minimisation objective of the problem. Must follow projects are represented as options that 

have to be in place in the system to build another option (simultaneous construction is also 

accepted). To focus on the transfer capacity requirements between boundaries, the new links 

are not subject to Kirchhoff’s voltage law (transport model only), as aforementioned. 

Table 3.3 presents the parameters for the different network reinforcement options. For the 

sake of simplicity, all reinforcement options consider a lifetime of 50 years and a lead time of 

5 years (time elapsed between investment decision time and asset’s initial operation time). 

The investment costs presented in Table 5.3 correspond to overnight capital costs, and it is 

assumed these costs do not change in the future. Some of the reinforcement options 

considered by AEMO are not used in the context of this study; they all correspond to non-

network options, whose investment cost was not disclosed, and they are coloured grey in 

Table 3.3. Also, some transmission investment options have been slightly modified to fit the 

modelling of the mutually exclusive and must follow rules. However, these changes should 

not affect the outcome relative to the original database. The options that have been modified 

are: the pair CNSW-SNW Options 3a (replaces original option 3) and 3b (this option was added 

to the list), and the triad CNSW-NNSW Options 6, 6A and 6B. An approximated geographical 

representation of the transmission investment options is presented in Figure 3.8. 

 

5 POE is the chance a maximum demand forecast will be surpassed. For example, a 50% POE maximum demand forecast is 

expected to be exceeded, on average, 5 years in 10. 

6 An alternative approach to these real transmission options that could be enabled in the modelling could be to determine 

the overall transmission capacity needed between regions. This corresponds to only introducing one reinforcement option 

between pairs of adjacent regions and then determine an overall transfer capacity reinforcement investment value based 

on the average capital costs presented in the ISP2022 for the reinforcement alternatives considered in that specific boundary. 

Such an approach would be much less computationally expensive and cold considered for high level, strategic initial studies.  
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Table 3.3. Investment options in transmission lines 

Line Line ID Region A Region B 
Transfer limit (MW) Investment 

Cost 

(M$/MW) 
A to B B to A 

CNQ-GG Option 1 13 CNQ GG 550 500 0.74 

SQ-CNQ Option 1 14 SQ CNQ 900 900 0.53 

SQ-CNQ Option 2 15 SQ CNQ 0 300 0.18 

SQ-CNQ Option 3 16 SQ CNQ Non-network option, info missing 

CNQ-SQ Option 4 17 SQ CNQ 1500 1500 1.08 

NNSW–SQ Option 1 18 NNSW SQ 910 1080 1.16 

NNSW–SQ Option 2 19 NNSW SQ 550 800 0.48 

NNSW–SQ Option 3 20 NNSW SQ Non-network option, info missing 

NNSW–SQ Option 4 21 NNSW SQ 1800 2000 1.56 

CNSW-NNSW Option 1 22 CNSW NNSW 2035 1660 1.76 

CNSW-NNSW Option 2 23 CNSW NNSW 710 535 2.72 

CNSW-NNSW Option 3 24 CNSW NNSW 585 470 2.39 

CNSW-NNSW Option 4 25 CNSW NNSW 710 535 2.67 

CNSW-NNSW Option 5 26 CNSW NNSW 585 470 0.87 

CNSW-NNSW Option 6 27 CNSW NNSW 2190 1800 0.77 

CNSW-NNSW Option 6A 28 CNSW NNSW 880 1270 0.18 

CNSW-NNSW Option 6B 29 CNSW NNSW 2750 2750 0.45 

CNSW-NNSW Option 7 30 CNSW NNSW 1470 1590 0.56 

CNSW-NNSW Option 8 31 CNSW NNSW Non-network option, info missing 

CNSW-NNSW Option 9 32 CNSW NNSW 1750 2000 1.06 

CNSW-NNSW Option 10 33 CNSW NNSW 1750 2000 1.15 

CNSW-SNW Option 1 34 CNSW SNW 5000 0 0.18 

CNSW-SNW Option 2 35 CNSW SNW 4500 0 0.50 

CNSW-SNW Option 3a 36 CNSW SNW 600 0 3.76 

CNSW-SNW Option 3b 37 CNSW SNW 1100 0 0.80 

H-Newcastle 38 CNSW SNW 5000 5000 0.31 

H-Dapto 39 CNSW SNW 5000 5000 0.24 

SNSW-CNSW Option 1 40 SNSW CNSW 2200 2200 1.51 

SNSW-CNSW Option 2 41 SNSW CNSW 2000 2000 0.48 

SNSW-CNSW Option 3 42 SNSW CNSW 2000 2000 1.02 

VIC-SNSW Option 1 - VNI West 43 VIC SNSW 1930 1800 1.40 

VIC-SNSW Option 2 - VNI West 44 VIC SNSW 1930 1800 1.52 

VIC-SNSW Option 6A 45 VIC SNSW 1930 1800 1.20 

VIC-SNSW Option 6 46 VIC SNSW 2000 1500 1.16 

VIC-SNSW Option 7 47 VIC SNSW 2000 2000 1.26 

TAS-VIC Option 1 48 TAS VIC 750 750 3.17 

TAS-VIC Option 2 49 TAS VIC 750 750 1.87 

     



 

55 

 

 

Figure 3.8. Geographical referential location for the transmission investment options highlighting line ids 

In those cases where additional investment in energy storage systems is studied, to keep 

things relatively simple only BESS units with 4 hours storage capacity are considered (this 

duration value was selected to try to reflect the value of shallow and medium depth storage). 

Each subregion can expand BESS independently up to 20GW in blocks of 100MW, as depicted 

through blue dots in Figure 3.9 .  

 

Figure 3.9. Candidate investment options when considering the co-investment of transmission (black) and BESS (blue) 

This means that the model will explore multiples of 100MW batteries with 400MWh storage 

capacity each. The investment parameters for storage projects are presented in Table 3.4. 
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The lead time of storage is 0, which means that the decision to build storage and the 

availability of the device is assumed to happen simultaneously. All BESS in the system (existing 

and new) are assumed to be able to provide frequency response up to 70% of their capacity, 

in the form of primary frequency response (no fast frequency response consideration, as we 

are not constraining frequency extrema in these studies, although the model could allow that, 

as mentioned above). The investment costs for BESS reduce in time, and the change in 

investment costs depends on the scenario (see Table 3.5). All the details about these 

assumptions can be found in the input assumptions database associated with [1]. 

Table 3.4. Characteristics of storage investment options 

Region Tech 
Charging capacity 

(MW) 
Energy storage 

(MWh) 
Life time 

(years) 
Expansion 

modules 

ALL BESS 100 400 20 200 

Table 3.5. Investment cost evolution for battery energy storage systems 

Scenario Region 
Investment cost by year (M$/MW) 

2022 2027 2032 2037 

Slow Change 
All 1.613 1.372 1.016 0.850 

Progressive Change 

Step Change 
All 1.377 0.912 0.705 0.630 

H2 Superpower 

The model includes the capability of making decisions on new generation fleet. However, in 

this study all generation-related decisions are copied from the optimal development path 

determined by AEMO. 

3.3.3 Scenario modelling and investment decision architecture: scenario tree  

The case study applications conducted in this study consider a complex representation of 

future uncertainty built based on the four scenarios considered by AEMO. As discussed in the 

literature [23], the more uncertainty is captured in the representation of the future, the more 

value can be identified for critical investment options.  

Figure 3.10 shows the structure of the multi-stage modelling approach adopted here, which 

was built using the information provided by AEMO for each of the scenarios under 

consideration in the ISP 2022. However, the scenarios were rearranged, and new, 

“intermediate” scenarios created, in a way that the resulting scenario tree would more closely 

emulate potential "incremental" transitions across scenarios. Incremental here refers to 

"plausible” transitions to scenarios that have higher demand or decentralisation profiles: for 

instance, if the system is in the progressive change scenario, it can stay in that scenario or 
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transit to the step or hydrogen superpower scenarios. It cannot, however, transit to the slow 

scenario. It should be noted that these assumptions are just one approach to model 

uncertainty; in general, the planner can design any future that may seem plausible and/or 

interesting to consider, in case through specific consultations, not too dissimilarly from how 

the original four scenarios were developed by AEMO. 

Another relevant aspect behind the representation of uncertainty is to determine the 

probabilities of transition between subsequent nodes. In order to do so in this study, we use 

the probabilities (see Table 3.6) determined in the ISP process for each of the four scenarios 

under consideration. 
Table 3.6. ISP 2022 scenario probabilities 

Scenario Probability 

Slow Change 4% 

Progressive Change 29% 

Step Change 50% 

H2 Superpower 17% 

The methodology to assign probabilities is as follows. The transition between years 2022 and 

2027 is straightforward and the corresponding probability for each scenario is used. When 

the transition doesn’t include the four scenarios (that is, when the paths stemming out of one 

node do not include the four scenarios), the probability of the scenarios that are not 

considered are added up to the transition that stays in the same scenario.  
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Figure 3.10. 32-node scenario tree, corresponding to 18 “path” scenarios, used in the studies 

For instance, let’s take node 2 (slow change in 2027); the possible transitions following the 

incremental approach are to stay in the slow scenario or to evolve to progressive or step 

change scenarios. Following the probability assignment methodology, both the progressive 

and step change transitions get their original probability as presented in Table 3.6. The slow 

transition gets the sum of the probabilities of all remaining scenarios, in this case the 

probability of the slow change (4%) and H2 superpower scenarios (17%), resulting in a 

probability of 21%. This approach has the advantage of giving more relevance to the transition 

that stays in the same path as the current node. As with the structure of the scenario tree, 

the probability of the transitions is part of the design that the planner must conduct. The exact 

methodology to determine those probabilities is something that is again open for discussion, 

but the stochastic planning framework is flexible and supports any combination of 

probabilities as exogenous input data. 

A note on terminology: the term scenario refers to one of the paths connecting the root node 

(2022) to any of the leaf nodes representing the conditions of the system for year 2037. The 

scenario tree presented on the left-hand side of Figure 3.10 contains 18 scenarios (which will 

be referred to as scenario X, where X corresponds to the number of the leaf nodes starting at 

1 from the top of the tree), as shown in the right-hand side of the exhibit (the dashed boxes 

around nodes mean that the decisions made in the nodes contained in the boxes are the 
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same, given the structure of the tree). It is interesting to highlight that the construction of the 

multi-stage tree used in this study contains, as a subset, all the scenarios used in the ISP 2022, 

that is, scenario 1 represents the slow change scenario, scenario 9 corresponds to the 

progressive change scenario, scenario 15 is the step change scenario, and scenario 18 

corresponds to the H2 superpower scenario. The nodes for each scenario, as well as the 

corresponding probability, are presented in Table 3.7. 

Table 3.7. The 18 scenarios associated with the 32-node tree and corresponding scenario probabilities 

Scenario ID Probability Node 2022 Node 2027 Node 2032 Node 2037 ISP Scenario 

1 0.0018 1 2 6 15 SLOW 
2 0.0024 1 2 6 16 - 
3 0.0042 1 2 6 17 - 
4 0.0038 1 2 7 18 - 
5 0.0058 1 2 7 19 - 
6 0.0020 1 2 7 20 - 
7 0.0166 1 2 8 21 - 
8 0.0034 1 2 8 22 - 
9 0.0316 1 3 9 23 PROGRESSIVE 

10 0.0479 1 3 9 24 - 
11 0.0163 1 3 9 25 - 
12 0.1204 1 3 10 26 - 
13 0.0247 1 3 10 27 - 
14 0.0493 1 3 11 28 - 
15 0.3445 1 4 12 29 STEP 
16 0.0706 1 4 12 30 - 
17 0.0850 1 4 13 31 - 
18 0.1700 1 5 14 32 H2 

In this study, we use a decision-making architecture that makes decisions every five years, 

corresponding to the considered epochs represented in the tree, which is linked to the lead 

time used for the transmission investment options. This architecture is flexible and can 

potentially be different, thus changing the design of the scenario tree [23]. It is important to 

note that some decisions could be made annually for the initial years of the study, and others 

every 2, 5, 10 years for nodes representing future years far away from the present. This 

variation in decision-making frequency corresponds to different decision-making 

architectures and representations of the future, and it is considered part of the trade-off (as 

opposed to modelling all the years within a 20 to 30 year period) necessary to arrive at a 

representation that is tractable within the timeframes of this type of study. As a result, this 

flexible methodological aspect should be taken into consideration in future studies.  

3.3.4 Operational data selection 

Although off-the-shelf state-of-the-art MILP solvers can efficiently handle extremely large 

problems, the larger the problem, the slower the search process will be (and the larger the 

underlying computational infrastructure needs are). To help reducing the computation time, 

and in line with the methodological focus of this work, each year under analysis is represented 
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by a subset of representative weeks (decisions are made on hourly steps, which results in 168 

periods within each typical week) selected among the 52 available weeks7.  

For each of the years selected to sample the scenarios, the following steps were taken to 

identify the subset of weeks closest to represent the operation of the 52 weeks: first, select 

the year and split all the corresponding data series into 52 weeks. Then, 6 weeks are selected 

(as a comparison, in Figure 3.1 the problem was structured using three representative weeks) 

to represent the periods with maximum and average demand, for different levels of 

renewable energy availability within the year at both system and state levels. The number of 

weeks could be increased or modified depending on the requirements of the study and the 

computational resources available.  

For the sake of simplicity, and to focus our efforts on the methodological developments and 

outcomes, many of the studies conducted in this work use only one week per node in the 

scenario tree to represent operation. This approach was used to reduce the computational 

burden of the problem to maximise the number of studies that we could run, so as to be able 

to provide the best insights possible (the exact investment decisions are not the most relevant 

insight; in contrast, the relative behaviour of investment decisions when comparing different 

one-week-based studies enable understanding the value of the different models studied in 

the project). For the detail about the operational weeks selected for each node in the 6-week 

representation approach, see Appendix A. For the 1-week representation we use the first 

representative week presented in Appendix A for each node.  

3.3.5 Summary of databases and constraints 

The following Table summarises the information used to feed the stochastic planning model. 

The table explicitly states the main assumption behind each dataset in case the information 

were not directly used from the assumptions database. The table references the optimal 

development path (ODP) determined by AEMO in the ISP 2022, which corresponds to the 

candidate development path number 12 (CDP12). 

 

 

 

 

 

7 In general, the selection of the input data is important to ensure adequate representation of the system’s operation [137], 

which can have a substantial impact on the investment decisions derived from the long-term operation model. 
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Table 3.8. Dataset summary and considerations 

DATASET CONSIDERATIONS 

Buses Using subregional approach (10 buses) 

Areas States 

Lines / Interconnectors  

Lines – Seasonal ratings  

Lines – Investment candidates Must follow, mutual exclusivity considered 

Storage (Shallow/Medium/Deep) Based on ISP 2022 CDP12 (ODP) 

Storage – Investment candidates  

Storage – VPP  

Demand  

Demand – Load time series  

Generators Based on ISP 2022 CDP12 (ODP) 

Generators – UC parameters Using ISP 2020 parameters for coal 

Generators – Variable costs   

Generators – Retirements Based on ISP 2022 CDP12 (ODP) 

Generators – Rooftop PV  

Generators – Large scale RES aggregation Based on ISP 2022 CDP12 (ODP) 

The constraints considered to model the operation of the power system and the frequency 

response considerations are summarised in Table 3.9. 

Table 3.9. Constraints considered to model the operation of the system 

Operation-related constraints  Frequency response-related constraints 

Line transfer limits  Largest contingency constraints 

Minimum down time  Generation contingency 

Minimum up time  Primary frequency response up 

Minimum stable generation  Secondary reserve up 

Maximum rating  Quasi-steady state frequency 

Ramps   

Start-up costs    

3.4 Case study application 

In this section we present the results associated with the case study that is used as a reference 

in this report. It corresponds to the expected cost minimisation problem as described in Figure 

3.2, for the 32-node scenario tree depicted in Figure 3.10, using six representative weeks of 

operation for each of the 32 nodes (resulting in 192 weeks to model operation). This instance 

will be labelled “ISP22_32N_6W” and it only considers decisions on new transmission 

investments. 

Before presenting the results for this instance it is worth presenting a few facts about the 

underlying computational burden. All the results presented in this report correspond to 

solutions obtained for the monolithic problem (that is, no decomposition was used to solve 

this problem). A feasible solution is searched using the optimisation solver Gurobi 9.0.3 [131], 

until the MIP gap is below 1% (for further information about the definition of the MIP gap see 



 

62 

 

[132]). This is important because there is a space for flexibility when it comes to find the 

optimal solution, which needs to be kept in mind when interpreting some results (in a 

problem with an optimal expected cost close to $20 billion, a 1% tolerance translates into a 

potential space of $200 millions within which two solutions might be equivalent from an 

optimality point of view). The underlying model has total of over 21 million variables (2176 

variables are integer, resulting from considering 34 transmission investment options in each 

of the 32 nodes of the tree, which include two decisions per investment option, namely, the 

decision to build and the decision to deploy the asset) and over 29 million constraints. Solving 

the instance ISP22_32N_6W takes up to 17.5 hours using 30 CPUs in the high-performance 

computer Spartan located at the University of Melbourne. The search required 110GB of 

RAM. 

3.4.1 Base case results  

The optimal solution for the instance ISP22_32N_6W results in a total expected cost of $22.94 

billons, which corresponds to 20 years of equivalent operation and investment in new 

transmission lines. The optimal portfolio of lines selected in this case is presented in Table 

3.10. 

Table 3.10. Optimal investment portfolio for case ISP22_32N_6W 

Line 
Line 

ID 

Region 

A 

Region 

B 

Rating (MW) Year asset becomes 

operational (scenario) A to B B to A 

CNQ-GG Option 1 13 CNQ GG 550 500 2027 (All) 

SQ-CNQ Option 1 14 SQ CNQ 900 900 2032 (All) 

SQ-CNQ Option 2 15 SQ CNQ 0 300 2027 (All) 

CNQ-SQ Option 4 17 SQ CNQ 1500 1500 2032 (18) 

NNSW–SQ Option 1 18 NNSW SQ 910 1080 2032 (9-18), 2037 (4-8) 

NNSW–SQ Option 2 19 NNSW SQ 550 800 2032 (9-18), 2037 (4-8) 

CNSW-NNSW Option 6 27 CNSW NNSW 2190 1800 2027 (All) 

CNSW-NNSW Option 6A 28 CNSW NNSW 880 1270 2032 (All) 

CNSW-SNW Option 1 34 CNSW SNW 5000 0 2037 (18) 

VIC-SNSW Option 1 - VNI West 43 VIC SNSW 1930 1800 2032 (9-14) 

VIC-SNSW Option 6A 45 VIC SNSW 1930 1800 2032 (1-8,15-17) 

TAS-VIC Option 1 48 TAS VIC 750 750 2032 (All) 

TAS-VIC Option 2 49 TAS VIC 750 750 2032 (1-17), 2037 (18) 

The results presented in Table 3.10 are also geographically depicted in Figure 3.11, which, for 

the sake of illustration, only shows the results for the four original scenarios considered in the 

ISP 2022 (even if all scenarios were included in the study). In the case of Figure 3.11, 4 out 5 

different development paths are presented: 

• First row in Figure 3.11 (Slow Scenario ISP 2022): Scenarios 1 to 3  

• Second row in Figure 3.11 (Progressive Scenario ISP 2022): Scenarios 9 to 14  

• Third row in Figure 3.11 (Step Scenario ISP 2022): Scenarios 15 to 17  
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• Fourth row in Figure 3.11 (Progressive Scenario ISP 2022): Scenario 18 

Scenarios 4 to 8 are represented by a development path similar to the first row in Figure 3.11 

except from the active links in year 2037, which also include NNSW–SQ Options 1 and 2 (same 

as the results in 2037 seen in the third row).  

There are a few aspects that must be highlighted from these results. Node 1 (year 2022) does 

not experience any reinforcements because of the lead time involved in the construction of 

new transmission lines. However, the decisions to build the relevant transmission lines seen 

in the pictures for nodes 2, 3, 4 and 5 are made in node 1 (and hence all the investments seen 

at the “child” nodes 2, 3 , 4 and 5 are the same as the decision was made at the “parent” node 

1). This is how the uncertainty is factored in when using a scenario tree: nodes where the tree 

branches out are influenced by all the future paths that are connected to it. The value seen 

by the model for the different combinations of investment options in all future paths 

stemming from a specific node is weighted by the probability of that path and used to 

determine the optimal decision in the node in question. Then, the decision made in 2022 to 

build the three lines that become active in 2027 is the one that minimises the expected cost 

across all the scenarios. Some of these investments anticipate conditions in specific branches 

of the tree and hedge against negative outcomes in the future. 

Table 3.10 highlights a set of transmission investment decisions that are deployed across the 

horizon that is independent from the specific nodes under analysis, which can be considered 

the backbone of the reinforcement of the future network. These include CNQ-GG Option 1, 

SQ-CNQ Option 2 and CNSW-NNSW Option 6 in year 2027 (investment decisions made in 

2022), and SQ-CNQ Option 1, CNSW-NNSW Option 6A and TAS-VIC Option 1 in year 2032 

(investment decisions made in 2027). Most of the investments look to reinforce QLD and NSW 

internally, plus the increase in interconnection capacity between VIC and TAS through one 

corridor of Marinuslink. The regional reinforcements within both QLD and NSW are done 

progressively, with an increase in intraregional capacity in 2027 and later another in 2032.  

From the remaining reinforcements deployed across the scenarios, it can be concluded that 

the reinforcement of the interconnection capacity between QLD and NSW is driven by the 

conditions of scenarios Step and Hydrogen Superpower in year 2032. It is also interesting to 

note that there is an interplay between the options available to interconnect VIC and NSW: 

in the majority of scenarios VIC-SNSW Option 6A becomes active in 2032, except for those 

scenarios that contain the transition to the Progressive scenario between 2022 and 2027, in 

which VIC-SNSW Option 1 - VNI West is chosen in year 2032. 
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Figure 3.11. Optimal investment options for instance ISP22_32N_6W (node numbers are printed in blue in each map). Each 

row of the figure displays the results for scenarios 1, 9, 15 and 18, respectively; each column depicts the corresponding year 

(2022, 2027, 2032 and 2037) 
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An exhibit that is important in the context of this project is the distribution of costs seen for 

the scenarios under consideration. This is particularly important in anticipation to the 

discussion about risk that will be presented in future sections. We use the empirical 

cumulative distribution function for the cost of all 18 scenarios (paths) as best option for this 

discussion.  

 

Figure 3.12. Empirical cumulative distribution of scenario cost for the case ISP22_32N_6W 

Essentially, when the decisions about new investments are made in each node of the scenario 

tree, these will result in two components of cost, the annuitised investment needed to deploy 

the optimal transmission options that year, and the annual costs of operating the system with 

the new transmission assets. By disaggregating the tree into its scenarios (see Figure 3.10) 

and taking the cost components for each node, it is possible to calculate the corresponding 

total costs for each scenario under consideration. The probability of each scenario is known 

from the definition of the probabilities in the scenario tree (see Table 3.7), so each scenario 

can be defined by the pair {probability, total cost}. If now the scenarios are organised from 

cheapest to most costly, and the probabilities are stacked up for successive scenarios, the 

cumulative distribution of costs is produced.  

Figure 3.12 depicts how the costs for each scenario can be organised so as to describe the 

most costly cases and the total probability associated with those cases (the numbers over the 

markers correspond to the scenario id). The figure also highlights the expected cost for the 

portfolio, which shows how it is severely influenced by three most expensive scenarios that 

concentrate almost 50% of the likelihood of occurrence. 

3.4.2 Representation of the operation 

A relevant study to conduct starting from the base case presented in the previous section is 

to analyse the effect of reducing the representation of operation. Here we present the results 

for the case where the operation is modelled using only one representative week (instead of 
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six) per node. This study will be labelled as ISP22_32N_1W. The specific week selected for 

each node corresponds to the first week for each node as presented in Appendix A. 

The cumulative distribution for the 1-week and 6-weeks cases is presented in Figure 3.13. 

Contrasting both distributions illustrates the effect of the representation of operation on the 

underlying costs: using one week to model the operation has a tremendous effect on the 

underlying operation costs, which changes the value certain reinforcements can bring across 

the scenario tree. A “weaker” representation of operation can make some scenarios cheaper 

and others more expensive depending on the specific characteristics of the week being 

utilised in each node. In this case, it results in a substantially smaller expected cost (see red 

and blue vertical lines in Figure 3.13), as some of the high probability scenarios have a cheaper 

operational profile than in the case of the 6-weeks case. In the 1-week case the balance 

between operation and investment costs changes due to the differences in the 

representation of operation, thus the optimal portfolio of transmission reinforcements for 

the system is modified. 

 
Figure 3.13. Cumulative distribution of scenario cost for the cases ISP22_32_1W and ISP22_32N_6W 

 

Figure 3.14. Comparison between the active investment for the cases ISP22_32_1W and ISP22_32N_6W in nodes 4 (left) 

and 32 (right) 
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Figure 3.14 contrasts the investments active in node 4 and node 32 for the cases under 

analysis. In this case, both approaches to represent of operation effectively push forward 

similar investment options in 2027, with only one reinforcement differing between the two 

cases: the transmission line connecting NNSW and CNSW. The 1-week representation 

proceeds CNSW-NNSW Option 7 which is cheaper and has a lower rating than the 

reinforcement installed in the 6-week representation, CNSW-NNSW Option 6. Also, it is worth 

mentioning that in both cases 5 different development paths are observed between 2022 and 

20378. It can be stated that the 6-week case results are more accurate than those seen for 

the 1-week case, as they better represent the underlying operation of the system. This is easy 

to prove, since it is possible to obtain the optimal investment portfolio for the 1-week case 

and use it to simulate the operation of the 6-week case. With the results of the operation, it 

is possible to calculate the distribution of total costs of investment and operation for the 6-

weeks case using the 1-week investment portfolio. This case study will be labelled 

“6W_1WINV”. Figure 3.15 clearly shows how the optimal investment decisions of the 1-week 

case, although cheaper, yield extremely bad results when used to operate the system under 

the conditions determined by the 6-week case. These results stem from the high amounts of 

unserved energy observed in some nodes of the scenario tree (e.g., scenario 8 experiences 

around 3.2 TWh of unserved energy) due to the inadequate network development to cope 

with the operational conditions described in the 6-week case. Since the market price cap is 

used to penalise unserved energy in the objective function, the total costs of operation see a 

very substantial increase due to the unserved energy. 

 

Figure 3.15. Cumulative distribution of scenario total costs for case 6W_1WINV (green) which corresponds to applying the 

optimal investment decisions of the 1-week case to the 6-week case  

 

 

8 Identifying a suitable operational representation of the problem in order to strike the best possible outcomes between 

accuracy of the results and computational cost is something that could be considered further in follow-up projects.   
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3.4.3 Role of additional storage 

As described in section 3.3.1, storage is already present in the optimal development path of 

the ISP 2022. Thus, there already is a very substantial amount of storage deployed across the 

nodes in the scenario tree. However, in this specific case study we let the model decide if 

additional storage (with 4 hours storage capacity) could help finding a lower expected 

investment and operation cost for the system. This specific case, which considers batteries as 

an investment option, is labelled ISP22_32N_1W_BAT. As a side note, the problem that 

considers batteries as an investment option took more than three times longer than the 

original case without battery investment. 

Before digging into the results of the investment selection, let us observe first how this option 

to invest in batteries modifies the distribution of costs for the different scenarios. By 

inspecting Figure 3.16, it can be seen that there are only little changes compared to the case 

without BESS investment options. The changes in the expected cost does favour 

ISP22_32N_1W_BAT, which displays expected costs that are $72 million (so some 0.3%) 

cheaper than case ISP22_32N_1W. 

 

Figure 3.16. Cumulative distribution of scenario costs for cases ISP22_32N_1W and ISP22_32N_1W_BAT 

By inspecting the results for case ISP22_32N_1W_BAT it appears that the future storage 

capacities obtained from the ISP 2022 and used as input data suit the system requirements 

under a stochastic framework. There are instances where additional storage is installed 

before 2037, and even then, the storage capacity that is added to the system is relatively low. 

There are no scenarios displaying the deployment of storage capable to defer investment in 

transmission. However, the capacity to co-optimise both technologies does provide some 

flexibility to achieve a better techno-economic performance in many scenarios, in general 

associated with scenarios where some of the nodes belong to the step or hydrogen 

superpower scenario. The total cost of investing and operating scenario 7 reduces around 

1.9%, or in case of scenario 17 a reduction of 0.4%. Figure 3.17 presents the evolution of the 

investment in transmission and storage for scenario 17, where one can appreciate how the 
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new lines do not change and the new storage assets are located in places that enable the 

system to reduce costs by arbitraging energy. 

 

Figure 3.17. Effect of co-optimising storage and transmission on the results for scenario 17. The upper row of results 

corresponds to the case considering only transmission options and lower row the case considering both BESS and transmission 

investment options. Columns from left to right correspond to years 2022, 2027, 2032 and 2037, respectively. 
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4 Deterministic planning  

Most if not all transmission expansion methodologies used around the world by system 

planners are based on deterministic planning models (see Section 2.1.3), where many 

scenarios are analysed from a deterministic perspective. In some cases, the most advanced 

methodologies then use an additional metric to select the optimal plan for the system based 

on the results for the deterministic studies. Decisions made using the information obtained 

across multiple deterministic scenarios are being used in the UK, Australia and at least one 

jurisdiction in the US, through the so-called least-worst regret (LWR) and, more recently, 

least-worst weighted regret (LWWR). An in-depth analysis of these two approaches was 

conducted in [3], [4] for NGESO in the UK. 

This section presents a quantitative comparison between deterministic-based LWR and 

LWWR metrics and our stochastic planning approach, aiming to understand the advantages 

and disadvantages of each approach. 

4.1 Deterministic based metrics: LWR & LWWR 

LWR decisions operate based on the use of regrets as the indicator to the proximity to the 

optimal solution. The mechanics of such approach are exemplified in the following steps: 

i. Select several scenarios to analyse and investment options to study. 

ii. For each scenario determine the optimal portfolio of investment options that 

minimises the cost of that scenario. 

iii. Using all the optimal portfolios (which, as it is a multistage plan, we will call 

development paths) found in the previous set, determine the investment and 

operational cost resulting from applying each of those development paths to each of 

the scenarios under consideration. These costs can be organised in the form of a 

matrix (Figure 4.1a, numbers in the figure are purely illustrative). 

iv. Using the matrix of costs, determine the specific development path from the set of 

development paths found before that produces the lowest cost for each scenario 

(Figure 4.1b-c). 

v. Using such cost as reference, calculate the regret of applying each development path 

for that scenario by calculating the difference between the cost of applying that 

development path and the reference cost (Figure 4.1b-c).  

vi. Now, looking at each development path, determine the worst (maximum) regret (that 

is, the maximum possible value in each regret column) that such development path 

can produce across all scenarios (Figure 4.1d). 

vii. The vector of worst regrets associated to each development path can then be 

minimised to determine what development path produces the “least-worst” regret in 

the set of paths under consideration (Figure 4.1e). 
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a) Original cost matrix 

 
b) Determination of reference cost for scenario 1 and the regrets across paths 

 
c) Reference cost for all scenarios and corresponding regrets across paths 

 
d) Worst regret determination for each development path 

 
e) Path selection based on the minimum worst regret across development paths 

Figure 4.1. Calculation steps for an approach that utilises LWR based on illustrative numbers. 

COST [$] REGRET [$]

Dev. 
Path 1

Dev. 
Path 2

Dev. 
Path 3

Dev. 
Path 1

Dev. 
Path 2

Dev. 
Path 3

Sce 1 150 200 279 0 0 129

Sce 2 357 260 394 97 0 134

Sce 3 280 180 146 134 34 0

134 34 134
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134 34 134
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Dev. 
Path 2

Dev. 
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Sce 3 280 180 146 134 34 0

134 34 134
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Sce 2 357 260 394 97 0 134

Sce 3 280 180 146 134 34 0

134 50 134
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Path 1
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Path 2

Dev. 
Path 3

Dev. 
Path 1

Dev. 
Path 2

Dev. 
Path 3

Sce. 1 150 200 279 0 50 129

Sce. 2 357 260 394 97 0 134

Sce. 3 280 180 146 134 34 0

134 50 134
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A variant to the methodology presented before corresponds to multiplying the costs and 

regrets presented in Figure 4.1c by the probability of each scenario before doing the 

calculations associated to Figure 4.1d-e. This approach yields the least-worst weighted regret 

(LWWR) solution and aims to incorporate scenario probabilities in the LWR approach that 

otherwise manipulates results across scenarios assuming to be probability-agnostic (which is 

equivalent to assuming the same probability of occurrence in all scenarios).  

 

Figure 4.2. Example for the calculation of LWWR 

Figure 4.2 shows how the scenario probabilities are applied to the same case presented in 

Figure 4.1 to calculate the optimal development path according to LWWR. It is 

straightforward to see that the decision made through the use of LWR is to select 

development path 2 while LWWR selects development path 1. 

The approach to calculate LWR/LWWR presented in (i)-(vii) describes the general mechanisms 

of the procedure. However, there are various ways to define the candidate development 

paths. In (i)-(vii), the matrix of costs is built by determining the cost of applying the full 

development path found by optimising each scenario in a deterministic manner. This is 

something that system operators that use LWR/LWWR, like NGESO or AEMO, do differently. 

For instance, after NGESO [39] determines a development path for each scenario through 

deterministic optimisation (or an equivalent procedure/heuristic), it focuses on the 

transmission options that are selected to be deployed at their ‘earliest-in-service date’ in the 

different scenarios. These investments are critical as if they are not proceeded immediately, 

they will not become available at the time they are supposed to be active to achieve the 

optimality in each deterministic scenario. 

All critical investment options are gathered, and each scenario is run again fixing the non-

critical options. The new set of deterministic runs considers all the combinations of delaying 

1 year or not delaying each critical investment option (basically, if there are two critical 

investment options, there would be four runs per scenario under consideration: delaying 

both, not delaying any, delaying one and not delaying the other, and vice versa). 

The new set of deterministic runs would produce several development paths (as a matter of 

fact it would be 2n development paths, where n is the number of critical investment options). 

A case with four scenarios and n critical development path would result in a cost matrix (see 

Weighted COST [$] Weighted REGRET [$]

Dev. 
Path 1

Dev. 
Path 2

Dev. 
Path 3

Dev. 
Path 1

Dev. 
Path 2

Dev. 
Path 3Prob.

0.8 Sce. 1 120 160 223.2 0 40 103.2

0.1 Sce. 2 35.7 26 39.4 9.7 0 13.4

0.1 Sce. 3 28 18 14.6 13.4 3.4 0

13.4 40 103.2
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Figure 4.1a) of dimensions 4x2n. Then the LWR/LWWR procedure can be applied in the same 

way as specified in (iv)-(vii). 

This shows that the LWR/LWWR methodology can be applied in different ways depending on 

the type of decision that the planner wants to make. 

The idea now is to understand how the stochastic results found for case ISP22_32_6W are 

compared to a deterministic based approach like LWR/LWWR in which we follow, in terms of 

specific implementation, the generic mechanism presented in the steps (i)-(vii) above. 

4.2 Deterministic study 

In the results presented in this section we use the generic approach described in steps (i)-(iii) 

to calculate the deterministic development paths, as opposed to the more specific 

methodologies used by the NGESO described before. The deterministic scenarios that are 

considered come from the disaggregation of the 18 scenarios that give form to the 32-node 

scenario tree presented in Figure 3.10, which was used to run the study ISP22_32N_6W. The 

disaggregation is depicted in Figure 4.3, and shows how each of the deterministic scenarios 

is formed and what the probability of that scenario is (as presented in Figure 3.10 and Table 

3.7). 

 

Figure 4.3. Scenario disaggregation 

Each of the 18 scenarios on the right of Figure 4.3 are solved as deterministic optimisation 

problems (the probability of transition from one node to the next are set to 1 to solve the 
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deterministic problem) using the same set of transmission investment options that have been 

used so far for the stochastic problems ISP22_32N_6W and ISP22_32N_1W. This will yield a 

development path for each scenario, which are numbered following the order of the 

scenarios. Then the optimisation of each scenario is run again, but now imposing the 

development paths found for each deterministic scenario (essentially, the optimisation at this 

point only considers operation variables, as all the investment options are fixed). This yields 

the cost matrix needed to determine the regrets. This procedure is depicted in Figure 4.4. 

 

Figure 4.4. Procedure to calculate the 18 deterministic development paths based on the disaggregated 32-node scenario 

tree 

The process of determining the development paths for each scenario is relatively quick, as 

the resulting optimisation problem is much smaller than a stochastic problem. When it comes 

to determining the costs of operation and investment by imposing a certain development 

path (fixing the investment variables), the solutions of the resulting optimisation problems 

are found even faster. The largest bottleneck actually becomes the reading of input 

databases. As a reference, a standard 16Gb laptop computer can calculate the development 

paths and find the cost matrix within 24 hours (for the conditions of the problems under 

consideration), where the process of reading the databases and creating each deterministic 

optimisation problem takes up to 15 times longer than the time needed to solve it.  

The cost matrix is presented in Figure 4.5. The numbers have been rounded to the closest 

integer value for an easier interpretation of results. The diagonal represents the total cost 

found in the process of determining the development paths for each scenario. For that 

reason, for any given scenario, the value in the diagonal of the matrix is the smallest possible. 

It is worth checking that this value is also smaller than the result found for each scenario for 

the stochastic approach (case ISP22_32N_6W), as seen in Figure 3.12. For instance, the value 
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in the diagonal for scenario 10 is $21.3 billion, which results from finding the best investment 

options for the conditions in that scenario. On the other hand, the stochastic result for 

scenario 10 was very close to $24 billion. This is because the stochastic solution factors in 

what is convenient for all the scenarios potentially unfolding in the form of the 32N scenario 

tree, which leads to a compromise solution for all scenarios (thus possibly more costly than 

each specific corresponding deterministic counterpart). 

 

Figure 4.5. Cost matrix 

Following the steps (iv)-(vii) it is then straightforward to identify the LWR solution for this 

study. Figure 4.6 presents the full calculations using the LWR metric (similar to Figure 4.1e). 

The regrets have been rounded including 1 decimal to provide more details about the worst 

regret minimisation process. In this particular case, the development path found for scenario 

8 and scenario 13 are chosen by means of the LWR metric. Both scenarios have the same 

deterministic development path (both scenarios are equal in all years except for year 2027 

where scenario 8 is slow and scenario 13 is progressive), thus the worst regrets are the same, 

and occur in the case where the development path is deployed in the system, but scenario 18 

(H2 superpower) unfolds. 

As it was described before, applying LWWR instead of LWR is straightforward. Using the 

probabilities for each scenario, the cost matrix is weighted and then steps (iv)-(vii) are applied. 

The results are shown in Figure 4.7, which shows that, in this particular case, applying scenario 

probabilities does not change the decision in favour of the development path found by LWR. 

The optimal development path according to LWR/LWWR is presented in Figure 4.8.  

 

DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP10 DP11 DP12 DP13 DP14 DP15 DP16 DP17 DP18

SLOW S1 12 13 13 13 13 14 15 16 13 13 14 15 16 16 15 16 16 16

S2 29 15 16 15 16 17 17 18 15 16 17 17 18 18 17 18 18 19

S3 69 31 18 31 18 18 19 20 31 18 18 19 20 20 19 19 20 20

S4 31 17 17 17 17 18 18 19 17 17 18 18 19 20 18 19 19 20

S5 71 32 19 32 19 20 20 21 32 19 20 20 21 22 20 21 21 22

S6 79 36 20 36 20 17 21 18 36 20 17 21 18 18 21 18 18 18

S7 180 142 129 142 129 129 22 23 142 129 129 22 23 64 22 23 64 64

S8 189 146 130 146 130 126 23 20 146 130 126 23 20 61 23 20 60 61

PROGRESSIVE S9 33 19 20 19 20 20 21 21 19 20 20 21 21 22 21 22 22 22

S10 73 35 21 35 21 22 22 23 35 21 22 22 23 23 22 23 24 24

S11 82 39 23 39 23 19 24 20 39 23 19 24 20 20 24 20 20 21

S12 183 145 131 145 131 132 24 25 145 131 132 24 25 66 24 25 66 67

S13 192 148 133 148 133 129 26 22 148 133 129 26 22 63 26 22 63 63

S14 172 129 113 129 113 106 26 22 129 113 106 26 22 19 26 22 19 20

STEP S15 183 144 131 144 131 131 24 25 144 131 132 24 25 66 24 25 66 66

S16 191 148 132 148 132 128 25 22 148 132 129 25 22 63 25 21 62 63

S17 172 129 113 129 113 105 26 22 129 113 106 26 22 20 26 22 19 20

H2 S18 179 136 120 136 120 116 33 29 136 120 112 33 29 26 32 32 29 20

COSTS (B$)

SC
EN

A
R
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Figure 4.6. Full LWR calculations 

 

Figure 4.7. Full LWWR calculations
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Figure 4.8. LWR/LWWR optimal path (development paths 8 and 13) covering years 2022, 2027, 2032, and 2037 from left to 

right 

4.3 Comparison between deterministic and stochastic planning 

In Section 3.4.1 the results for the 6-week stochastic case were presented. The use of the 

stochastic model resulted in an optimal expected total (operation costs and investment in 

transmission assets) cost of $22.94 billion over the next 20 years as seen in Figure 3.12. The 

total costs for the different scenarios covered a substantial range, starting at $15.3 billion for 

scenario 1, going up to $25.13 billion for scenario 12. Figure 3.11 presented the optimal 

stochastic investments observed for scenario 1, 9, 15 and 18, which correspond to the original 

scenarios considered in the ISP 2022, namely Slow, Progressive, Step and Hydrogen 

Superpower scenarios, respectively. 

The cost and regret matrices from the deterministic-based approach are presented in Figure 

4.6, obtained by applying steps (i)-(v) described in Section 4.1. For easier interpretation, the 

numbers have been rounded to the nearest integer. The cost matrix diagonal represents the 

total cost determined for each scenario's optimal deterministic results during the 

development path determination process. As a result, the diagonal value for any given 

scenario (row) is the smallest possible. For example, the diagonal value for scenario 10 is 

$21.3 billion, which represents the best investment options found for that scenario's 

conditions. In contrast, the stochastic solution for scenario 10 is $23.59 billion, as it considers 

the potential scenarios in the scenario tree and results in a compromise solution for all 

scenarios, which may be more costly than its deterministic counterpart. 

After completing steps (vi) and (vii) as described in Section 4.1, the LWR solution for this study 

can be easily identified. The LWR metric is used to select the development paths found for 

scenario 8 and scenario 13. It should be noted that if LWWR analysis is extended, the optimal 
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results would be the same in this case. These two scenarios have the same deterministic 

development path, except for year 2027, where scenario 8 is slow and scenario 13 is 

progressive. Therefore, both scenarios have the same worst regrets, which occur if the 

development path is implemented in the system, but scenario 18 (H2 superpower) occurs. 

Figure 4.8 shows that the LWR approach only requires one transmission reinforcement in 

2022 (CNSW-NNSW Option 6, as specified in ISP 2022), while the stochastic approach requires 

three reinforcements (CNSW-NNSW Option 6, CNQ-GG Option 1, SQ-CNQ Option 2). At first 

glance, this might be interpreted as an advantage of the LWR approach since it requires less 

short-term investment. However, this may not necessarily be accurate when considering the 

long-term outcomes for the system. 

 

Figure 4.9. Comparison between optimal stochastic results and the LWR optimal development path (ODP)  

It can be established that, for this study, the scenario tree depicted in Figure 4.3 provides a 

more accurate representation of the future than the resulting disaggregated deterministic 

scenarios. While the deterministic scenarios are derived from the scenario tree, they are 

considered as independent representations of the future rather than a cohesive perspective. 

Therefore, the performance of the optimal portfolio identified through the LWR metric 

(Figure 4.8) should be evaluated within the scenario tree representation of the future. This 

result is already reflected in Figure 4.6, specifically in the columns related to the costs of 

considering candidate development paths 8 and 13 across scenarios. Figure 4.9 expands on 

Figure 3.12 by incorporating the cumulative probability distribution of costs derived from the 

optimal development path determined by the LWR metric. 

It is possible to see that the investment strategy resulting from the LWR approach yields 

results in which not only the expected total costs of transmission investment and operation 

are $1.5 billion more expensive, but also the worst performing scenario for the LWR portfolio 

is $4 billion more expensive than the worst performing scenario using the stochastic 

approach. 
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Another interesting comparison that can be conducted to understand the difference between 

the stochastic and deterministic approaches is to apply the LWR procedure to the 

development paths found through the stochastic planning approach (see Figure 3.11). This is 

done by calculating the matrices of costs using the optimal development paths found through 

the stochastic approach (five different development paths where found) and determining the 

development path that minimises the worst regret. Figure 4.10 displays the results of this 

process, indicating that the development path associated with scenarios 15 to 17 minimises 

the worst regret. 

 

Figure 4.10. LWR calculations based on the use of the optimal development paths for each scenario found through the 

stochastic  

Interestingly, the results demonstrate that the more connected the scenario tree is, the lower 

the observed regrets will be. Specifically, the regrets for all development paths, except for 

scenario 18, fall within the range of $1.2 to $6.3 billion. Including scenario 18, the range 

expands to $1.2 to $41.4 billion. In contrast, the deterministic-based LWR approach, as shown 

in Figure 4.6, results in regrets ranging from $8.8 to $169.9 billion. This suggests that the 

stochastic approach, by considering all the available information about the future of the 

system, can effectively hedge against extremely large regrets. 

  

SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SP11 SP12 SP13 SP14 SP15 SP16 SP17 SP18 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SP11 SP12 SP13 SP14 SP15 SP16 SP17 SP18

S1 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 0.0 0.0 0.0 0.3 0.3 0.3 0.3 0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.7

S2 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6

S3 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.6

S4 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6

S5 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.6

S6 21 21 21 18 18 18 18 18 19 19 19 19 19 19 19 19 19 18 3.3 3.3 3.3 0.5 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.0

S7 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 23 23 64 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 41.4

S8 23 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20 20 60 2.8 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 40.3

S9 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6

S10 23 23 23 23 23 23 23 23 24 24 24 24 24 24 23 23 23 24 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.6

S11 24 24 24 21 21 21 21 21 21 21 21 21 21 21 21 21 21 20 3.3 3.3 3.3 0.5 0.5 0.5 0.5 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.0

S12 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 66 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 41.4

S13 25 25 25 23 23 23 23 23 23 23 23 23 23 23 23 23 23 63 2.8 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 40.3

S14 26 26 26 23 23 23 23 23 21 21 21 21 21 21 21 21 21 19 6.3 6.3 6.3 3.5 3.5 3.5 3.5 3.5 1.4 1.4 1.4 1.4 1.4 1.4 1.2 1.2 1.2 0.0

S15 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 66 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 41.4

S16 25 25 25 22 22 22 22 22 23 23 23 23 23 23 22 22 22 63 2.8 2.8 2.8 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 40.3

S17 26 26 26 23 23 23 23 23 21 21 21 21 21 21 20 20 20 19 6.3 6.3 6.3 3.5 3.5 3.5 3.5 3.5 1.4 1.4 1.4 1.4 1.4 1.4 1.2 1.2 1.2 0.0

S18 27 27 27 24 24 24 24 24 22 22 22 22 22 22 22 22 22 21 6.3 6.3 6.3 3.5 3.5 3.5 3.5 3.5 1.4 1.4 1.4 1.4 1.4 1.4 1.2 1.2 1.2 0.0

6.3 6.3 6.3 3.5 3.5 3.5 3.5 3.5 1.4 1.4 1.4 1.4 1.4 1.4 1.2 1.2 1.2 41.4

STOCHASTIC COSTS (B$) STOCHASTIC REGRETS (B$)
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5 Controlling the risk of a portfolio 

The discussions so far have addressed decision making based on a specific value 

attribute/indicator (e.g. cost or regret) and based on minimisation of expected values 

(stochastic) or highest values (LWR/LWWR) in uncertain situations. No matter which method 

is used, decisions will result in a distribution of potential outcomes, which can vary in different 

scenarios. However, these approaches disregard a full analysis of the resulting risk 

implications. The decision maker also has little control on the ability to change the risk profile 

of the approach, being fundamentally risk neutral for stochastic analysis or any assessment 

based on expected cost and risk-averse for a full LWR [4]. Also, as discussed in [4], LWWR 

enables risk attitude modulation, but in a way that may not be entirely clear. 

In general, for a decision maker it may be desirable to be able to both reduce expected costs 

while keeping the risk of the resulting portfolio “under control”. As a result, when uncertainty 

is present, decision-making is inherently linked to a trade-off between future costs and risk. 

To prevent unacceptable decisions, principles of risk management and expected cost 

minimisation must be incorporated into the methodology to make decisions.  

 

Error! Reference source not found. depicts, in a general illustrative way, the impact of the 

attempt to control expected cost and risk: ideally, it would be ideal to be able to select a 

portfolio capable to push down both the expected cost of the portfolio and the worst 

outcomes (taken as a measure of risk) that could potentially occur as uncertainty unfolds. The 

reality is that any attempt to reduce the extreme outcomes will introduce the need for 

additional investment (a “risk hedge”), which in turn will increase the expected cost. Also, any 

attempt to reduce the expected cost of the portfolio, for instance by investing in cheaper 

options in the portfolio, will inevitably lead to a poorer performance (higher overall costs) of 

the portfolio in certain scenarios, otherwise they would have been selected in the original 

optimal portfolio.  

The previous result is valid for a fixed set of investment options. Introducing new investment 

alternatives (in particular, flexible technologies) to the existing portfolio of options  could in 

principle achieve the ideal outcome of reducing both the expected costs and the extreme 

Expected cost Extreme outcomes Ideal

Reality
Expected cost Extreme outcomes

Expected cost Extreme outcomes
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outcomes at the same time. For instance, let’s imagine that a new investment option (let’s 

say a different technology of transmission line) unlocks the same transfer capability as 

another option that was already selected in the optimal portfolio for all the scenarios, but it 

is cheaper to build. This option will now be selected, which will reduce the overall expected 

cost of the portfolio, and in particular will reduce the total cost of the worst outcome, as the 

new selected option is present in all scenarios. 

5.1 Risk management in stochastic planning  

To depict the concept of actively addressing the trade-off between costs and risks, one 

possible approach is to extend the simplified model presented in Figure 3.2 to include the risk 

component in the objective function of the problem. So far, as shown in Figure 5.1a, the 

stochastic planning model has been built to search for a set of reinforcements that minimises 

the expected costs of investment and operation given a representation of future uncertainty 

(i.e., given a scenario tree).  

 
Figure 5.1. Contrast between risk-aware and traditional stochastic planning 

Including the assessment of risk in the stochastic planning approach involves keeping track of 

a metric of the worst performing scenarios and commanding the model to select, for instance, 

investments that minimise that metric. Such an approach, which focuses on minimising a 

given risk metric, is fundamentally risk averse. On the other spectrum, of course, there is the 

minimisation of expected costs, as done so far, which is again fundamentally risk neutral (as 

it does not model risk). It is intuitive to realise that a hybrid strategy could be to develop an 

objective function that aims to minimise a combination of the expected costs and the risk 

metric. Figure 5.1b depicts how this hybrid strategy affects the structure of the original 

problem. The first task corresponds to vest the model with the capability to track the value 

of the different scenarios, which requires to model the disaggregation of the original scenario 

tree into the individual scenarios modeling a full path between the present and the end of 
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the horizon. Keeping everything else equal, these auxiliary variables that keep track of the 

cost of the disaggregated scenarios are used to represent the metric used to assess risk, which 

in turn is included alongside the cost minimisation objective. The use of a risk metric usually 

also involves the need to include additional constraints in the optimisation model (see also 

[133] for general discussions on stochastic modelling and risk analysis). 

The structure of the model introduced in Figure 5.1b is, however, not complete or the most 

general yet. The reality is that the planner would like to balance out its position on risk. A 

more risk-averse approach will prefer to favour the minimisation of risk at the expense of 

increasing the expected total cost of the system, whereas a risk neutral planner will just focus 

on minimising the expected cost, as it is neutral about the risk of the portfolio. This stance on 

risk could therefore be parametrised in the model using a linear combination of the two 

objectives via the introduction of the risk parameter β. 

 

Figure 5.2. Parametrisation of the risk appetite of the planner 

Figure 5.2 shows how the parameter β is included in our general risk-aware stochastic 

planning model. It takes values in the range 0 to 1, whose extremes yield the following risk 

appetites: 

• β = 0 corresponds to a risk-neutral assessment (expected cost minimisation only) 

• β = 1 corresponds to a risk-averse assessment (e.g., risk minimisation only) 

Seen with these new lenses, all the results relative to the stochastic planning model presented 

in earlier sections of this report have considered a risk neutral position, that is, β = 0. The 

objective of the following sections is to analyse the impact of making decision while 

modulating the risk. A natural analysis that can be conducted in the context of the risk-aware 

framework is to map the results found for several values of the β parameter. This will be 

referred to as parametric risk assessment, and it will yield the so-called “efficient frontier”, 

which is depicted in Figure 5.3. 
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Figure 5.3. Efficient frontier of the parametric risk assessment 

An efficient point in the frontier represents the optimal balance of cost and risk for a given 

risk appetite (parameter β). It is a combination of expected cost and risk that cannot be 

improved upon by simultaneously reducing both cost and risk. Therefore, choosing a solution 

with a lower expected cost than an efficient point means accepting a higher risk, and vice 

versa. This study is fundamental to define the optimal portfolio for the system, as it clearly 

informs about the premium that must be paid from the perspective of expected costs to 

achieve a reduction in the risk of the portfolio. 

There is one last element to be discussed before introducing the results of the studies 

conducted on the 32-node instance studied in this report: the risk metrics. 

5.2 Risk metrics 

Thus far we have discussed the approach that is taken in stochastic planning to control the 

risk of the portfolio. We have described risk with concepts like “the worst performing 

scenarios”, “the worst outcomes”, “the value of the tail of the distribution”, so we should 

clarify the definition of risk metric and describe the one that will be used in the context of this 

report. 

A risk metric is the quantification of a potential loss associated to a portfolio of assets or, in 

general, an investment strategy. It provides a quantitative way to evaluate the possible 

downsides of an investment, enabling the planner of a transmission network to make 

informed decisions about the allocation of resources and the management of risk. 

For example, [133] presents different risk metrics used in the context of generic stochastic 

modelling:  

▪ Variance is a statistical measure of the dispersion of a set of data points around their 

mean. High variance indicates that the returns are widely spread out and that there is 

a large degree of uncertainty in the portfolio's returns. In other words, a high variance 

indicates a higher level of risk: the more spread there is, the more likely it is there will 

be a particularly bad outcome. 
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▪ Shortfall probability is a measure that represents the likelihood of the total costs of a 

portfolio that will be over a target or threshold value. It is a measure of the risk that 

an investment will not perform as expected or that a system will become more 

expensive than a given value. 

▪ Expected shortage is strictly connected to the shortfall probability. For a given 

predetermined cost level, the expected shortage measures the expected value of 

those scenarios performing worse that than the target value. 

▪ Value-at-Risk (VaR) is a risk metric largely used in portfolio management. Contrary to 

the shortfall probability and the expected shortage metrics that are calculated based 

on a predefined target value of cost, the VaR is defined as the value above which a 

percentage of the costs of the distribution are expected to fall, given a predefined 

confidence level. 

▪ Conditional Value-at-Risk (CVaR) is defined as the expected value of all the values of 

the distribution that are above the target probability (or confidence level). Using the 

definitions of VaR, CVaR corresponds to the expected value of all the values that are 

above and including the VaR. 

 

Figure 5.4. VaR and CVaR for two different distributions 

In general, VaR and CVaR are the most widespread metrics for risk analysis. There are several 

reasons for this, both from the perspective of the properties of the information that the 

metrics provide or require and also from the perspective of their implementation. The main 

reason for their suitability is the fact that the planner has only to define a confidence interval 

to study the risk, rather than determining a threshold value for the cost (as it is needed for 

the shortfall probability and the expected shortage). The variance metric is not as strong for 

these studies, as it factors in the dispersion of all the distribution rather than focusing on the 

bad outcomes. 

Figure 5.4 also illustrates why CVaR is often the preferred risk measure to manage risk in 

planning decision. In simple terms, VaR provides information about the cost when the worst-

case scenarios (as defined by the selected target probability) start to occur, while CVaR 

informs what the expected cost of those worst-case scenarios is and provides information 
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about their distribution. As seen in the figure, both distributions have the same VaR, but the 

metric is blind to the worst outcomes experienced in the distribution depicted in red. CVaR is 

more useful for identifying scenarios with low probability but high costs, which can 

significantly increase the average cost of the worst-case scenarios. This makes CVaR an 

attractive risk measure for transmission expansion planning problems, where these types of 

scenarios can occur, and also where resilience can become a relevant phenomenon to study 

to select the investment options that better hedge the system against high-impact low-

probability events. On top of these features, CVaR also has better mathematical properties 

that lead to a more tractable problem than the one resulting from the use of VaR, because 

the latter requires the use of additional binary decision variables for its definition. 

5.3 Case study applications 

The use of risk metrics generally leads to additional computational burden, as now the 

investment and operation decision are made looking also at the shape of the distribution of 

costs for the scenarios. In order to produce enough studies to understand the effect of this 

approach on the investment decisions, we use the lighter version of the 32-node tree, which 

uses only one week to represent operation in each node (ISP22_32_1W). All the studies we 

conduct in this report use CVaR-95%, which means that the risk metric will be the expected 

value of the 5% worst performing scenarios. Essentially, the cost distribution for the case 

where β equals 0 has already been covered for case ISP22_32_1W in the results presented in 

Figure 3.13. The label for the risk neutral case is CVAR_beta0.00_32N_1W, whereas the risk 

averse case is labelled CVAR_beta1.00_32N_1W. Figure 5.5 presents the resulting distribution 

for the two extremes of the parametric analysis, also highlighting the CVaR (solid line) and 

expected cost (EXPC, dotted line) for each distribution. In the particular cases under analysis, 

the 95% threshold approximately corresponds to the last three markers in each distribution 

in the figure. It is evident that how minimising only the risk achieves the objective of limiting 

the cost of the worst scenarios (CVaR reduces $1.87B), but it comes at the cost of a 

substantially higher expected cost (extra $1.86B). 

 
Figure 5.5. Cumulative distributions for the 1-week case for the risk neutral and risk averse case
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Figure 5.6. Comparison between the investment results for the risk neutral and risk averse 1-week cases for nodes 15, 23 29 and 32 (see labels in blue in each map). 
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Figure 5.6 shows the comparison across nodes 15, 23 29 and 32 (leaf nodes in the scenarios 

representing the original scenarios used in the ISP 2022) in the scenario tree for the two risk 

cases under consideration. The straightforward conclusion is that higher levels of risk aversion 

lead to a higher reinforcement of the network. This approach results in a substantial increase 

in the total costs of several scenarios, but also enables the reduction of the costs associated 

to the most expensive scenarios, which translates in a very narrow distribution of costs for 

the different scenarios. 

The essence of any transmission planning methodology corresponds to the identification of 

the investment options that need to be proceeded today (or within a certain time horizon 

before a new assessment is made) to achieve their deployment in the nearest future possible 

(earliest in service date, to use National Grid ESO terminology). To that end, Figure 5.7 

displays the set of transmission investments that are proceeded in year 2022, which are the 

ones that become active (are physically deployed) in year 2027 (nodes 2, 3, 4 and 5, showing 

only node 3 in the figure as the results are the same due to the fact that they share the same 

parent node 1). 

 

Figure 5.7. Investments recommended in year 2022 for the risk-neutral (left) and risk-averse (right) approaches. 

It is possible to see that the risk averse case triggers the construction of two links between 

SQ and NNSW (NNSW–SQ Option 1 and 2) and two links between NNSW and CNSW (CNSW-

NNSW Option 6 and 6A), which hints that enabling the corridor between SQ and CNSW is a 

hedge against extremely negative scenarios that might appear in the future9. 

By solving the same problem for a CVaR-95% with β = [0.25, 0.5, 0.75] it is possible to see a 

good approximation of what the efficient frontier looks like. This result is presented in Figure 

5.8, which highlights that this particular case lends itself for a relatively easy decision between 

risk and expected cost. The nature of the frontier clearly shows the initial trade-off described 

 

9 Under the simplifying assumption of one typical week operational representation. 
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before, whereby in order to decrease the risk by $1.87B the expected cost premium would 

be $1.86B. With the information presented in the figure, it is possible to ascertain that a risk 

aversion associated to a β = 0.75 may represent a much better trade-off between expected 

costs and risk, because the risk is reduced almost as much as β = 1.00 ($1.868B), but the 

premium to be paid in terms of expected cost is much smaller ($0.3B). Potentially, by 

exploring the frontier further, a better trade-off can be found.  

The key message from the efficient frontier analysis is embedded in the ratio between risk 

reduction and the premium to be paid. This means that for each scenario tree that may be 

studied, any sensitivity on probabilities, etc., will require the full assessment of the efficient 

frontier to determine the best trade-off for that case. 

 
Figure 5.8. Efficient frontier for the case ISP22_32N_1W with CVaR-95% as risk metric 

Extending Figure 5.7 using this larger range of risk parameters, it is possible to identify what 

sets of reinforcements are proceeded in year 2022 (active in nodes 2 to 5, year 2027) to cope 

with progressive a higher aversion to risk, as seen in Figure 5.9. 

 

Figure 5.9. Reinforcements proceeded in year 2022 (active in 2027) depending on the level of risk aversion 
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It can be seen that there only two reinforcements that are progressed independent of the risk 

aversion level: CNQ-GG Option 1, SQ-CNQ Option 2. The risk neutral approach also considers 

increasing transmission capacity in NSW using CNSW-NNSW Option 7; however, as the risk 

aversion increases this transmission option is replaced by two reinforcements: CNSW-NNSW 

Option 6 and CNSW-NNSW Option 6A. The boundary capacity between NSW and QLD also is 

key to address higher risk aversions: a risk neutral approach does not observe the deployment 

of additional capacity in that boundary, but as risk aversion increases, NNSW–SQ Option 1 is 

build for β = 0.25 and expanded to NNSW–SQ Option 2 when the risk aversion is β = 0.5. 

Table 5.1. Investment options proceeded in 2022 for different levels of risk aversion 

Line Line ID Region A Region B 
Transfer limit (MW) Investment 

Cost 

(M$/MW) 
A to B B to A 

NNSW–SQ Option 1 18 NNSW SQ 910 1080 1.16 

NNSW–SQ Option 2 19 NNSW SQ 550 800 0.48 

CNSW-NNSW Option 6 27 CNSW NNSW 2190 1800 0.77 

CNSW-NNSW Option 6A 28 CNSW NNSW 880 1270 0.18 

CNSW-NNSW Option 7 30 CNSW NNSW 1470 1590 0.56 

Table 5.1 displays the techno-economic characteristics of the transmission options that may 

or may not be proceeded in 2022 depending on the risk aversion level. By inspecting the 

transmission options presented in the table below, we can observe how the investment rules 

across the set of investments options complicate the selection of the optimal portfolio. For 

instance, when reinforcing the boundary between NSW and QLD the model is forced to 

deploy NNSW–SQ Option 1 first, even when NNSW–SQ Option 2 is more cost-effective, as 

NNSW–SQ Option 2 must follow NNSW–SQ Option 1. Something similar occurs for the 

boundary between CNSW and NNSW, where CNSW-NNSW Option 6 and CNSW-NNSW Option 

7 are mutually exclusive, so to increase boundary capability beyond the capacity of CNSW-

NNSW Option 7, the model switches to CNSW-NNSW Option 6 and combines it with CNSW-

NNSW Option 6A. 

5.3.1 The role of storage in risk-aware planning 

Adding the possibility to co-optimise storage along with transmission lines showed marginal 

benefits in the case studied in section 3.4.3 due to the existence of already a very large 

amount of storage capacity in the system as planned from the ISP. When including a risk 

metric in the objective function, additional storage capacity is selected to enable the system 

to further decrease the investment risk. 

To demonstrate the effect of potential additional storage capacity that some extent of risk-

aversion could create (on top of the battery storage capacity planned in the ISP), we focus the 

attention on the fully risk averse case (β = 1.00).  
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Figure 5.10. Cumulative distributions for the risk-averse approach for the cases with and without battery co-optimisation 

Figure 5.10 depicts how the inclusion of flexible investment options like BESS enable the 

model to find a solution with even a lower CVaR-95%. The reduction in the risk of the portfolio 

is close to $140 million, at a premium of additional expected cost of close to $57 million. 

 
Figure 5.11. Impact on the investment results of considering BESS as additional investment candidates 

The impact on the investment options selected to achieve the lowest risk possible is shown 

in Figure 5.11. Three nodes are selected for years 2027, 2032 and 2037, associated to scenario 

16 in the scenario tree: node 4 which corresponds to the step scenario in year 2027, then 

node 12, which corresponds to year 2032, also representing step scenario conditions. Finally 

node 30, which describes the system by 2037 under the hydrogen superpower scenario. The 

amount of additional storage that is built starts with around 150 MW in Victoria in 2027, 

which then grows to approximately 950 MW by 2032, and 800 MW in the Sydney, Newcastle 

and Wollongong region in year 2037. It is worth highlighting that storage is substantially 

cheaper by year 2037, with its investment cost being around 50% of the costs observed today. 

Figure 5.11 clearly shows that storage is not able to defer or avoid transmission investment, 

as the transmission portfolio is the same as the one observed for the case without storage 

investment options. The additional storage is able to accommodate even more of the 

renewable energy seen at mid-day, further reducing the operation costs in certain periods of 

the day. These features of storage can help enhance the performance of the system in the 
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most expensive scenarios, thus further reducing risk, as is the objective of the fully risk-averse 

objective function.  

The overall effect of including flexible investment options like additional BESS in the 

investment set is depicted in Figure 5.12. It is clear that the new portfolio of options both 

reduces the risk and/or the expected costs for all risk aversion levels, which is translated into 

an efficient frontier that has been displaced down and to the left, which effectively allows the 

risk-constrained problem to find portfolios with less risk and less expected costs. For instance, 

take the case where the risk parameter is set to 0.75. By considering additional investment in 

batteries we observe how the model is able to find a portfolio that reduces the expected cost 

in close to $105 million and the CVaR in ca. $140 million. 

 

Figure 5.12. Efficient frontier for the case ISP22_32N_1W with and without investment in additional BESS investment using 

CVaR-95% as risk metric 
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6 Methodological approaches to incorporate resilience analysis in 

stochastic planning of power systems. 

Extreme events, particularly those related to weather, have caused substantial economic 

damages to power grids worldwide. As extreme weather events become more frequent and 

severe, there is an urgent need for a comprehensive understanding of their impact on power 

system infrastructure to develop strategies that minimise negative effects. In this context, 

power system resilience has gained significant attention from researchers and policymakers 

alike, as it is crucial for countries to better comprehend the events, their impacts on grid 

operations, and the solutions required to enhance the resilience of power systems. 

Power system resilience refers to the capacity of a system to endure high impact, low 

probability events (HILP), recover quickly, and adapt its strategies and resources to mitigate 

similar events in the future. Over the past ten years various frameworks, methodologies, and 

measures that have been proposed in the literature to improve power system resilience. 

These include stochastic optimisation approaches, hardening existing infrastructure, and 

considering risk aversion in network design and operation.  

This section aims to provide an overview of the challenges and potential solutions associated 

with investments to increase power system resilience. However, it is important to note that 

the current section will not delve into the seminal aspects of resilience in power systems, as 

these are thoroughly discussed in recent literature (see section 2.2). Instead, the focus is put 

on the methodologies to determine what new transmission infrastructure can enhance power 

system resilience under uncertainty to effectively mitigate the consequences of extreme 

events on grid operations. As a matter of fact, we propose here three different approaches 

to deal with resilience in stochastic power system planning. Several case study applications 

are presented to demonstrate the effects of planning approaches proposed here. These 

studies are conducted on the same instances studied in the previous sections of this report. 

At the end of the section the work conducted in collaboration with EPRI is also presented, 

which further discusses how to model and select extreme events and disruptive hazards and 

their effects, and how to incorporate them into capacity planning models. The approach 

includes hazard-driven load changes, deratings and shutdowns of assets, potential damages 

and risks to the grid and outside parties, hardening options to mitigate the impacts, and the 

costs and operational implications associated with implementing these measures.  

6.1 Representing extreme events in stochastic power system planning 

The mechanics of input data management for resilience studies play a crucial role in 

accurately representing the uncertainties associated with extreme events. These mechanics 

are specifically tailored to the structure of the stochastic representation using a scenario tree, 
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which offers important degrees of flexibility in modeling extreme events and their likelihood. 

This section aims to explore two potential approaches that could be employed effectively to 

incorporate HILP events in investment decision-making under uncertainty.  

The first approach, which will be referred to as Approach 1, involves taking advantage of the 

structure of representative periods (the case of the studies conducted in this report, 

representative weeks) used to describe system conditions, incorporating new representative 

weeks into the analysis. These weeks would be chosen to represent the extreme operational 

conditions in a given node or nodes, and the corresponding representative periods would be 

weighted according to the likelihood of the event occurring. The input data for that week 

would then be modified to reflect the specific characteristics of the event, such as changes in 

demand, renewable energy availability, or system architecture.  

The justification behind this approach is depicted in Figure 6.1. Let’s assume that the planner 

wants to consider a specific branch in the original scenario tree and model an extreme event 

in one of the nodes of the tree. In this example, the extreme event is modelled in node 3 as a 

new representative period additional to the original representation of operation, resulting in 

a new node, labelled node 3’. The planner then can represent the likelihood of transiting from 

node 1 to node 3’ with a given low probability, which in this case is assumed to be 0.001. This 

results in a new scenario tree with a copy of the branch that includes node 3, which now 

includes node 3’.  

 

Figure 6.1. Describing extreme events by adding new representative periods within a node (approach 1) 

The new branch is essentially the same as the original branch, except from the additional 

representative week discribing the extreme event. Therefore, the original branch and the new 

branch can be overlapped, resulting in a new node labelled node 3’’, which now includes the 

representative period describing the extreme event, but is now weighted within node 3’’ 

using the probability of transition between node 1 and node 3’. In summary, the extreme 

event is added to the original node 3 using a weight that reflects how unlikely it is that such 

operational condition will occur in the period represented by node 3. 

The second approach, which will be referred to as Approach 2, involves adding a totally new 

branch to the scenario tree, which is kept as an independent path into the future. This branch 
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would also model the events by adding additional weeks of operation to capture their effects. 

However, this approach would also give the planner the ability to describe new scenarios 

resulting from the event’s occurrence, as seen in Figure 6.2. By incorporating these additional 

scenarios, the planner can understand the potential outcomes of high impact low probability 

events that may involve drastic changes in the future of the system. Also, this approach 

enables to identify how the extreme events drive specific transmission investments within 

the branch that includes the extreme event(s), as opposed to the investment decisions made 

in the original tree. Further discussions are also reported in Appendix D based on EPRI’s work. 

 

Figure 6.2. Describing extreme events by adding new scenarios to the scenario tree (approach 2) 

6.2 Methodologies to include resilience consideration in stochastic power system 

planning 

This section describes three methodologies we propose to study the effect of extreme events 

in power system planning. The methodologies are discussed from the perspective of 

expansion planning under uncertainty considering transmission investment options only, but 

their principles can be applied to any set of investment decisions (e.g., transmission and 

storage expansion planning). 

 

Figure 6.3. General reliability-oriented planning framework 
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The methodologies are built as an extension to what we could name “reliability-oriented”10 

framework presented in Figure 6.3, which is the one introduced and used in Section 3 and is 

the foundation of all the studies conducted throughout this work. The reliability-oriented 

framework takes three main inputs, namely, the architecture of the system, the description 

of the system’s evolution through a scenario tree, and a set of investment options. These 

elements are used to populate the stochastic model that is then used to select the investment 

options that minimise the total expected costs of investing in new assets and operating the 

system across the conditions described in the scenario tree. 

6.2.1 Methodology 1: Risk-averse planning for resilience enhancement 

Given the uncertainty around what type of high impact low probability (HILP) events may 

occur in a system, this methodological approach is proposed to identify a more robust 

investment portfolio that could in principle behave better under extreme conditions. This 

approach focuses on selecting a risk-averse portfolio using a reliability-oriented model and 

the existing representation of uncertainty, by including a risk metric parametrised to indeed 

identify a more risk-averse portfolio, as described in Section 5. A risk-averse portfolio is more 

likely to be naturally hedged against extreme events since the planner is likely to prioritise 

building additional assets to mitigate the risk of operation conditions that may result in very 

high costs (from the modelled scenarios, and so, indirectly and intuitively, for unknown, 

extreme events and scenarios too). 

  

Figure 6.4. Extension of the reliability-oriented planning approach to hedge against extreme conditions (methodology 1) 

 

10 The reliability-oriented model refers to the risk-neutral (see section 5) expansion planning model that was introduced in 

section 3, where reliability-related constraints are represented to guarantee that generation mix is both adequate and the 

operation is secure. 
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The effectiveness of the risk-averse portfolio compared to the risk-neutral one can then be 

tested by recreating operational conditions describing a given HILP event and contrasting the 

performance of both transmission plans. The resilience of each portfolio can be measured 

using a bespoke resilience metric, and the reliability value of the risk-averse portfolio can be 

determined. By using this approach, the planner can identify a more robust investment 

portfolio that can better handle HILP events and improve the overall reliability of the system. 

6.2.2 Methodology 2: Resilience-aware stochastic power system planning 

This methodology is the natural step towards finding resilience-focused portfolio after the 

elements presented in methodology 1. In this case, the objective is to represent the different 

HILP events under consideration in the description of the future evolution of the system, 

which naturally involves the definition of a resilience-oriented scenario tree. The tree is 

modified following the approaches described in Section 6.1.  

Following the representation of methodology 1 presented in Figure 6.4, methodology 2 can 

be described using the same elements, where the structure of the scenario tree changes, as 

shown in Figure 6.5. The definition of a new representation of uncertainty that includes HILP 

events changes leverages the reliability-oriented model to implement a resilience-oriented 

methodology. Since the underlying model is reliability-oriented, this means that reliability is 

not overlooked in the proposed methodology as all the constraints and considerations that 

aim to guarantee reliability are still in place in the model. 

 

Figure 6.5. Resilience-oriented power system planning (methodology 2) 

6.2.3 Methodology 3: Two-step resilience-aware stochastic power system planning 

This methodology for developing a resilience-oriented portfolio involves two steps. First, the 

system is planned for reliability using the reliability-oriented model as presented Figure 6.3. 
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The resulting optimal investment set is then referred to as the reliability-oriented portfolio, 

which is provided to the second step of the methodology as part of the system architecture. 

Next, the methodology overlays high impact low probability (HILP) scenarios on top of the 

original scenario tree. This allows for the identification of new optimal plans for the remaining 

original transmission options that are resilient to HILP events. The resulting investment set is 

referred to as the resilience-oriented portfolio. 

To further refine the resilience-oriented portfolio, a budget limit may be included in the 

reliability-oriented model. This ensures that the selected investments are within the 

resilience budget allowance. Figure 6.6 describing the methodology can help to visualise the 

steps involved in developing the reliability-oriented and resilience-oriented portfolios. By 

following this methodology, system planners can better prepare for and mitigate the 

potential impacts of HILP events on the system and at the same time, justify the additional 

assets and what level of investment is needed to provide more resilience. 

 

Figure 6.6. Illustration of the two-step methodology to determine resilience-oriented portfolios 

6.3 Case study applications 

This section seeks to integrate the resilience assessment into the traditional cost-benefit 

analysis by providing methodological tools and a case study application under the stochastic 

power system expansion planning framework, focused on methodologies 2 and 3 introduced 

before. Specifically, it aims to illustrate how the representation of extreme events in 

transmission expansion planning can contribute to mitigate the potential impact of High-

Impact Low-Probability (HILP) events that may occur in the future. The illustrative case study 

assumes there is an increase in the expected demand and a decrease in the expected output 

from solar plants in the southern regions of Victoria (VIC), Tasmania (TAS), and South Australia 

(SA) for a time-window of 10 hours. It should be stressed that this case study is purely notional 
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and illustrative, with the sole aim of creating an opportunity to discuss the proposed 

methodologies rather than provide any specific result. 

The analysis also introduces and explains two concepts related to the occurrence of HILP 

events: frequency and representativeness. Frequency refers to the likelihood of an event 

occurring over time, while representativeness involves including the occurrence of the HILP 

event throughout the scenario tree.  

6.3.1 Extreme event representation  

High Impact Low Probability (HILP) events refer to any event that is not usually expected 

during normal operating conditions, such as extreme weather, exogenous signals like fuel 

prices, and others. Modelling its occurrence remains still a challenge, and in this 

methodological analysis, the analysis is done through the addition of representative weeks 

(approach 1) that characterise the occurrence of the event, together with the concepts of 

frequency and representativeness, which are later introduced in detail. 

6.3.2 Representative weeks 

To study the resilience methodologies proposed in this section, the 1-week case study 

application has been chosen as the base case study. The specific dates utilised for each node 

are provided in Appendix B: Representation of operation for resilience case study application 

for reference. 

Extreme events, which are used to test the resilience of the system, are also modelled through 

the previously selected representative weeks. In this case, a specific event occurs within a 

defined time window and has a particular duration. That event mainly causes unexpected 

additional demand and lower output of rooftop and large-scale PV generators, leading to a 

more stressed operation of the system. It is important to highlight that many other 

parameters can be potentially affected by an extreme event, but only those two have been 

considered in this illustrative case.   As explained in section 6.1 the weights associated to each 

representative period used to model the operation of the system can be used to characterise 

the frequency of occurrence of an extreme event, concept which is introduced in the next 

section. By means of these weights, the optimisation problem can account for the likelihood 

of an extreme event occurring in the system. 

6.3.3 Frequency of a HILP event 

The frequency of a HILP event is defined as the probability of the event occurring within a 

defined time window. The frequency parameter is set as a specific value within the designed 
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framework through the weights used to characterise the representative periods11. One of the 

objectives of this illustrative study is to analyse how changes in the frequency value of an 

event can impact investment decisions during the transmission expansion planning process.  

By incorporating the frequency of HILP events into the planning framework, planners can gain 

valuable insights into the potential impacts of these events on the power system, allowing for 

more informed investment decisions. It is important to note that the frequency of HILP events 

can vary depending on the specific region and time period being analysed. Therefore, when 

incorporating the frequency of HILP events into the planning process, it is crucial to consider 

the specific context being studied to accurately reflect the potential impacts of extreme 

events on the power system.  

6.3.4 Representativeness of a HILP event 

The stochastic power system expansion planning framework utilises scenarios to represent 

sets of uncertainties, which may include high impact, low probability events. Including an 

extreme event in specific futures may lead to different investment decisions compared to 

when the event is expected to happen in all possible futures. The representativeness of an 

event in the scenario tree refers to its inclusion in different possible futures that the system 

may face. Properly considering the representativeness of events can be crucial in planning 

power systems for normal operation as well as for effectively responding to extreme events. 

For this case study, representativeness can be categorised as "zero", "partial", or "full". A 

"zero" representativeness means that the HILP event is not considered as part of the 

uncertainties of the scenario tree, and investment decisions will be made based on the 

assumption that the event will not occur. A "partial" representativeness implies that the 

event is expected to happen in some, but not all, of the scenarios. In this case, investment 

decisions will be made considering the possibility of the event occurring in some scenarios 

but not in others. A "full" representativeness means that the event is expected to happen in 

all scenarios with a specific frequency, and investment decisions will be made based on that 

assumption. For a better understanding of the representativeness concept, Figure 6.7 

provides an illustration of it throughout the scenario tree utilised for this case study 

application.  

 

11 For example, let’s consider one year consisting of 52 weeks that is being represented using one representative week. If an 

event is expected to occur once every year, the value of the weight associated to the week with normal operation is 51/52, 

while the weight assigned to the week that models the occurrence of a HILP event is 1/52. 
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Figure 6.7: Degrees of representativeness throughout the scenario tree used to describe possible futures. 

6.3.5 Input data and characterisation of an extreme event 

This section introduces the characterisation of the extreme event that was modelled to 

construct the illustrative study case. Specifically, we show the main methodological steps 

related to data management that were taken to modify demand and expected output of 

generators, as well as the impacted areas of the system. 

The occurrence of an extreme event can be caused by a variety of variables and events that 

deviate the system from normal operating conditions. Examples include abnormal weather 

patterns, higher demand peaks, exogenous signals such as fuel prices, or market events such 

as early retirement of units. 

This illustrative study is focused on the effects of unexpected operating conditions caused by 

simultaneous higher demand peaks and lower output of rooftop and large-scale PV 

generators during a hypothetical HILP event.  Figure 6.8 and Figure 6.9 illustrate, in a general 

way, the behaviour of the generators’ output and demand during the hypothesised HILP 

event as compared to a typical normal week. It is important to emphasise that the curves 

shown are only for illustrative purposes and they do not represent the behaviour of every 

renewable generator in the system and the demand in affected zones. 
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Figure 6.8: Illustrative example of affected generators’ output while facing a HILP event and in a normal week. 

 

Figure 6.9: Illustrative example of demand profile of affected zones while facing a HILP event and in a normal week. 

For this study-case, the HILP event conditions are primarily set for the southern regions of 

Australia, specifically Victoria, South Australia, and Tasmania, as is highlighted in Figure 6.10.  

 

Figure 6.10: Affected zones of the illustrative study case. 

6.3.6 Analysed cases 

To analyse and assess the impact of HILP events in the stochastic transmission expansion 

planning framework, an approach following methodology 2 “Resilience aware stochastic 

planning”is employed.  

To establish a standard of comparison, initially a "base case" is created, and relevant base 

investment portfolios are determined. Subsequently, two cases are constructed to analyse 

the effect of the frequency HILP events on the investment portfolios obtained. Additionally, 
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cases with partial extreme event representation are executed to evaluate the impact of event 

representation in the scenario tree. 

Table 6.1  summarises the five case study applications under analysis, outlining the specific 

characteristics of each study, including whether or not the occurrence of the HILP event was 

modelled, the frequency of the event in case it is included, and the representativeness degree 

for each analysis.  

Table 6.1: Cases executed and analysed. 

Case N° Case name 
Occurrence of HILP 

event 

HILP event 

frequency 

HILP event 

representativeness 

1 BASE ✗ -- Zero 

2 HILP_FULL_1Y ✓ 1 year Total 

3 HILP_FULL_5Y ✓ 5 years Total 

4 HILP_PART_1Y ✓ 1 year Partial 

5 HILP_PART_5Y ✓ 5 years Partial 

In addition, for each stochastic planning case listed in Table 6.1, the associated 18 

deterministic portfolios are also generated, as explained in Section 4, for comparison 

purposes. 

6.3.7 Stochastic expansion results – Resilience aware planning (methodology 2) 

This section presents the results obtained from the different cases listed previously when the 

stochastic transmission expansion planning is made. 

• Investment portfolios on final epoch (2037) 

Figure 6.11 to Figure 6.14 show the investment portfolios obtained for the different ISP2022 

original scenarios when the resilience-aware methodology is included in the stochastic 

transmission expansion planning. 

 

Figure 6.11: Investment portfolios obtained for Slow change in different resilience cases. 
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Figure 6.12: Investment portfolios obtained for Progressive change in different resilience cases. 

 

Figure 6.13:Investment portfolios obtained for Step change in different resilience cases. 

 

Figure 6.14:Investment portfolios obtained for Hydrogen Superpower in different resilience cases. 
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From the results, it emerges that when resilience assessment is included into the stochastic 

transmission expansion planning framework, different results are obtained in the final epoch 

(2037) compared to the base case. For example, in the Step change scenario (Node 29 - Figure 

6.13), an additional link, specifically the TAS-VIC Option2, is built by 2037 when the case is set 

with 1-year frequency and full representativeness. For the same node, when the event is fully 

represented in the scenario tree, more investment is made and independently of the 

frequency of the event; in particular, the link NNSW-SQ Option 1 is built. Also, in the 

Progressive change scenario, when the event frequency is set to 5-year, the NNSW-SQ Option 

1 is built, but this does not happen for the 1-year frequency. When the Hydrogen superpower 

scenario (Node 32 - Figure 6.14) is analysed, it can be seen that this is the scenario that drives 

more investment, even in the base case, where a double link between TAS and VIC, namely, 

TAS-VIC Options 1 and 2, is built, which can be explained by the higher demand values 

expected in that scenario.  

It is also important to note that when the frequency and representativeness of the event 

differs, the final investment portfolios are also different. When the event is partially 

represented in the scenario tree, in general less investment is made compared to the cases 

when the event has full representativeness. For example, the links CNSW-NNSW Options 4 

and 5 are not built in the partial representativeness case. Also, if the full and partial 

representativeness cases for the 1-year frequency (FULL_1YR and PART_1YR) are compared 

in the Hydrogen superpower scenario, three additional lines, NNSW-SQ Option 1, CNSW-SNW 

Option 1 and TAS-VIC Option 1, are built when there is a full representation, emphasising that 

a higher representation of frequent extreme events across the scenario tree drives more 

investment decisions to reinforce the system.  

Delving into the specific results for the full representativeness case, it can be observed that 

the NNSW-SQ Option 1 is a common element in the portfolios obtained in Progressive 

Change, Step Change, and Hydrogen Superpower scenarios. This new link provides an 

additional transmission capacity of 1080 MW between the areas of QLD and NSW, which 

shows the higher demand and lower availability of renewable resources in the southern zone 

of the NEM, caused by the HILP event, leads to reinforce the northern area of the system. 

Similarly, the TAS-VIC Option 2 link is also identified as an investment option needed to 

support the network in the 1-year frequency cases for the Hydrogen Superpower and Step 

Change scenarios. Its construction is contingent upon the development of additional links in 

the Queensland and New South Wales regions, which again underscores the importance of 

having a robust network capable of transporting resources from these areas to the affected 

regions during extreme events like the one modelled, providing enough transmission capacity 

to satisfy the demand.   

Another noteworthy point is the phenomenon illustrated in Figure 6.14. Although the TAS-

VIC Option 2 link is included in the portfolio in the base case, a shift in investment decisions 
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is observed when the event occurs less frequently or has lower representativeness (FULL_5Y, 

PART_1Y, and PART_5Y cases). In these cases, the decision is made to invest in links in the 

QLD and NSW areas instead.  

The results demonstrate that even when events are partially represented or less frequent, 

the resilience-oriented approach prioritises reinforcing the northern zone of the system. 

Although this may seem counter intuitive as the event occurs in the south, it can be explained 

by the availability of renewable resources in the northern region of the NEM, which can be 

used to meet the energy requirements during a HILP event in the southern regions.  

• Anticipative investment options 

 

Figure 6.15: Investment portfolios obtained for Hydrogen Superpower in 2032 for different resilience cases. 

In addition to a higher number of investments, it is also possible to note that when an extreme 

event is represented in the stochastic transmission planning process, some investment 

options are brought forward in time compared to the original decision in the base case. This 

indicates the need of the system to be reinforced early to avoid the effects that an extreme 

event could have on it. This anticipated decision of investing in transmission can be explained 

because the illustrative HILP event affects the system from early stages, thus the high peak 

and lower generation that occurs when the event takes place, causes investments to be 

brought forward. It can be inferred that constructing an additional link early on is more cost-

effective than having higher amounts of unserved energy, which is highly penalised in the 

objective function. 

Deepening into the investment decisions shown in Figure 6.15, for the FULL_1Y case, the 

anticipated link is the VIC-SNSW Option 6A, with a capacity of 1930 MW, while in the FULL_5Y 

case, the early investment is made in the VIC-TAS Option 1 with a capacity of 750 MW. These 

decisions show the need for early reinforcement of the southern zone of the system in 

response to the extreme event under consideration. Additionally, this highlights how the 

frequency parameter affects the model decisions and how the stochastic framework is 
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capable to capture it. As the event is more frequent, the model invests in more transmission 

capacity than when the event has lower frequency. This can be also explained from an 

insurance perspective; as the model recognises that an extreme event is more frequent, it is 

more likely to invest in additional capacity, paying a premium for an asset that will protect 

the system from the worst performing conditions associated with the HILP event in the future.  

6.3.8 Deterministic expansion results – Resilience aware planning 

Additionally to the stochastic transmission expansion planning results, the deterministic 

studies for each possible scenario were also performed for comparison purposes. The 

portfolios obtained in the final epoch (2037) are shown in Figure 6.16 to Figure 6.19.  

 

Figure 6.16: Deterministic investment portfolios for Slow change in 2037 for different resilience cases. 

 

Figure 6.17:Deterministic investment portfolios for Progressive change in 2037 for different resilience cases. 
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Figure 6.18: Deterministic investment portfolios for Step change in 2037 for different resilience cases. 

 

Figure 6.19:Deterministic investment portfolios for Hydrogen superpower in 2037 for different resilience cases. 

The figures above illustrate the different transmission investment portfolios for the four 

ISP2022 scenarios when running a deterministic analysis and applying the methodology 2 to 

model extreme events within the planning framework.  

For example, in the Slow change case (Figure 6.16), the only investment made throughout the 

five configurations of the study is the CNSW-NNSW Option 7 link, which occurs even when 

the extreme event is modelled using different frequencies and representativeness. The same 

happens for the Step change scenario (Figure 6.18), where there is no variation in the 

investment decisions across the five study conditions under consideration. In the cases of 

Progressive change and Hydrogen superpower, it is possible to observe slightly different 

portfolios, but still maintaining a similar structure. The similarity of results across the five 

conditions under consideration can be explained by the impossibility of a deterministic model 

to leverage value for a given reinforcement across scenarios. As discussed in Section 4.3, the 

deterministic scenarios are independent representations of the future, and the inclusion of a 
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highly unlikely and short event such as the one modelled may not change the investment 

decisions. The only differences that are seen are the additional investment in the TAS-VIC 

Option 2 in the node 32 (Figure 6.19) for the FULL_1Y case and the switch between VIC-SNSW 

Option 2 VNI West and VIC-SNSW Option 6A in the node 23 (Figure 6.17). The first difference 

can be explained as a necessary investment for the case to properly address the requirements 

for the demand, and the second one is not related to capacity itself, as both mentioned 

options have a capacity of 1930 MW, showing that additional capacity needs for the system 

were not addressed in the decision. 

6.3.9 Cost results – Resilience aware planning 

In order to assess the economic side of the proposed resilience methodology, a brief cost 

analysis is conducted through the costs of each study case. In the Figure 6.20, the expected 

costs are presented for each analysed case.  

 

Figure 6.20: Expected costs for the analysed resilience cases. 

It can be observed that the expected costs for each of the cases are around $21.8 and $21.9 

billion. In other words, despite the existence of different transmission investment decisions 

and more or less extreme operating conditions given by the occurrence of an extreme event 

during the operation of the system with a certain frequency, the expected costs remain 

relatively stable compared to the base case (-0.02% to 0.05% difference). This suggests that, 

to some extent, the possibility of making additional investments in the face of extreme events 

allows the system to protect itself correctly, avoiding a considerable increase in total costs 

and allowing a secure and resilient operation for a broader set of possible conditions. 

6.3.10 Two-step resilience aware stochastic planning (methodology 3) 

This section introduces and reviews the implementation of methodology 3 (Two-step 

resilience aware stochastic planning) using the cases shown in Table 6.1 and event structure 
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described in sections 6.3.5 and 6.3.6. This methodology involves a two-step process: first, 

planning for reliability, and second, developing new plans accounting for resilience using the 

remaining transmission options. The results are compared to those obtained through 

methodology 2.  

• Investment portfolios in final epoch (2037) 

Figures Figure 6.21 to Figure 6.25 show the resulting investment portfolios obtained by 

applying the two-step resilience aware methodology proposed to incorporate resilience 

consideration in the stochastic power system expansion planning. The “RELIABILITY” label 

indicates the investments required to comply with the adequacy and security standards of 

the system, while the “RESILIENCE” label corresponds to the portfolios resulting from 

applying the second stage of the methodology for the different parameter configurations 

introduced previously in Table 6.1.  

 

Figure 6.21: Investment portfolios obtained for Slow change in 2037 with methodology 3. 

 

Figure 6.22: Investment portfolios obtained for Progressive change in 2037 with methodology 3. 
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Figure 6.23: Investment portfolios obtained for Step change in 2037 with methodology 3. 

 

Figure 6.24: Investment portfolios obtained for Hydrogen superpower in 2037 with methodology 3. 

The proposed methodology allows for sequential investment decisions to be made, which 

reveal additional investment opportunities in two steps: first, planning for reliability and 

making the necessary investments to ensure security and adequacy, and second, planning for 

resilience. This approach uncovers complementary investments when considering both 

reliability and resilience in two stages. 

For instance, consider the results for Slow change on node 15 (Figure 6.21). When the system 

is expanded just considering reliability, the link VIC-SNSW Option 2 VNI West is not taken as 

part of the plan, while that option appears in every resilience portfolio, suggesting its 

significance in preparing the system to deal with the extreme event. If the step change 

scenario (Figure 6.23) is analysed, the NNSW-SQ Option 1 appears as an investment decision 

selected across the four resilience cases under consideration, while the TAS-VIC Option 2 is 

only necessary when the event has a 1-year frequency and full representativeness (FULL_1Y 
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case), indicating the need to have more reinforcements in the network when the event 

becomes more frequent and it is fully represented in the scenario tree.  

If the Hydrogen Superpower scenario results are reviewed, the same trend is observed. While 

the reliability portfolio sets an initial set of investments to comply with the related constraints 

and requirements, when the second step for resilience is applied, additional network 

reinforcement is required. Specifically for that scenario, the NNSW-SQ Option 1 becomes part 

of the final set of investments.  

The portfolios resulting from the use of methodology 3 reveal the need for additional 

resilience investments beyond the reliability portfolio. This is seen in the case of NNSW-SQ 

Option 1, which becomes a necessary investment to cope with extreme event conditions. 

When comparing methodologies 2 and 3, the latter fixes the reliability portfolios before 

deciding on resilience options, resulting in a more uniform expansion of investments across 

cases. However, key investments like TAS-VIC Option 2 and NNSW-SQ Option 1 are necessary 

in both approaches, indicating the need to utilise resources available in the northern areas of 

the NEM and requiring additional capacity between Victoria and Tasmania for the analysed 

illustrative HILP event. 

• Anticipative investment options 

Anticipative investment decisions are also observed when applying this methodology. 

Specifically, for the node 14 (Figure 6.25), the VIC-SNSW Option 6A is advanced one epoch 

when the event has full representativeness and its frequency is set to 1 year. It is important 

to emphasise that this link is also part of the reliability portfolio in node 32, which means the 

resilience requirements directly affects the timing of the reliability-related investment 

decisions. 

 

Figure 6.25: Investment portfolios obtained for Hydrogen superpower in 2032 with methodology 3. 

Additionally, by looking the FULL_5Y case for both methodologies 2 and 3 in Figure 6.15 and 

Figure 6.25, respectively, it is seen that in methodology 2, the TAS-VIC Option 2 was advanced, 
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while in methodology 3 that does not occurs. These differences can be mainly attributed to 

the fact that in methodology 2, the assessment for reliability and resilience is done 

concurrently, whereas in methodology 3, the reliability investments are already in place when 

resilience is assessed, limiting the scope of the optimisation problem for finding new cost-

effective investments that can enhance resilience capacity while also minimising costs. 

6.4 Joint work with EPRI: Resilience expansion planning 

This section presents a summary of the model and case study applications developed by EPRI 

in the context of this project. EPRI’s contribution is particularly insightful in that it is linked to 

a number of industry-led developments that are currently occurring with several utilities, 

especially in a US context, and it provides additional and further views on potential 

methodological developments for resilience studies. For the full report see Appendix D. 

6.4.1.1 Problem Statement and Context 

Power system resilience is essential as grid planners confront natural disasters such as floods, 

fires, droughts, storms, extreme heat and cold, as well as human-driven cyber and physical 

attacks. These hazards bring new design challenges to planners because the capacity planning 

tools that exist today were designed for dispatchable resources in a stable climate. As 

planners face more frequent and severe hazards, new tools are needed to bring risk into 

planning decisions and build resilient power systems. 

Industry planners have undertaken significant efforts towards resilience planning. Many 

utilities have conducted extensive vulnerability assessments for the relevant regional hazards, 

the vulnerabilities of individual assets, the consequences of impacts, and the options for 

mitigating these risks. Regional transmission organisations have also, in many cases, 

conducted detailed studies examining resilience challenges, often in response to a significant 

disruption or to prepare for anticipated electrification and high levels of renewable 

integration.  

But for the most part resilience studies are separate undertakings from the main expansion 

plan; most resilience considerations are not built into capacity planning models but instead 

explored through distinct studies. Some academic and industry research organisations have 

begun to consider resilience challenges, such as modelling common-mode outages or 

methods for selecting important events, but this work is still nascent and has not yet been 

adapted to industry practice in a significant way. 

However, separating resilience studies from the primary planning process misses a major 

opportunity to build resilience into the initial plan. Many of the most economical resilience 

improvements are likely to come from changing the sizing, timing, and location of 

investments, as well as selective hardening investments. And this sort of system-level 
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resilience is best identified by bringing extreme events into the model where candidate plans 

are first developed. 

6.4.1.2 Proposed solution 

EPRI’s approach is thus also to represent extreme events and disruptive hazards directly in 

capacity planning models, in line with the methodologies presented above. They develop a 

formulation that includes hazard-driven load changes, deratings and shutdowns of generation 

and transmission assets, the risk of damage costs to grid components or outside parties, 

hardening options to mitigate those disruptions and damages, and the costs and operational 

implications of those hardening investments.  

Rather than include disruption and damage costs in the planning objective, EPRI proposes 

constraints that limit the risk of damages and disruptions across the event set according to 

risk tolerance levels chosen by planners. This avoids the need to assign probabilities to 

intrinsically unlikely events and then balance these probabilities with those of normal 

operating conditions. This approach is different from the methodologies presented before as 

methodology 2 and 3 were focused on using the structure of stochastic planning to define 

new events and assign probabilities of occurrence using transition probabilities between 

nodes and/or using weights to determine the relevance of the typical weeks of operation. The 

risk tolerance settings also allow planners to explore gradually more robust plans, tightening 

from a baseline to a fully robust plan. This flexibility allows planners to conduct a sensitivity 

analysis on the impacts of risk tolerances. 

Several supporting methods are presented, which are helpful to reduce computational 

requirements and give planners more flexibility when deploying the above approach. These 

supporting methods include ways to select important events and ways to tailor the model’s 

risk limits to the aims of the study. 

6.4.1.3 Value  

The findings of EPRI’s work can be divided into two categories: methodologically relevant 

findings, and potential insights planners might find by implementing the various approaches.  

First, methodologically, many resilience considerations can be built into existing planning 

models with familiar modelling techniques and without excessive computational burden. 

Good examples of this are the three methodologies we introduced in the previous sections of 

the discussion about resilience. Also, hazard-driven asset deratings and shutdowns, damage 

costs, various hardening options, performance changes from these hardening options, and 

sophisticated risk profile limits can all be built into capacity planning formulations with 

computationally efficient optimisation practices. Modelers have many options that can be 

selectively chosen to improve resilience representations in planning tools. 

There are still barriers to deploying these features, however. Collecting the necessary data 

and generating credible hazard events is a substantial task. And then selecting a small number 
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of important events is challenging. EPRI describes that, while satisfactory event selections can 

be found using only the attributes of the events (such as the total capacity at risk), finding a 

robust event sample generally requires simulating the larger event set under several 

candidate expansion plans, which is computationally burdensome. Still, these obstacles are 

not insurmountable and should not prevent planners from including at least some resilience 

features in models.  

Second, results from an illustrative test system suggest that planners can gain a number of 

insights from resilience planning with the proposed approach. One of the main mechanisms 

for extracting these insights is through gradually tightening risk tolerances on successive 

optimisation runs, which lets planners compare a baseline plan to progressively more robust 

solutions. This approach aligns well with the parametric risk analysis conducted in the section 

about risk control in stochastic planning; however, instead of looking at the total cost of 

operation, the risk tolerance can be measure through a different metric (for instance 

expected energy not supplied). Planners can then investigate which system configurations 

and adaptation options are most cost-effective at a targeted risk level. 

As we have already partially discussed in the studies about the tree methodologies that were 

proposed earlier, EPRI shows that substantial resilience improvements can be obtained at low 

cost by prudently upsizing some transmission investments, building transmission early, and 

changing the location of planned projects. At tighter risk limits, selective transmission 

hardening investments are a key part of a more robust plan, but this comes at a higher cost. 

Gradually tightening the risk limits will help planners determine which adaptation 

investments should be prioritised and the cases in which non-capacity options may be a 

better alternative. 

Ultimately, EPRI’s modelling tools will provide insights to planners about how resilience can 

be economically built into the initial grid plan rather than added as a costly afterthought. 

6.4.1.4 Final Thoughts Next Steps 

While this work is demonstrated through wildfire and heat hazards that are relevant to the 

Australian power system, the next steps are to demonstrate the work on large-scale systems 

that realistically represent an existing power grid. This includes making regional climate 

projections, refining hazard representations in events, and making detailed investigations 

into asset-specific vulnerabilities and performance characteristics.  

Finally, the capacity planning solutions need to be integrated with other planning functions 

such as resource adequacy assessments, network stability analysis, and production cost and 

market simulations. The real measure of a capacity expansion model’s success is an improved 

candidate plan as evaluated by the full suite of planning processes.  

  



 

115 

 

7 Effect of new technologies in the planning problem: Hydrogen-

related assets. 

Most energy system planners in countries with an abundance of renewable energy resources, 

including AEMO in Australia, now consider in their planning scenarios the potential 

deployment of large-scale green hydrogen production (through electrolysis) for export of 

green fuels and decarbonisation of heavy industry, which will lead to a massive increase in 

demand associated with such developments and thereby create major interactions between 

electricity and future green hydrogen systems. In addition, as the advent of large-scale green 

hydrogen production raises the question of whether to transport 12  VRE as molecules in 

hydrogen pipelines or as electricity in electricity transmission lines, the aim of this section is 

to evaluate the value and impact of considering hydrogen pipelines as potential options to 

transport VRE from REZ directly to hydrogen export ports. Towards this aim, the planning 

model is extended to a greenfield multistage integrated electricity and hydrogen transmission 

infrastructure planning model that incorporates hydrogen pipelines as transport options 

along with or in lieu of electricity lines. This greenfield integrated model is then demonstrated 

on an initial case study that considers all the REZ stipulated in AEMO’s ISP 2022 [1] and 

connects them with provisional corridors to the hydrogen export ports whose demands are 

specified in AEMO’s ISP 2022 under the hydrogen superpower scenario [1]. The case study is 

conducted with VRE traces and hydrogen export demand for years (epochs) 2027, 2032, and 

2037. 

Three different technologies, namely, hydrogen pipeline links (including carbon steel 

pipelines and compression stations), HVAC transmission links (including overhead lines (OHL), 

transformer substations, and reactive power compensation), and HVDC links (including OHL 

and converter stations) are considered as options in the provisional connection corridors. 

These proposed provisional corridors are shown in Figure 7.1 and the total yearly hydrogen 

export demand is shown in Error! Reference source not found.. 

Table 7.1. Hydrogen export demand across the three considered epochs 

 Epoch 

Unit 2027 2032 2037 

Mt/year 0.20 1.08 3.53 

m3/s 75 400 1,310 

MW 907 4,847 15,850 

* An HHV of 141.876 MJ/kg and a density of 0.0853 kg/m3 are used for hydrogen. 

 

 

12 The terms “transport” and “transmission” are used interchangeably in this section. 
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Figure 7.1. Dashed lines delineating the proposed provisional transmission corridors connecting REZ and H2 export ports. 

The underlying map is obtained from AEMO’s ISP 2022 [1] 

The analysis is this section uses the same HVAC and HVDC options described in the REZ 

augmentation options and the flow path augmentation options in AEMO’s ISP 2022 [1]. These 

costs and technical assumptions of HVAC and HVDC links are shown in Table  and Table  in 

Appendix C, respectively. Hydrogen pipeline (and compression) capital and operating costs, 

as well as technical details, are obtained from publicly available reports from the peak body 

representing Australian pipeline infrastructure [134]. These costs and technical assumptions 

for hydrogen pipeline links are shown in Table  in Appendix C. 

Under the cost and technical assumptions in this section, the optimal greenfield multistage 

integrated model chooses hydrogen pipelines exclusively as the optimal transmission 

infrastructure for the case study in Figure 7.1 and Error! Reference source not found.. The 

results are detailed in Table 7.2 which shows where the hydrogen pipelines are installed along 
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with their diameter Dn, steady-state throughput, and NPV over each epoch (year 2022 is 

chosen as the reference year for the NPV computations). The total infrastructure NPV for this 

optimal solution is $3.09 billion. This optimal solution is also shown in Figure 7.2 on the 

Australian east coast map for epoch 2037. It should be noted that the capacity of a pipeline 

of diameter Dn decreases with distance. Please refer to [135] for more details on the 

relationship between gas pressure, gas flow, and distance. Moreover, as can be seen from 

Figure 7.2 and Table 7.2, the steady-state throughput of the hydrogen pipelines installed in 

2027 and 2032 are not the same as the ones in 2037.  

Table 7.2. Results of the optimal integrated transmission infrastructure case study over the three considered epochs. 

Corridor Distance 
(km) 

Dn (inch) 
Steady-state throughput 

(MW) 
NPV (MAUD) 

From To 

2027 

V4 Portland 123 14 907.27 316.74 

2032 

Q6 Gladstone 118 16 1518.67 334.01 

N8 Port Kembla 265 16 1639.77 439.15 

2037 

Q2 Townsville 292 18 2174.28 477.73 

Q3 Townsville 49 8 781.31 99.29 

Q7 Gladstone 310 18 2183.35 496.10 

N2 Newcastle 280 20 2962.61 557.30 

N8 Port Kembla 260 12 974.27 251.15 

S5 Port Bonython 85 8 616.99 117.64 

Under the cost and technical assumptions (see Appendix C) of the specific case study in this 

section, in which a greenfield integrated electricity and hydrogen infrastructure planning 

model is used to find the most cost-effective infrastructure design that connects the REZ in 

AEMO’s ISP 2022 (see Figure 7.1) directly to a single type of demand, namely large-scale green 

hydrogen (i.e., molecules), results show that hydrogen pipelines are more cost-effective than 

their electricity counterparts under the specific corridor lengths in this case study (see Figure 

7.1). This is another way of saying that in this case it is more cost-effective to co-locate large-

scale electrolysis and VRE, and transport the produced green hydrogen in pipelines, as 

opposed to locating large-scale electrolysis at the location of the hydrogen demand (in this 

case the export ports). In fact, if hydrogen pipelines are removed from the considered set of 

options, the greenfield integrated model then chooses HVAC links exclusively as the most 

cost-effective technology (compared to HVDC links), for a total transmission infrastructure 

NPV of $4.4 billion – a 42% increase over the integrated electricity and hydrogen transmission 

case. Furthermore, if HVDC links are the only considered option, the total NPV of the optimal 

infrastructure design would further increase to $12.67 billion, a 310% increase compared to 

the integrated electricity and hydrogen transmission case. It should be noted that the longest 
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corridor in Figure 7.1 has a distance of 480km (N4 to N5), which explains why HVAC options 

are preferred over their HVDC counterparts (in the case without hydrogen pipeline options). 

These results are congruent with HVAC vs HVDC comparisons in existing literature, which 

identify a break-even distance of around 600km, beyond which HVDC becomes more cost 

competitive [136]. 

 

 

Figure 7.2. Optimal integrated infrastructure solution at epoch 2037 

Being preliminary, these findings should not be viewed as recommendations for AEMO to 
co-optimise electricity and hydrogen infrastructure networks, but rather as initial steps in 
quantifying the potential merits of considering hydrogen pipeline options alongside 
electricity options to achieve an overall cost-efficient whole-system planning.  
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8 Conclusions 

This report has provided an in-depth analysis of multi-stage stochastic planning for power 

system expansion under uncertain conditions, using an instance of the Australian power 

system to illustrate the effects of the models being proposed. The report has been structured 

to present the methodology, analysis, and results in a clear and concise manner, enabling 

readers to follow the research process and understand the key findings. 

The results of the study demonstrate that stochastic planning has the capacity to identify 

flexible investment options (that is, assets capable to provide value across scenarios), 

enabling planners to control the risk of the portfolio. The approach is capable of readily 

extending the reliability-oriented model to identify investment options capable of enhancing 

resilience. Furthermore, the analysis shows that stochastic planning can be extended not only 

to make decisions about new transmission and storage assets, but also hydrogen-related 

infrastructure. 

Overall, the findings highlight the value of using multi-stage stochastic planning in power 

system expansion decision-making. The approach provides a comprehensive framework for 

addressing the complexities associated with strategically expanding power systems under 

uncertain conditions. These findings have significant implications for the power industry, as 

they offer a practical and effective means of planning for future power system expansion and 

ensuring the reliability and resilience of the power grid. 

It should be noted that the aim of the project was not to compare results with those obtained 

by the ISP, also because only a few representative time series profiles were used, but rather 

to illustrate the features and potential benefits of alternative approaches. 

Future work in this domain includes analysing the role of distributed energy resources and 

hydrogen assets in the context of resilience-oriented stochastic planning.  

Flexible expansion plan based on multi-stage stochastic planning 

This study has demonstrated the effectiveness of multi-stage stochastic planning in 

addressing the complexities associated with power system expansion under uncertain 

conditions. The use of a scenario tree to capture uncertainty in various parameters such as 

load, renewable energy capacity, unit decommission, investment, and operation costs has 

allowed for the identification of optimal investment portfolios that minimise total expected 

costs while satisfying various investment and power system constraints. The results of this 

study show that flexible investment options can form the backbone of the future network's 

reinforcement and that interconnection capacity between regions plays a crucial role in 

minimising total expected costs. 

Furthermore, this study highlights the importance of considering the representation of 

operation in investment decisions. The reduction of operational representation may lead to 
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substantially smaller total investment and operation costs, but this may result in a poorly 

performing optimal portfolio when tested against a more robust representation of 

operational conditions. Overall, this study provides valuable insights into optimal investment 

decision-making in power system expansion under uncertain conditions and can inform policy 

decisions in the transition to a more sustainable and reliable energy system. 

Deterministic planning 

This section of study compared different approaches for making investment decisions in 

transmission systems and shows that using different metrics and procedures to determine 

the optimal investment portfolio can result in significantly different investment strategies, 

particularly in conditions of deep uncertainty. The stochastic planning approach is more 

effective than deterministic-based methodologies such as LWR/LWWR in addressing planning 

uncertainty. This is evidenced by the case studies conducted for the Australian power system, 

where the deterministic approach incurs higher expected total costs and considerably 

elevated costs for the worst-performing scenarios. 

The difference in outcomes is due to the distinct objectives of each metric. Stochastic 

planning aims to minimise expected costs, resulting in an investment strategy with the lowest 

possible expected costs, which is lower than those achieved by LWR/LWWR approaches that 

prioritise minimising the worst regret. However, minimising the worst regret through 

deterministic analysis leads to riskier portfolios when looking at higher worst-case cost, 

compared to stochastic expected cost minimisation. Regrets represent a relative measure of 

scenario performance and do not ensure the containment of impacts of extreme scenarios, 

as stochastic planning implicitly does, but merely reduce the worst difference between 

scenario costs. 

In general, the outcomes reveal how employing a stochastic planning methodology can 

present a more integrated viewpoint across all potential scenarios, leading to the creation of 

development paths that are inherently less costly and risky when compared to an overall 

perspective based on decisions made across multiple independent deterministic scenarios. 

Controlling the risk of the portfolio 

The study highlights the importance and benefits of incorporating risk management principles 

when defining the optimal portfolio of investments for power systems. It demonstrates that 

controlling expected cost and risk are competing objectives in portfolio selection, and that 

introducing flexible technologies can reduce both expected costs and extreme outcomes 

simultaneously. The use of a risk-aware stochastic planning model, which includes a user-

defined risk parameter, allows decision-makers to balance their position on risk. This model 

enables the definition of the optimal risk-aware portfolio for the system by determining an 

efficient frontier that represents the optimal balance of cost and risk. The study identifies that 

an intermediate risk aversion level offers the best trade-off between risk and cost, reducing 
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risk by almost as much as the fully risk-averse case but with a smaller premium to be paid in 

terms of expected cost. 

The analysis also highlights the importance of understanding risk metrics and identifies the 

most widespread and relevant metrics for risk analysis: Value-at-Risk (VaR) and Conditional 

Value-at-Risk (CVaR). The study demonstrates that CVaR is preferred over VaR as a risk 

measure for transmission expansion planning problems, particularly in cases where resilience 

against high-impact, low-probability events is essential. The study investigates the role of 

storage in risk-aware planning and identifies that co-optimising storage along with 

transmission lines can help reduce the risk of the portfolio by enhancing system performance 

in the most expensive scenarios. This also suggests that the proposed risk-aware stochastic 

planning approach can be suitably adopted to reveal cost-risk trade-offs and benefits that 

integrated investment in a wide range of technologies (beyond transmission-only assets) 

could bring. 

Methodologies to incorporate resilience analysis in stochastic planning 

Extreme events, specially weather-related ones, pose a significant threat to power system 

infrastructure and have caused substantial economic damage to power system globally. As a 

result, power system resilience has become a critical focus for researchers and policymakers 

to ensure the system's ability to withstand high-impact, low-probability events and adapt to 

future occurrences.  

The report highlights three methodologies for studying the effect of extreme events in power 

system planning, with the results indicating that incorporating resilience aspects into the 

planning approach yields different investment portfolios in the final epoch, with more 

investment made when extreme events have a higher frequency. Anticipative investments 

also occur when an extreme event is represented, indicating the benefits of early system 

reinforcement using flexible investment options. Moreover, the stochastic approach allows 

for greater flexibility and variation in investment decisions while maintaining expected costs 

stable relative to the reliability-oriented planning approach. 

Also, EPRI provided an in-depth exploration of models and approaches that could be utilised 

to integrate resilience into planning, with a particular emphasis on stochastic planning in 

industry-based projects in the United States. The analysis highlighted the significance of 

detailed modelling of extreme event characteristics that may impact the system and 

managing the computational complexity involved in such studies. 

Overall, this study emphasises the need for continued research and development in power 

system resilience to strengthen the system's ability to withstand extreme events and ensure 

sustainable and reliable power supply for communities globally. By adopting and integrating 

resilient planning approaches and investing in infrastructure reinforcement, it is possible to 

create a more robust and adaptable system that is better prepared for future challenges. 
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Role of hydrogen infrastructure 

This report presents a greenfield multistage integrated electricity and hydrogen transmission 

infrastructure planning model as a proof of concept to quantify the impact of large-scale 

green hydrogen production for export on investment planning. The model is applied to a case 

study that examines the cost-effectiveness of different transport infrastructure options to 

connect REZ and hydrogen export demand in Australia's hydrogen superpower scenario.  

When large-scale green hydrogen export is considered as a separate demand that is assumed 

will be satisfied solely from the REZ in AEMO’s ISP 2022, results of the developed greenfield 

multistage integrated electricity and hydrogen transmission infrastructure planning model 

suggest that hydrogen pipelines are more cost-effective than their electricity counterparts 

under the specific corridor lengths in this case study. The proof-of-concept case study 

proposes provisional corridors connecting renewable energy zones and hydrogen export 

ports in the superpower scenario of AEMO’s ISP for years 2027, 2032, and 2037. Without 

hydrogen pipelines as options, the NPV of the chosen optimal infrastructure, which consists 

of only HVAC transmission links, increase by 42%. Finally, if only HVDC options are considered, 

the NVP increases by 310%. Since the longest corridor is this greenfield case study has a length 

of 480km, these results are congruent with HVAC vs HVDC comparisons in existing literature, 

which identify a break-even distance of around 600km, beyond which HVDC becomes more 

cost competitive. 

It should be re-emphasised that the findings under this section are preliminary and are 

therefore not intended to provide recommendations for AEMO to co-optimise electricity and 

hydrogen infrastructure networks. More studies are needed to better understand the value 

of including hydrogen pipelines in the co-planning enterprise. 
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Appendix A: Representation of operation 

The following table presents the specific weeks used to represent the operation in each of 

the nodes considered in this study. The ISP 2022 [1] database is publicly available and all the 

time-varying data points have a timestamp. The representative weeks presented below 

specify the start date and time, and the end date and time. All demand and VRE profiles used 

to run the different case study applications across this study can be reconstructed using the 

data of Table A.0.1. 

Table A.0.1. Operational conditions represented in each of the nodes of the scenario tree 

NODE SCENARIO DATE START DATE END  NODE SCENARIO DATE START DATE END 

1 Step 8/8/2022 0:00 14/8/2022 23:00  17 Step 21/3/2037 0:00 27/3/2037 23:00 

1 Step 12/9/2022 0:00 18/9/2022 23:00  17 Step 12/12/2037 0:00 18/12/2037 23:00 

1 Step 29/8/2022 0:00 4/9/2022 23:00  17 Step 21/11/2037 0:00 27/11/2037 23:00 

1 Step 2/5/2022 0:00 8/5/2022 23:00  17 Step 28/11/2037 0:00 4/12/2037 23:00 

1 Step 14/11/2022 0:00 20/11/2022 23:00  17 Step 19/12/2037 0:00 25/12/2037 23:00 

1 Step 24/10/2022 0:00 30/10/2022 23:00  17 Step 15/8/2037 0:00 21/8/2037 23:00 

2 Slow 14/11/2027 0:00 20/11/2027 23:00  18 Progressive 31/1/2037 0:00 6/2/2037 23:00 

2 Slow 4/4/2027 0:00 10/4/2027 23:00  18 Progressive 26/9/2037 0:00 2/10/2037 23:00 

2 Slow 18/7/2027 0:00 24/7/2027 23:00  18 Progressive 10/10/2037 0:00 16/10/2037 23:00 

2 Slow 17/10/2027 0:00 23/10/2027 23:00  18 Progressive 13/6/2037 0:00 19/6/2037 23:00 

2 Slow 24/10/2027 0:00 30/10/2027 23:00  18 Progressive 11/4/2037 0:00 17/4/2037 23:00 

2 Slow 2/5/2027 0:00 8/5/2027 23:00  18 Progressive 22/8/2037 0:00 28/8/2037 23:00 

3 Progressive 4/7/2027 0:00 10/7/2027 23:00  19 Step 21/3/2037 0:00 27/3/2037 23:00 

3 Progressive 6/6/2027 0:00 12/6/2027 23:00  19 Step 12/12/2037 0:00 18/12/2037 23:00 

3 Progressive 8/8/2027 0:00 14/8/2027 23:00  19 Step 21/11/2037 0:00 27/11/2037 23:00 

3 Progressive 13/6/2027 0:00 19/6/2027 23:00  19 Step 28/11/2037 0:00 4/12/2037 23:00 

3 Progressive 28/2/2027 0:00 6/3/2027 23:00  19 Step 19/12/2037 0:00 25/12/2037 23:00 

3 Progressive 21/2/2027 0:00 27/2/2027 23:00  19 Step 15/8/2037 0:00 21/8/2037 23:00 

4 Step 12/9/2027 0:00 18/9/2027 23:00  20 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

4 Step 16/5/2027 0:00 22/5/2027 23:00  20 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

4 Step 14/11/2027 0:00 20/11/2027 23:00  20 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

4 Step 14/3/2027 0:00 20/3/2027 23:00  20 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

4 Step 6/6/2027 0:00 12/6/2027 23:00  20 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

4 Step 28/11/2027 0:00 4/12/2027 23:00  20 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

5 H2 Superpower 19/9/2027 0:00 25/9/2027 23:00  21 Step 21/3/2037 0:00 27/3/2037 23:00 

5 H2 Superpower 28/2/2027 0:00 6/3/2027 23:00  21 Step 12/12/2037 0:00 18/12/2037 23:00 

5 H2 Superpower 7/2/2027 0:00 13/2/2027 23:00  21 Step 21/11/2037 0:00 27/11/2037 23:00 

5 H2 Superpower 14/3/2027 0:00 20/3/2027 23:00  21 Step 28/11/2037 0:00 4/12/2037 23:00 

5 H2 Superpower 21/2/2027 0:00 27/2/2027 23:00  21 Step 19/12/2037 0:00 25/12/2037 23:00 

5 H2 Superpower 4/7/2027 0:00 10/7/2027 23:00  21 Step 15/8/2037 0:00 21/8/2037 23:00 

6 Slow 6/3/2032 0:00 12/3/2032 23:00  22 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

6 Slow 20/3/2032 0:00 26/3/2032 23:00  22 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

6 Slow 24/7/2032 0:00 30/7/2032 23:00  22 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

6 Slow 27/11/2032 0:00 3/12/2032 23:00  22 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

6 Slow 27/3/2032 0:00 2/4/2032 23:00  22 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

6 Slow 17/1/2032 0:00 23/1/2032 23:00  22 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

7 Progressive 9/10/2032 0:00 15/10/2032 23:00  23 Progressive 31/1/2037 0:00 6/2/2037 23:00 

7 Progressive 7/8/2032 0:00 13/8/2032 23:00  23 Progressive 26/9/2037 0:00 2/10/2037 23:00 

7 Progressive 11/9/2032 0:00 17/9/2032 23:00  23 Progressive 10/10/2037 0:00 16/10/2037 23:00 

7 Progressive 19/6/2032 0:00 25/6/2032 23:00  23 Progressive 13/6/2037 0:00 19/6/2037 23:00 

7 Progressive 25/9/2032 0:00 1/10/2032 23:00  23 Progressive 11/4/2037 0:00 17/4/2037 23:00 

7 Progressive 12/6/2032 0:00 18/6/2032 23:00  23 Progressive 22/8/2037 0:00 28/8/2037 23:00 

8 Step 27/3/2032 0:00 2/4/2032 23:00  24 Step 21/3/2037 0:00 27/3/2037 23:00 

8 Step 17/7/2032 0:00 23/7/2032 23:00  24 Step 12/12/2037 0:00 18/12/2037 23:00 

8 Step 9/10/2032 0:00 15/10/2032 23:00  24 Step 21/11/2037 0:00 27/11/2037 23:00 

8 Step 15/5/2032 0:00 21/5/2032 23:00  24 Step 28/11/2037 0:00 4/12/2037 23:00 

8 Step 28/8/2032 0:00 3/9/2032 23:00  24 Step 19/12/2037 0:00 25/12/2037 23:00 

8 Step 4/12/2032 0:00 10/12/2032 23:00  24 Step 15/8/2037 0:00 21/8/2037 23:00 

9 Progressive 9/10/2032 0:00 15/10/2032 23:00  25 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

9 Progressive 7/8/2032 0:00 13/8/2032 23:00  25 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

9 Progressive 11/9/2032 0:00 17/9/2032 23:00  25 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

9 Progressive 19/6/2032 0:00 25/6/2032 23:00  25 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

9 Progressive 25/9/2032 0:00 1/10/2032 23:00  25 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 
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9 Progressive 12/6/2032 0:00 18/6/2032 23:00  25 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

10 Step 27/3/2032 0:00 2/4/2032 23:00  26 Step 21/3/2037 0:00 27/3/2037 23:00 

10 Step 17/7/2032 0:00 23/7/2032 23:00  26 Step 12/12/2037 0:00 18/12/2037 23:00 

10 Step 9/10/2032 0:00 15/10/2032 23:00  26 Step 21/11/2037 0:00 27/11/2037 23:00 

10 Step 15/5/2032 0:00 21/5/2032 23:00  26 Step 28/11/2037 0:00 4/12/2037 23:00 

10 Step 28/8/2032 0:00 3/9/2032 23:00  26 Step 19/12/2037 0:00 25/12/2037 23:00 

10 Step 4/12/2032 0:00 10/12/2032 23:00  26 Step 15/8/2037 0:00 21/8/2037 23:00 

11 H2 Superpower 14/2/2032 0:00 20/2/2032 23:00  27 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

11 H2 Superpower 27/11/2032 0:00 3/12/2032 23:00  27 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

11 H2 Superpower 18/9/2032 0:00 24/9/2032 23:00  27 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

11 H2 Superpower 4/12/2032 0:00 10/12/2032 23:00  27 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

11 H2 Superpower 22/5/2032 0:00 28/5/2032 23:00  27 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

11 H2 Superpower 28/2/2032 0:00 5/3/2032 23:00  27 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

12 Step 27/3/2032 0:00 2/4/2032 23:00  28 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

12 Step 17/7/2032 0:00 23/7/2032 23:00  28 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

12 Step 9/10/2032 0:00 15/10/2032 23:00  28 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

12 Step 15/5/2032 0:00 21/5/2032 23:00  28 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

12 Step 28/8/2032 0:00 3/9/2032 23:00  28 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

12 Step 4/12/2032 0:00 10/12/2032 23:00  28 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

13 H2 Superpower 14/2/2032 0:00 20/2/2032 23:00  29 Step 21/3/2037 0:00 27/3/2037 23:00 

13 H2 Superpower 27/11/2032 0:00 3/12/2032 23:00  29 Step 12/12/2037 0:00 18/12/2037 23:00 

13 H2 Superpower 18/9/2032 0:00 24/9/2032 23:00  29 Step 21/11/2037 0:00 27/11/2037 23:00 

13 H2 Superpower 4/12/2032 0:00 10/12/2032 23:00  29 Step 28/11/2037 0:00 4/12/2037 23:00 

13 H2 Superpower 22/5/2032 0:00 28/5/2032 23:00  29 Step 19/12/2037 0:00 25/12/2037 23:00 

13 H2 Superpower 28/2/2032 0:00 5/3/2032 23:00  29 Step 15/8/2037 0:00 21/8/2037 23:00 

14 H2 Superpower 14/2/2032 0:00 20/2/2032 23:00  30 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

14 H2 Superpower 27/11/2032 0:00 3/12/2032 23:00  30 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

14 H2 Superpower 18/9/2032 0:00 24/9/2032 23:00  30 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

14 H2 Superpower 4/12/2032 0:00 10/12/2032 23:00  30 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

14 H2 Superpower 22/5/2032 0:00 28/5/2032 23:00  30 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

14 H2 Superpower 28/2/2032 0:00 5/3/2032 23:00  30 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

15 Slow 26/9/2037 0:00 2/10/2037 23:00  31 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

15 Slow 24/10/2037 0:00 30/10/2037 23:00  31 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

15 Slow 19/12/2037 0:00 25/12/2037 23:00  31 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

15 Slow 26/9/2037 0:00 2/10/2037 23:00  31 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

15 Slow 15/8/2037 0:00 21/8/2037 23:00  31 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

15 Slow 10/1/2037 0:00 16/1/2037 23:00  31 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 

16 Progressive 31/1/2037 0:00 6/2/2037 23:00  32 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

16 Progressive 26/9/2037 0:00 2/10/2037 23:00  32 H2 Superpower 11/7/2037 0:00 17/7/2037 23:00 

16 Progressive 10/10/2037 0:00 16/10/2037 23:00  32 H2 Superpower 24/1/2037 0:00 30/1/2037 23:00 

16 Progressive 13/6/2037 0:00 19/6/2037 23:00  32 H2 Superpower 5/9/2037 0:00 11/9/2037 23:00 

16 Progressive 11/4/2037 0:00 17/4/2037 23:00  32 H2 Superpower 15/8/2037 0:00 21/8/2037 23:00 

16 Progressive 22/8/2037 0:00 28/8/2037 23:00  32 H2 Superpower 5/12/2037 0:00 11/12/2037 23:00 
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Appendix B: Representation of operation for resilience case study 

application 

The following table presents the specific weeks used to represent the operation in each of 

the nodes of the resilience study application. 

Table B.0.1. Operational conditions represented in each of the nodes of the scenario tree for the resilience case study. 

NODE SCENARIO DATE START DATE END  NODE SCENARIO DATE START DATE END 

1 Step 8/8/2022 0:00 14/8/2022 23:00  17 Step 21/3/2037 0:00 27/3/2037 23:00 

2 Slow 14/11/2027 0:00 20/11/2027 23:00  18 Progressive 31/1/2037 0:00 6/2/2037 23:00 

3 Progressive 4/7/2027 0:00 10/7/2027 23:00  19 Step 21/3/2037 0:00 27/3/2037 23:00 

4 Step 12/9/2027 0:00 18/9/2027 23:00  20 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

5 H2 Superpower 19/9/2027 0:00 25/9/2027 23:00  21 Step 21/3/2037 0:00 27/3/2037 23:00 

6 Slow 6/3/2032 0:00 12/3/2032 23:00  22 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

7 Progressive 9/10/2032 0:00 15/10/2032 23:00  23 Progressive 31/1/2037 0:00 6/2/2037 23:00 

8 Step 27/3/2032 0:00 2/4/2032 23:00  24 Step 21/3/2037 0:00 27/3/2037 23:00 

9 Progressive 9/10/2032 0:00 15/10/2032 23:00  25 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

10 Step 27/3/2032 0:00 2/4/2032 23:00  26 Step 21/3/2037 0:00 27/3/2037 23:00 

11 H2 Superpower 14/2/2032 0:00 20/2/2032 23:00  27 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

12 Step 27/3/2032 0:00 2/4/2032 23:00  28 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

13 H2 Superpower 14/2/2032 0:00 20/2/2032 23:00  29 Step 21/3/2037 0:00 27/3/2037 23:00 

14 H2 Superpower 14/2/2032 0:00 20/2/2032 23:00  30 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

15 Slow 26/9/2037 0:00 2/10/2037 23:00  31 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 

16 Progressive 31/1/2037 0:00 6/2/2037 23:00  32 H2 Superpower 20/6/2037 0:00 26/6/2037 23:00 
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Appendix C: Cost and technical assumptions of hydrogen pipelines, 

HVAC links, and HVDC links in Section 7. 

To demonstrating the capabilities of the modelling in Section 7, this appendix lists the 

assumptions on input technical parameters and costs of hydrogen pipeline links, HVAC links, 

and HVDC links. These are obtained from various reliable publicly available sources, including 

AEMO [1] and the peak body representing Australian pipeline infrastructure [134]. 

Table C.0.1. Cost and technical assumptions for HVAC systems [1] 

Option 
Voltage 

(kV) 
Circuits 

OHL cost 
(MAUD/km) 

Capacity (MVA) 
Substation 1 cost 

(MAUD) 
Substation 2 cost 

(MAUD) 

1 500 Double 3.747 6080 178.5 172.2 

2 500 Single 2.907 2900 107.9 107.9 

3 330 Double 2.839 2400 89.7 89.7 

4 275 Double 2.205 1900 78.9 54.0 

5 330 Single 2.041 1000 45.8 45.8 

6 275 Single 1.717 536 26.0 26.0 

7 132 Single 1.241 169 12.3 12.3 

Table C.0.2. Cost and technical assumptions for HVDC systems [1] 

Option 
Voltage 

(kV) 
Subcategory 

Capacity 
(MW) 

OHL cost 
(MAUD/km) 

Converter station 1 cost 
(MAUD) 

Converter station 2 cost 
(MAUD) 

1 ±320 HVDC - VSC 1500 1.99 474.68 357.82 

2 ±500 HVDC - VSC 2000 2.54 507.37 509.20 

Table C.0.3. Cost and technical assumptions for hydrogen pipelines [134], where Dn is the nominal diameter of the pipe 

Option Dn (mm) Dn (inch) Minimum pressure (MPa) Maximum pressure (MPa) Cost (USD/Tonne) 

1 100 4 3 12 2873.5 

2 150 6 3 12 2873.5 

3 200 8 3 12 2873.5 

4 250 10 3 12 2873.5 

5 300 12 3 12 2873.5 

6 350 14 3 12 2873.5 

7 400 16 3 12 2873.5 

8 450 18 3 12 2873.5 

9 500 20 3 12 2873.5 

10 550 22 3 12 2873.5 

11 600 24 3 12 2873.5 

12 650 26 3 12 2873.5 

13 700 28 3 12 2873.5 

14 750 30 3 12 2873.5 

15 800 32 3 12 2873.5 

16 850 34 3 12 2873.5 

17 900 36 3 12 2873.5 

18 950 38 3 12 2873.5 

19 1000 40 3 12 2873.5 

20 1050 42 3 12 2873.5 

21 1100 44 3 12 2873.5 

22 1150 46 3 12 2873.5 
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Appendix D: Resilience Expansion Planning (EPRI) 
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Introduction 

Resilience in the Electricity Sector 

Resilience has always been essential for maintaining reliable power system operations, but as 

the grid faces multifaceted uncertainty and a changing climate, resilience is becoming a 

central component of grid planning. Planners increasingly must anticipate and prepare for 

hazardous conditions in the distant future; both foresight and flexibility are needed to ensure 

that the systems that generate and deliver electricity are protected against emerging threats.  

Resilience is often defined as the ability to withstand and recover from disruption, but more 

often resilience primarily refers to high-impact events that go beyond normal, and random, 

contingencies. Such resilience risks often come from natural disasters and extreme weather 

events, but resilience also encompasses human-caused disruptions such as cyberattack, and 

potentially disruptive societal shifts and public policy goals such as the transition to an 

electrified energy sector with high renewable energy penetration. 

To address the increasing risks of damages and disruption, resilience considerations should 

be considered early in the planning process and ideally would be integrated directly into 

capacity planning models. These resilience considerations include the potential for hazardous 

conditions and events, the vulnerability of infrastructure to these hazards, the adaptation 

options available for protecting against or avoiding these hazards, and the consequences—to 

the grid and to society—of leaving threats unmitigated.    

Resilience Goals for Capacity Expansion Planners 

Resilience planning is, of course, a much larger topic than what capacity planners alone can 

answer, and a narrower focus is needed. The US Department of Energy lays out a helpful 

resilience planning framework [2]. The framework can be summarized with five steps: scoping 

the problem, collecting data, conducting a vulnerability assessment, resilience planning, and 
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revisit and update assumptions. The larger effort likely falls in the data collection and 

vulnerability assessment steps.  

Before any capacity planning efforts, a tremendous data collection task is required. For a 

climate focused study, this involves developing climate scenarios for the system’s region and 

downscaling the climate scenario model into weather parameters that are relevant. The 

vulnerability assessment involves mapping the projected weather data onto the system 

components, identifying any risks, and identifying possible adaptation options [3]. At this 

point capacity planners can build weather events and projections into planning models along 

with component risks, adaptation options, and any performance implications.  

The capacity planner’s role in resilience planning is to identify the least cost expansion plans 

and adaptation options that meet the system loads and maintain an acceptable risk of 

disruption during extreme events. Systemic risks of all types can often be mitigated by 

designing a system with diversified vulnerabilities and sufficient redundancies. Capacity 

planning tools have the potential to find resilient expansion strategies without excessive cost, 

by taking advantage of these risk mitigation principles.   

This Report 

While the focus of this report is on transmission capacity planning, we will consider 

generation expansion planning in similar detail. A major component of resilience planning is 

determining which resilience options are most cost effective. The question of whether 

resilience comes from transmission investments or from something on the generator side is 

central to resilience planning. Thus, both generation and transmission are important to 

consider together [4].  

This report briefly reviews resilience planning practices in the United States, as well as some 

academic and industry research. The aim is not to be exhaustive but to highlight the more 

exemplary work, the current challenges, and any gaps between research and practices. 

Another aim of this report is to collect some approaches that can be implemented 

immediately to improve industry practice without significant barriers. Several of these 

methods will be demonstrated on a toy system to clarify ambiguities and to demonstrate the 

possible insights that can be obtained. 

Review of Resilience Planning Practices and Research 

Utilities 

Resilience planning at utilities is varied, and in many cases, quite sophisticated. Efforts are 

primarily focused on hazard characterization and vulnerability assessments for the assets 

within the utility’s footprint. These studies consider a broad range of hazards that exist today 
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and those that are anticipated to worsen with climate change [5] [6]. For example, Seattle 

City Light identifies sea level rise, extreme temperature, wind, wildfire, landslide, and stream 

overflow flooding as risks to transmission infrastructure in its service area [7]. 

While high-impact events are not integrated directly into utilities’ integrated resource plans 

(IRP), scenarios representing climate temperature extremes often are. High-impact events 

are usually considered alongside the IRP or as part of a separate resilience adaptation plan. 

These adaptation plans usually follow the DoE guidelines of determining whether an asset is 

critical to grid operations, assessing its vulnerability, and considering adaptation options.  

Tennessee valley authority brings a climate change scenario into its IRP, but finds primarily 

that winter and nighttime warming will ultimately reduce peak loads by 2% while increasing 

energy demand by 1% overall [8]. While TVA’s separate climate change adaptation plan, 

discusses hazards such as flood and drought [9].  

ConEdison’s climate scenarios forecast more substantial summer peak temperature increases 

along with transmission deratings [10]. ConEdison also considers several operational changes, 

storm hardening investments, and flexibility investments aimed specifically at reducing the 

impact to customers most vulnerable during storms [11]. 

PacifiCorp also includes a climate change scenario in the formal IRP, but the analysis finds that 

energy demand will fall, as will winter peaks, with small increases in summer peaks. A 

separate part of the report finds that generators, especially remote renewable generators 

and hydro generators are at risk from wildfires due to the transmission needed to access the 

remote locations. These risks are to be addressed by gradually updating line infrastructure to 

reduce ignition risk [12]. 

The small footprint of some utilities allows for more detailed studies. For example, an Entergy 

study focuses on hurricanes, sea level rise, and land subsidence hazards on a small region of 

the gulf coast. The researchers develop projections for how hurricane severity will worsen in 

three scenarios developed for the study [13]. 

Another small footprint utility, San Diego Gas and Electric uses a flexible adaptation pathways 

approach that resembles a decision tree. The utility planner’s immediate actions will 

ultimately reduce the cost of adaptation options if and when they are needed in the future. 

The immediate actions include enhancing storm modeling and datasets, research into 

thresholds that could trigger investments (for example clearing a regulatory restriction in 

investments), and real option analysis to value candidate projects. These immediate actions 

will eventually improve decisions as to which grid enhancements and hardening investments 

are necessary and which actions will be most effective options [14]. 

Southern California Edison tool Cal-Adapt provides detailed mapping of hazard risks and 

severity including extreme temperatures, precipitation, sea level rise, wind, and wildfire. The 

tool helps identify at-risk assets and the locations that need mitigating actions. For example, 

one finding is that coincident heat and fire events pose a credible risk as extreme heat can 
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destabilize the grid at the same time wildfires near intertie lines prevent imports. While the 

coincident hazards are unlikely, the event is credible and would have a high impact. SCE 

explores several adaptation investments including system redundancies, and fire resistant 

hardening investments [15].  

ISO/RTO Transmission Planners 

ISO/RTO, take a more systemic approach to investment planning and in some instances 

integrate resilience considerations into their planning practices. Often these studies are 

focused on a particular hazard or risk, and often in response to a recent disruption. The most 

advanced work is aimed at studying transitions to highly electrified energy sectors with high 

renewable penetrations. Other simpler considerations include running sensitivities for 

security by running sensitivity scenarios with high gas prices and disruptive events like fires in 

dense areas.  

The resilience studies are often standalone sensitivity studies that are not necessarily 

integrated into a capacity planning model. While transmission planners know that there are 

systemic risks that could be addressed with large scale TEP investments more efficiently, 

there is lack a tractable process for doing so and quantifying the benefits [16], [17].  

California ISO CAISO, conducts its normal planning cycle, which looks out 10 years and 

includes special studies of resilience considerations such as wildfires, fuel security, or the 

retirements of large generators [18]. In addition, California initiated a 20 year transmission 

plan in response to SB100 to study how the state can meet the decarbonization policies 

required by recent public policy [19]. This work includes developing electrification scenarios 

which in turn impact the load magnitude and shape [20].   

MISO renewable integration impact assessment (RIIA) [21] explores the impacts on increasing 

renewable penetrations and finds the important and stressful operating conditions shift and 

amplify as renewable penetrations increase. MISO also has its own set of detailed scenarios, 

which describe different resource mixes over the next twenty years as the energy system 

transitions to a low carbon, electrified system at different rates [22]. MISO makes use of these 

scenarios and a least regrets approach to develop its long-range transmission plan with 

investments that are valuable under any of the scenarios [23]. 

PJM discusses resilience opportunities more directly in its regional planning report than most 

planners [24], noting the conditions that stress resilience, possible tools to enhance resilience, 

and discussing metrics for evaluating resilience. PJM studies scenarios for fuel prices and load 

sensitivities [25]. 

The western electricity coordinating council (WECC) also develops scenarios and monitors risk 

ten years into the future in support of other entities such as CAISO [26]. WECC has, in the 

past, also collaborated with academic institutions to conduct stochastic expansion modeling 

that is not typically done by system planners [27]. 
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Labs and industry research 

Industry focused research for resilience planning is largely preliminary and at an exploratory 

stage.  

This research helps to see where the industry sees resilience planning challenges. A major 

focus is around high-impact events: how to generate credible common mode events for a 

future climate, which events are most important to consider [28] [29], metrics for quantifying 

risk and performance of the system in extreme events [30] [31], and how to differentiate 

between normal conditions and high-impact, low-frequency events, and ongoing adverse 

events such as persistent drought [32]. 

Academia 

While academic work has not explicitly used the resilience planning label, several studies have 

explored how disruptive events and uncertain long-term futures can inform planning 

decisions.  

One avenue of research has confirmed that confronting long-term uncertainty directly in 

transmission planning problems is important both to avoid making maladaptive investments 

in the near term, and to appropriately value investments that provide the flexibility to 

transition to many futures [33]. More recent work has reiterates that increased 

representation of long-term uncertainty is one of the more valuable enhancements than can 

be made to transmission capacity planning models [34]. And [35] demonstrate that there are 

several long-term strategies that would be optimal under different scenarios, but picking the 

investments to make now is not possible with several individual scenario optimizations.  

However, the methods for finding these adaptable plans, stochastic optimization, are too 

computationally taxing to use for more detailed planning studies. In response, iterative 

refinement methods have been developed to reduce, or at least distribute, this 

computational burden including Benders decomposition [36] and progressive hedging [37]. 

An alternative approach to making stochastic models tractable, focuses instead on selecting 

a few important scenarios [38], or grouping like scenarios together [39].  

Most scenario selection methods can apply to shorter timeframes equally well. And methods 

originally developed to select important scenarios and operating conditions can be adapted 

to selecting important extreme events for resilience planning. For example the ALFA method 

in [40] and [41] has been successfully adapted to identifying extreme disruptions [42].  
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Methods for Integrating Resilience into Capacity Planning Models 

Capacity Expansion Planning Formulation 

We present a generic capacity expansion planning formulation here to later demonstrate how 

extreme events and hardening investments can be included in the model.  

Sets and indices 

𝑏 ∈ 𝐵   Buses 

𝑙 ∈ 𝐿   Lines 

𝑙 ∈ 𝐿𝑏
𝐼𝑛   Lines oriented with positive flow going into bus 𝑏 

𝑙 ∈ 𝐿𝑏
𝑂𝑢𝑡   Lines oriented with positive flow leaving bus 𝑏 

𝑔 ∈ 𝐺   Generators 

𝑔 ∈ 𝐺𝑏    Generators at bus 𝑏 

𝑔 ∈ 𝐺𝑅𝐸   Renewable generators 

𝑔 ∈ 𝐺𝑆    Storage units 

𝑡 ∈ 𝑇   Investment stages 

𝑚 ∈ 𝑀   Time blocks (e.g. Representative days) 

ℎ ∈ 𝐻𝑚  Hours in block 𝑚, also let ℎ = 1, … , 𝐻𝑚 

 

Parameters 

𝑐𝑙𝑡
𝑥   Line investment costs at each stage 

𝑐𝑔𝑡
𝑦

  Generator investment costs at each stage 

𝑐𝑔
𝐹   Fixed generator costs 

𝑐𝑔𝑡𝑚ℎ
𝑉    Variable maintenance, operations, and fuel costs 

𝑐𝑢  Value of lost load (VoLL) 

𝜁𝑡   Discounting factor for stage  

𝑤𝑚  Weight for time blocks, e.g. for a model with four representative days 𝑤𝑚 =
8,760

4∗24
= 91.25 ∀𝑚 

𝑑𝑏𝑡𝑚ℎ   Demand 

𝐷𝑡  Peak demand for planning reserve margin 

𝜎𝑔𝑡    Planning reserve margin capacity credit 

𝑃𝑅𝑀  Planning Reserve Margin 
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𝜌𝑔𝑡𝑚ℎ   Renewable capacity factor 

𝜆𝑔
+, 𝜆𝑔

−  Rate of storage charge/discharge 

𝜂𝑔
+, 𝜂𝑔

−  Storage efficiency 

𝑒𝑔𝑡𝑚ℎ  emissions from generator operations 

𝑒𝑡̅  Emissions limits 

𝑥̅𝑙𝑡  Line investment limits at each stage 

𝑋̅𝑙𝑡   Total capacity limit for each transmission corridor 

𝑋𝑙0  Initial line capacity 

𝑦̅𝑔𝑡 , 𝑦̲𝑔𝑡   Generator investment upper and lower limits at each stage 

𝑦̅𝑔𝑡
𝑟 , 𝑦̲𝑔𝑡

𝑟   Generator retirement upper and lower limits at each stage 

𝑌̅𝑔𝑡 , 𝑌̲𝑔𝑡   Generator total capacity upper and lower limits at each stage 

𝑌𝑔0   Initial generator capacity 

𝑝̲𝑔   Generator p-min value 

  

Variables 

𝑥𝑙𝑡  Line investments in each stage 

𝑋𝑙𝑡   Cumulative line capacity  

𝑦𝑔𝑡   Generator investments in each stage 

𝑦𝑔𝑡
𝑟  Generator retirements in each stage 

𝑌𝑔𝑡   Cumulative generator capacity  

𝑓𝑙𝑡𝑚ℎ    Power flow over line 

𝑝𝑔𝑡𝑚ℎ    Power output from generator 

𝑞𝑔𝑡𝑚ℎ
+    Storage charging 

𝑞𝑔𝑡𝑚ℎ
−   Storage discharging 

𝑄𝑔𝑡𝑚ℎ   Storage state of charge 

𝑢𝑏𝑡𝑚ℎ    Unmet demand at bus 

  

The objective of the model is to minimize the long-term costs of providing adequate service. 

This includes transmission investment costs, generation investment costs, and fixed 

generation costs, given in (1), as well as variable operation costs and penalties for unmet 
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demand, given in (2). These components are combined and discounted into a net present 

value in (3).   

 

𝐼𝑁𝑉𝑡 =  ∑ 𝑐𝑙𝑡
𝑥 𝑥𝑙𝑡𝑙 + ∑ (𝑐𝑔𝑡

𝑦
𝑦𝑔𝑡 + 𝑐𝑔

𝐹𝑌𝑔𝑡)𝑔         (1) 

𝑂𝑃𝑆𝑡 =  ∑ 𝑤𝑚𝑚 ∑ ∑ 𝑐𝑔𝑡𝑚ℎ
𝑉 𝑝𝑔𝑡𝑚ℎ +𝑔 ∑ 𝑐𝑢𝑢𝑏𝑡𝑚ℎ𝑏ℎ∈𝐻𝑚

      (2) 

min ∑ 𝛾𝑡[𝐼𝑁𝑉𝑡 + 𝑂𝑃𝑆𝑡]𝑡∈𝑇           (3) 

 

s.t. 

𝑥𝑙𝑡 ≤ 𝑥̅𝑙𝑡 ,       ∀𝑙, 𝑡           (4) 

𝑋𝑙𝑡 = 𝑋𝑙0 + ∑ 𝑥𝑙𝑡′
𝑡
𝑡′=1 ,       ∀𝑙, 𝑡         (5) 

𝑋𝑙𝑡 ≤ 𝑋̅𝑙𝑡 ,       ∀𝑙, 𝑡           (6) 

𝑦̲𝑔𝑡 ≤ 𝑦𝑔𝑡 ≤ 𝑦̅𝑔𝑡 ,       ∀𝑔, 𝑡          (7) 

𝑦𝑔𝑡
𝑟 ≤ 𝑌𝑔𝑡−1,       ∀𝑔, 𝑡           (8) 

𝑦̲𝑔𝑡
𝑟 ≤ 𝑦𝑔𝑡

𝑟 ≤ 𝑦̅𝑔𝑡
𝑟 ,       ∀𝑔, 𝑡          (9) 

𝑌𝑔𝑡 = 𝑌𝑔0 + ∑ 𝑦𝑔𝑡′ − 𝑦𝑔𝑡′
𝑟𝑡

𝑡′=1 ,       ∀𝑔, 𝑡                   (10) 

𝑌̲𝑔𝑡 ≤ 𝑌𝑔𝑡 ≤ 𝑌̅𝑔𝑡,       ∀𝑔, 𝑡                      (11) 

∑ 𝜎𝑔𝑌𝑔𝑡𝑔 ≥ 𝐷𝑡𝑃𝑅𝑀,       ∀𝑡                       (12) 

∑ 𝑝𝑔𝑡𝑚ℎ𝑔∈𝐺𝑏
+ ∑ 𝑓𝑙𝑡𝑚ℎ𝑙∈𝐿𝑏

𝐼𝑛 − ∑ 𝑓𝑙𝑡𝑚ℎ𝑙∈𝐿𝑏
𝑂𝑢𝑡 + 𝑢𝑏𝑡𝑚ℎ = 𝑑𝑏𝑡𝑚ℎ ,       ∀𝑏, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚           (13) 

0 ≤ 𝑢𝑏𝑡𝑚ℎ ≤ 𝑑𝑏𝑡𝑚ℎ ,       ∀𝑏, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚                      (14) 

−𝑋𝑙𝑡 ≤ 𝑓𝑙𝑡𝑚ℎ ≤ 𝑋𝑙𝑡 ,       ∀𝑙, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚                    (15) 

𝑝̲𝑔𝑌𝑔𝑡 ≤ 𝑝𝑔𝑡𝑚ℎ ≤ 𝑌𝑔𝑡 ,       ∀𝑔, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚                     (16) 

𝑝𝑔𝑡𝑚ℎ ≤ 𝜌𝑔𝑡𝑚ℎ𝑌𝑔𝑡,       ∀𝑡, 𝑚, 𝑔 ∈ 𝐺𝑅𝐸 , ℎ ∈ 𝐻𝑚                    (17) 

𝑝𝑔𝑡𝑚ℎ ≤ 𝑝𝑔𝑡𝑚(ℎ−1) + 𝛽𝑔 ,       ∀𝑔, 𝑡, 𝑚, ℎ = 2, … , 𝐻𝑚                  (18) 

𝑝𝑔𝑡𝑚ℎ ≥ 𝑝𝑔𝑡𝑚(ℎ−1) − 𝛽𝑔 ,       ∀𝑔, 𝑡, 𝑚, ℎ = 2, … , 𝐻𝑚                  (19) 

𝑝𝑔𝑡𝑚ℎ =  𝑞𝑔𝑡𝑚ℎ
− − 𝑞𝑔𝑡𝑚ℎ

+ ,       𝑔 ∈ 𝐺𝑠, ∀𝑡, 𝑚, ℎ ∈ 𝐻𝑚                  (20) 

𝑞𝑔𝑡𝑚ℎ
+ ≤ 𝜆𝑌𝑔𝑡 ,       𝑔 ∈ 𝐺𝑠, ∀𝑡, 𝑚, ℎ ∈ 𝐻𝑚                    (21) 

𝑞𝑔𝑡𝑚ℎ
− ≤ 𝜆𝑌𝑔𝑡 ,       𝑔 ∈ 𝐺𝑠, ∀𝑡, 𝑚, ℎ ∈ 𝐻𝑚                    (22) 

𝑄𝑔𝑡𝑚(ℎ+1) = 𝑄𝑔𝑡𝑚ℎ + 𝜂𝑔
+𝑞𝑔𝑡𝑚ℎ

+ − 𝑞𝑔𝑡𝑚ℎ
− /𝜂𝑔

−,       𝑔 ∈ 𝐺𝑠, ∀𝑡, 𝑚, ℎ = 1, … , (𝐻𝑚 − 1)          (23) 

0 ≤ 𝑄𝑔𝑡𝑚ℎ ≤ 𝑌𝑔𝑡 ,       𝑔 ∈ 𝐺𝑠 , ∀𝑡, 𝑚, ℎ ∈ 𝐻𝑚                   (24) 
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𝑄𝑔𝑡𝑚1 = 𝑄𝑔𝑡𝑚𝐻𝑚
,       𝑔 ∈ 𝐺𝑠 , ∀𝑡, 𝑚                     (25) 

∑ ∑ 𝑤𝑚 ∑ 𝑒𝑔𝑝𝑔𝑡𝑚ℎℎ∈𝐻𝑚𝑚𝑔 ≤ 𝑒𝑡̅,       ∀𝑡                    (26) 

 

The transmission capacity available to install each stage is controlled with (4). The total 

existing transmission capacity is tracked with (5). Constraint (6) gives total capacity limits for 

each transmission corridor. Constraint (7) gives upper and lower limits on new generation 

capacity installed in each stage. Constraint (8) ensures only existing capacity can be retired, 

and (9) enforces any planned retirements and maximum retirement limits. Constraint (10) 

tracks the total existing capacity for each generator. Constraint (11) gives upper and lower 

limits for the total generator capacity allowed. A planning reserve margin is enforced with 

(12). 

Operating constraints are given with (13)-(26). Power balance at each bus is controlled with 

(13). Constraint (14) limits unmet demand to the total demand at each bus. Line flow limits 

are given in (15). Generation from dispatchable generators is limited with (16), and for 

intermittent renewables with (17). Ramp up and ramp down limits are enforced for 

dispatchable generators with (18) and (19). 

Storage production is composed of charging and discharging components (20). Storage 

charging and discharging limits are enforced with (21) and (22). Storage state of charge is 

tracked with (23). Constraint (24) ensures the maximum state of charge cannot exceed the 

installed capacity. Constraint (25) forces storage to begin and end a time slice at the same 

state of charge; this is a heuristic to balance charging and discharging. Annual carbon 

emissions are calculated and any policies limiting emissions are represented with (26).  

High Impact Events and Hardening Investments 

High-impact, low-probability events 𝑛 can be modeled as a special class of time block 𝑚 in 

the formulation above. That is, events can be treated as a subset of the model’s 

representative time blocks, 𝑛 ∈ 𝑁 ⊂ 𝑀, and so all the constraints above can be applied to 

events. This section will introduce additional constraints and considerations needed to model 

disruptions during events, as well as the resilience options that might be used to mitigate 

those disruptions. The main components of modeling extreme events are hazards that disrupt 

asset operations or cause damages, hardening options that protect against hazards, and 

constraints to limit risk in events.   

 

Sets and Indices 

𝑛 ∈ 𝑁  Events 

𝑧 ∈ 𝑍  Hazards  
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𝑘 ∈ 𝐾  Hardening options 

𝑘 ∈ 𝐾𝑧  Hardening options that protect against hazard 𝑧 

 

Parameters  

𝑐𝑙𝑡
𝑘𝑥 , 𝑐𝑔𝑡

𝑘𝑦
   Costs of hardening option 𝑘 

𝑐𝑔𝑡𝑚ℎ
𝑘𝑉     Variable operating costs of generators retrofitted with hardening 

option 𝑘 

𝛿𝑧𝑡𝑙𝑛ℎ
𝑥 , 𝛿𝑧𝑡𝑔𝑛ℎ

𝑦
   Derating factor due to hazard 𝑧 during event 

Δ𝑧𝑡𝑙𝑛ℎ
𝑥 , Δ𝑧𝑡𝑔𝑛ℎ

𝑦
   Damage risks from hazard 𝑧 striking asset 𝑙 or 𝑔 during event 

𝜙𝑘𝑧
𝑥 , 𝜙𝑘𝑧

𝑦
   Derating protection provided by hardening option 𝑘 against hazard 𝑧 

𝜙𝑘𝑧
𝑎𝑥 , 𝜙𝑘𝑧

𝑎𝑦
  Damages protection provided by hardening option 𝑘 against hazard 𝑧 

𝜓𝑘𝑔     Capacity changes resulting from hardening retrofit 

𝜇𝑡
𝑢 , 𝜇𝑡

𝑎     Risk limits 

 

Variables 

𝑥𝑙𝑡
𝑘    Hardening investment in option 𝑘 for transmission lines 

𝑥𝑙𝑡
𝑘𝑟   Retirement of hardening investment 𝑘 

𝑋𝑙𝑡
𝑘   Existing hardened transmission capacity of type 𝑘 

𝑦𝑔𝑡
𝑘    hardening investment 𝑘 for generators 

𝑦𝑔𝑡
𝑘𝑟   Retirement of hardening investment 𝑘 

𝑌𝑔𝑡
𝑘   Existing hardened generation capacity of type 𝑘 

𝑝𝑔𝑡𝑚ℎ
𝑘    Power output from hardened generator when hardening option 𝑘  changes 

efficiency 

𝑎𝑧𝑙𝑡𝑛ℎ
𝑥 , 𝑎𝑧𝑔𝑡𝑛ℎ

𝑦
 Damages realized from hazard 𝑧 impacting an asset during event 𝑛 

 

Since high-impact, low-probability events are low-probability, the event weight 𝑤𝑛 ≈ 0 and 

so event operating costs will not influence the objective function value. Instead, the events 

serve as conditions in which a given risk threshold must not be violated. This requires a new 

constraint, such as (27), in which unmet demand in the event set is constrained to fall below 

a threshold. While the events themselves may not influence the objective function, the 
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investment alternatives that help to reduce event risk will still incur costs, so the model is 

seeking the least-cost expansion plan that limits event risk.  

 ∑ ∑ 𝑢𝑏𝑡𝑛ℎ

𝑏ℎ∈𝐻𝑛

≤ 𝜇𝑢 ,       ∀𝑡, 𝑛 (27) 

 

Asset derating or shutdown from hazard 𝑧 can be modeled with constraints on generation or 

line flows.  The severity of the impact is controlled with 𝛿 parameters; assets that are not 

exposed to a hazard in a particular event have 𝛿 = 0 , whereas when 𝛿 = 1  the hazard 

completely takes the asset offline, values 0 < 𝛿 < 1 indicate partial deratings. Transmission 

lines that are derated by exposure to a hazard in an event can be modeled with (28), and for 

generators with (29). Note p-min constraints may need to be relaxed to maintain feasibility 

for impacted generators.   

 

 𝑝𝑔𝑡𝑛ℎ ≤ (1 − 𝛿𝑧𝑔𝑡𝑛ℎ
𝑦 )𝑌𝑔𝑡 ,       ∀𝑧, 𝑔, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛      (29) 

 

If hardening options exist that protect against hazard 𝑧, then the constraints become (30) for 

transmission and (31) for generation. The protection factor 0 ≤ 𝜙𝑘𝑧 ≤ 1  can be used to 

model partial protection provided from hardening option 𝑘 . The generation constraint is 

appropriate for renewable generators if the desired behavior is for the generator output to 

be limited to the lesser of the renewable capacity factor and the derating factor. If instead 

the derating factor should downscale the renewable output, then the impacted generator 

constraint becomes (32). 

 

 

 |𝑓𝑙𝑡𝑛ℎ| ≤ (1 − 𝛿𝑧𝑙𝑡𝑛ℎ
𝑥 )𝑋𝑙𝑡 ,       ∀𝑧, 𝑙, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛      (28) 

 |𝑓𝑙𝑡𝑛ℎ| ≤ (1 − 𝛿𝑧𝑙𝑡𝑛ℎ
𝑥 )𝑋𝑙𝑡 + 𝛿𝑧𝑙𝑡𝑛ℎ

𝑥 ∑ 𝜙𝑘𝑧
𝑥 𝑋𝑙𝑡

𝑘

𝑘∈𝐾𝑧

,       ∀𝑧, 𝑙, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛 (30) 

 𝑝𝑔𝑡𝑛ℎ ≤ (1 − 𝛿𝑧𝑔𝑡𝑛ℎ
𝑦 )𝑌𝑔𝑡 + 𝛿𝑧𝑔𝑡𝑛ℎ

𝑦
∑ 𝜙𝑘𝑧

𝑦
𝑌𝑔𝑡

𝑘

𝑘∈𝐾𝑧

,       ∀𝑧, 𝑔, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛 (31) 
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In addition to disrupting operations, hazards that strike insufficiently protected assets can 

cause damages. The damages may be to the asset itself, the surrounding community, or the 

environment. If these damages are unacceptable, constraint (33) for transmission and (34) 

for generation will force either the hardening or retirement of existing assets and will prevent 

unhardened investments in new assets. However, if some damages are allowed, the 

alternative constraints (35) and (36) can be used. Then, events that impact an exposed asset 

will result in damages 𝑎. The severity of the damages is determined by Δ and any partial 

protection 𝜙𝑘𝑧
𝑎  from hardening. 

 

 

 

 

These damages can be given a cost and added to objective function, but since the probability 

of the event is likely unknown, it will often be preferable to constrain the total damage risk 

to a threshold as (37). Damage costs can be combined with the costs of unmet demand to 

form a composite risk limit (38).  

∑ ∑ ∑ (𝑎𝑧𝑔𝑡𝑛ℎ
𝑦

+ 𝑎𝑧𝑙𝑡𝑛ℎ
𝑥 )ℎ∈𝐻𝑛𝑔𝑧 < 𝜇𝑎 ,       ∀𝑡, 𝑛                  (37) 

 

𝑝𝑔𝑡𝑛ℎ ≤ 𝜌𝑔𝑡𝑛ℎ [(1 − 𝛿𝑧𝑔𝑡𝑛ℎ
𝑦 )𝑌𝑔𝑡 + 𝛿𝑧𝑔𝑡𝑛ℎ

𝑦
∑ 𝜙𝑘𝑧

𝑦
𝑌𝑔𝑡

𝑘

𝑘∈𝐾𝑧

]      𝑔 ∈ 𝐺𝑅𝐸 , ∀𝑧, 𝑡, 𝑛, ℎ

∈ 𝐻𝑛 

(32) 

 ∑ 𝑋𝑙𝑡
𝑘

𝑘∈𝐾𝑧

≥ 𝑋𝑙𝑡 ,       ∀ 𝑙, 𝑡 (33) 

 ∑ 𝑌𝑔𝑡
𝑘

𝑘∈𝐾𝑧

≥ 𝑌𝑔𝑡 ,       ∀ 𝑔, 𝑡 (34) 

 

𝑎𝑧𝑙𝑡𝑛ℎ
𝑥 ≥ Δ𝑧𝑙𝑡𝑛ℎ

𝑥 (𝑋𝑙𝑡 − ∑ 𝜙𝑘𝑧
𝑎𝑥𝑋𝑙𝑡

𝑘

𝑘∈𝐾𝑧

),        ∀𝑧, 𝑙, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛 (35) 

 

𝑎𝑧𝑔𝑡𝑛ℎ
𝑦

≥ Δ𝑧𝑔𝑡𝑛ℎ
𝑦 (𝑌𝑔𝑡 − ∑ 𝜙𝑘𝑧

𝑎𝑦
𝑌𝑔𝑡

𝑘

𝑘∈𝐾𝑧

),        ∀𝑧, 𝑔, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛  (36) 
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∑ ∑ ∑ (𝑎𝑧𝑔𝑡𝑛ℎ
𝑦

+ 𝑎𝑧𝑙𝑡𝑛ℎ
𝑥 )ℎ_𝐻𝑛𝑔𝑧 + ∑ ∑ 𝑐𝑢𝑢𝑏𝑡𝑛ℎℎ∈𝐻𝑛𝑏 ≤ 𝜇,       ∀𝑡, 𝑛                (38) 

 

The total investment in hardening is controlled in the same way as normal investments. 

Transmission hardening is shown in (39) and generation hardening in (40). It will usually be 

desirable to limit the sum of hardened assets to the total installed capacity of the asset to 

prevent extra hardening that provides an unrealistic level of protection as in (41) and (42). If 

two or more hardening options can be installed together to provide additional protection, 

such a configuration is best modeled as its own option 𝑘 with their associated investment 

variables.  

𝑋𝑙𝑡
𝑘 = 𝑋𝑙0

𝑘 + ∑ (𝑥𝑙𝑡′
𝑘 − 𝑥𝑙𝑡′

𝑘𝑟)𝑡
𝑡′=1 ,       ∀𝑘, 𝑙, 𝑡                   (39) 

𝑌𝑔𝑡
𝑘 = 𝑌𝑔0

𝑘 + ∑ (𝑦𝑔𝑡′
𝑘 − 𝑦𝑔𝑡′

𝑘𝑟 )𝑡
𝑡′=1 ,       ∀𝑘, 𝑔, 𝑡                   (40) 

∑ 𝑋𝑙𝑡
𝑘

𝑘∈𝐾𝑧
≤ 𝑋𝑙𝑡 ,       ∀𝑙, 𝑡                     (41) 

∑ 𝑌𝑔𝑡
𝑘

𝑘∈𝐾𝑧
≤ 𝑌𝑔𝑡 ,       ∀𝑔, 𝑡                     (42) 

 

Hardening may have performance implications in normal operating conditions, such as 

reduced capacity or efficiency reductions. Asset capacity reduction by a factor 𝜓𝑘𝑔  of can be 

modeled with (43). Hardening retrofits that change the efficiency of a generator can be 

modeled with the introduction of a new operation variable that represents production at the 

new cost and with constraint (44), which activates the new variable, and constraint (45) which 

eliminates the old production variable. In this situation, similar constraints around ramping 

or retirement plans will also need to be enforced for the new variables. It is important to note 

here that the time block subscript is 𝑚  because the production during normal operating 

conditions is affected. 

𝑝𝑔𝑡𝑚ℎ ≤ 𝑌𝑔𝑡 − 𝜓𝑘𝑔𝑌𝑔𝑡
𝑘 ,       ∀𝑔, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚                     (43) 

𝑝𝑔𝑡𝑚ℎ ≤ 𝑌𝑔𝑡 − 𝑌𝑔𝑡
𝑘 ,       ∀𝑔, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚                    (44) 

𝑝𝑔𝑡𝑚ℎ
𝑘 ≤ 𝑌𝑔𝑡

𝑘 ,       ∀𝑔, 𝑡, 𝑚, ℎ ∈ 𝐻𝑚                      (45) 

 

The new objective function resulting from this formulation will include new terms for the 

hardening investment costs and any performance changes resulting from the retrofits. The 

investment component becomes (46), the operation component becomes (47), and the final 

discounted objective function is (48). 

𝐼𝑁𝑉𝑡
′ =  ∑ (𝑐𝑙𝑡

𝑥𝑥𝑙𝑡 + 𝑐𝑙𝑡
𝑘𝑥𝑥𝑙𝑡

𝑘 )𝑙 + ∑ (𝑐𝑔𝑡
𝑦

𝑦𝑔𝑡 + 𝑐𝑔
𝐹𝑌𝑔𝑡 + 𝑐𝑔𝑡

𝑘𝑦
𝑦𝑔𝑡

𝑘 )𝑔                  (46) 

𝑂𝑃𝑆𝑡
′ =  ∑ 𝑤𝑚𝑚 ∑ ∑ (𝑐𝑔𝑡𝑚ℎ

𝑉 𝑝𝑔𝑡𝑚ℎ + 𝑐𝑔𝑡𝑚ℎ
𝑘𝑉 𝑝𝑔𝑡𝑚ℎ

𝑘 ) +𝑔 ∑ 𝑐𝑢𝑢𝑏𝑡𝑚ℎ𝑏ℎ∈𝐻𝑚
                (47) 
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min ∑ 𝛾𝑡[𝐼𝑁𝑉𝑡
′ + 𝑂𝑃𝑆𝑡

′]𝑡∈𝑇                       (48) 

 

These constraints and variables provide all principles required for modeling extreme events 

in most resilience planning models. Modelers with requirements that are not covered here 

will benefit more by shaping the formulation to the intractable details of their specific 

problem.  

Event Risk Profiles and Limits  

The risk limit constraints are a central component of the formulation, so the ability to 

structure these constraints to accomplish specific aim will be valuable to planners. This can 

be done by adding nuance to the VoLL to better reflect the costs of disruptions and by 

changing the risk limit constraints to give planners more control over the shape of the overall 

risk profile.  

Dynamic Value of Lost Load 

The cost applied to unmet demand, the value of lost load (VOLL), is most simply modeled as 

a constant. But in practice, lost load can be more consequential in some cases, and for some 

customers, than in others. The true value of lost load depends on several factors including 

the affected customers and the duration of the disruption. For example, during extreme 

conditions, the customers exposed to hazards may be especially vulnerable to harm, so 

maintaining service to these customers may reasonably be prioritized. Dynamic VoLL 

penalties allow for more nuanced representation of these consequences.  

One form of dynamic VoLL uses indexes by location and time of occurrence to increase the 

penalties associated with disruptions to vulnerable customers 𝑐𝑏𝑡𝑛ℎ
𝑢 . One drawback of this 

approach is the data requirements. The method requires as inputs VoLL for each location and 

hour during events. This requires analysis that may be costly to conduct, and the values must 

be considered carefully to ensure that customers receive equitable treatment. 

Unserved energy can also be broken into hierarchical groups with increasing penalties. Then, 

disruptions of an especially large magnitude or duration at a given location will be 

discouraged relative to minor and dispersed service interruptions. For groups 𝑗 = 1, … , 𝐽 with 

increasing costs 𝑐1
𝑢 ≤ 𝑐2

𝑢 ≤ ⋯ ≤ 𝑐𝐽
𝑢 , the demand balance constraint becomes (49), the 

allowance of each group can be limited to 𝑢̅𝑗 with (50), and the total VoLL is calculated and 

limited with (51).  

∑ 𝑝𝑔𝑡𝑛ℎ𝑔∈𝐺𝑏
+ ∑ 𝑓𝑙𝑡𝑛ℎ𝑙∈𝐿𝑏

𝐼𝑛 − ∑ 𝑓𝑙𝑡𝑛ℎ𝑙∈𝐿𝑏
𝑂𝑢𝑡 + ∑ 𝑢𝑏𝑡𝑛ℎ𝑗 𝑗 = 𝑑𝑏𝑡𝑛ℎ ,       ∀𝑏, 𝑡, 𝑛, ℎ ∈ 𝐻𝑛             (49) 

∑ 𝑢𝑏𝑡𝑛ℎ𝑗ℎ∈𝐻𝑛
≤ 𝑢̅𝑗,       ∀𝑏, 𝑡, 𝑛, 𝑗                     (50) 

∑ ∑ ∑ 𝑐𝑗
𝑢𝑢𝑏𝑡𝑛ℎ𝑗𝑗𝑏ℎ∈𝐻𝑛

≤ 𝜇,       ∀𝑡, 𝑛                     (51) 
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Finally, as noted in the high-impact event formulation section, unserved energy and other 

damages can be combined into a composite metric that better captures the total cost of 

leaving infrastructure vulnerable to hazards (52). This allows for many types of damages to 

be balanced and limited. This constraint is compatible with dynamic VoLL. 

∑ ∑ ∑ (𝑎𝑧𝑔𝑡𝑛ℎ
𝑦

+ 𝑎𝑧𝑙𝑡𝑛ℎ
𝑥 )𝑔𝑧ℎ∈𝐻𝑛

+ ∑ ∑ ∑ 𝑐𝑗
𝑢𝑢𝑏𝑡𝑛ℎ𝑗𝑗𝑏ℎ∈𝐻𝑛

≤ 𝜇,       ∀𝑡, 𝑛                (52) 

 

Uniform Risk Limits 

The risk constraints presented so far have applied a uniform threshold to every event. This 

uniform limit approach simple to implement. The simplicity of uniform limits also allows for 

more sophisticated approaches are modeled elsewhere. For example, if events are sampled 

from a larger event set, uniform limits work just the same without any changes.  

It is also attractive because the standards of resilience are consistent across events; no events 

are held to a lower standard of service, so the method avoids questions around customer 

equity that could arise if some events are allowed more load shed than others. 

Still, in some circumstances uniform limits may not be best. There may be threats in the event 

set that are difficult to address with capacity planning options; these threats may be more 

cost-effective to address with non-capacity options. In this case, a uniform risk limit may be 

difficult to apply because these ill-posed events may push the solution to unrealistic plans or 

even lead to an infeasible model.  

Conditional Value at Risk Limits 

Rather than uniformly limit the losses in each event, conditional value at risk (CVaR) allows 

planners to limit the expected losses in a percentile of the worst events 𝛼; the percentile 

being set by the user. The CVaR constraints are given in (53), where 𝛼 is the user specified 

percentile of worst events, 𝛾𝑡  is a variable that settles to the value at risk quantity at the 𝛼 

percentile, and 𝑣𝑡𝑛 is a variable that tracks the unmet demand over VaR in each event. The 

variables 𝛾𝑡  and 𝑣𝑡𝑛 are constrained with (54) and (55).  

 

 

 
𝛾𝑡 +

1

𝛼|𝑁|
∑ 𝑣𝑡𝑛

𝑛∈𝑁

≤ 𝜇,       ∀𝑡 (53) 

 𝑣𝑡𝑛 ≥ ∑ ∑ 𝑢𝑏𝑡𝑛ℎ

𝑏ℎ∈𝐻𝑛

− 𝛾𝑡 ,       ∀𝑡, 𝑛 (54) 
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For a given target value 𝜇, CVaR is a relaxation of the uniform risk limits discussed above. This 

occurs because CVaR is given the flexibility to allocate extra unmet demand to some events 

while reducing it in others when it is cost-effective to do so. The result is that a CVaR risk limit 

will return plans with a lower total cost than uniform limits, the tradeoff being that the worst 

events will have more unmet demand.  

The behavior of CVaR, accepting more load shed in some events, will be undesirable to some 

planners. But this behavior may be desirable when some threats could be more economically 

addressed with resilience options that are not included in the capacity expansion model. CVaR 

will automatically determine which threats are best met with capacity planning tools and 

which should be addressed in another way.  

Planners are not limited to one or the other; both CVaR and uniform limits can be applied in 

the same model. In this case, the CVaR target must fall below the uniform target to be binding. 

Combining the two limit methods allows planners to further tailor the model’s risk 

preferences.  

Sampling Important Events 

The number of events that can be included in a planning model is limited by computational 

power, so it is necessary to select a small subset of important events. An ideal event sample 

would be as small as possible while still producing the same optimal solution as a larger event 

set. Making such a selection, however, can be difficult because the events that lead to a 

particular solution are not obvious in advance.  

We will use the notation 𝑛̃ ∈ 𝑁̃ ⊂ 𝑁 to refer to a sampled subset of events and 𝑁̃∗ to refer 

to a robust sample, which leads to the same solution as the event set 𝑁.  

We will divide event selection methods into three categories: attribute-based methods, 

simulation-based methods, and iterative optimization selection methods. Attribute-based 

methods only use information from the events and model to deduce the important events 

without the use of any simulation or optimization runs. Simulation-based methods first 

simulate one or more candidate plans in a larger set of extreme events and then use 

performance metrics from the simulations to select important events. Iterative methods solve 

a series of optimizations in which the most deficient event or events from the previous 

iteration are added to the sample set for the next iteration; the cycle is repeated until the 

desired performance level is met in all events. 

 𝑣𝑡𝑛 , 𝛾𝑡 ≥ 0,       ∀𝑡, 𝑛 (55) 
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Attribute Based Selection 

Attribute-based methods rely on information from the events to deduce which events are 

important in advance of any simulation or optimization runs. For example, such a method 

may choose events with high and low combinations of demand and wind speed. This 

approach lets planners select events based on criteria that are known to be important or 

conduct a sensitivity analysis on a particular metric. However, developing a successful 

attribute-based selection procedure faces two broad design challenges: getting the right data, 

and then selecting events from the data. 

Building the dataset for an attribute-based selection method requires design choices over 

which attributes to use; whether the data should be scaled, preprocessed, or aggregated in 

any way; and how to handle attributes that apply to candidate investments versus existing 

infrastructure. For example, if wind power is an attribute of interest, the designer will face a 

question of whether to use windspeed as an attribute directly or convert it into wind power 

output from a generator. If one wind facility has a much higher capacity than a nearby facility, 

should the data be scaled to normalize the power output, or should the raw power magnitude 

be left in the data? If the absolute magnitude is important, how should candidate generators, 

which have a range of possible sizing options, be treated?  

The answers to these questions depend on the aim of the particular study and the details of 

the system, but some principles serve as useful guides.  

1) Choose attributes to be close to the actual optimization parameters. Rather than 

using heat and humidity as attributes, preprocess the data and convert it to the 

generator derating factor that will eventually feed into the optimization. 

2) Omit needless attributes. Including too many attributes makes it harder for the 

selection process to identify the important features or combinations of features. This 

is not to say that modelers must avoid any nuance, but that every attribute should 

be selected judiciously. 

3) Scale attributes only when necessary. Dissimilar attributes, and those with different 

units, will often need to be scaled to prevent the larger values from dominating the 

smaller. But scaling alike attributes removes information from the data and is more 

likely to obscure, rather than highlight, the important parameters.  

An attribute-based aggregation that is relevant for resilience planning is capacity at risk. 

Capacity-at-risk quantifies the total capacity that is unavailable during an event. The metric 

aggregates deratings, forced shutdowns, and poor renewable resource availability 

throughout the system to arrive at a total value. Excess load beyond what would normally be 

observed can also be included. While capacity at risk follows the principles for good attributes 

given above, there are still some ambiguities. For one, the hazard that causes outages is 

relevant for resilience planning, so it might be useful to categorize the outages by cause. Also, 

quantifying line capacity at risk is sensitive to how lines are defined. A series of short line 
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segments may have a much larger apparent capacity than if they were aggregated into a 

single long branch.  

The second design complexity for this class of method is in devising the actual procedure for 

selecting events. Intuitively, a good event set will cover the most severe events as well as all 

the different underlying issues that could ultimately cause disruptions. Without simulating 

the events, however, it is not clear which extremes are stressful and which variations are 

different enough to cause a new sort of failure. We will examine five selection methods with 

different approaches to this challenge.  

 

Maximum Capacity at Risk 

This metric calculates the capacity at risk from each event and then selects the |𝑁̃| events 

with the largest total values. This approach is simple, and it ensures that several variations of 

the most disruptive conditions will be included in the sample.  

But this approach is likely to favor one type of hazard while ignoring others to which the 

system is vulnerable. For example, this approach might exclusively select summer heatwave 

events while ignoring extreme winter chill events. The resulting model may protect against 

heatwaves while leaving the system vulnerable to disruption from cold. The same type of 

problem can favor samples that disproportionally represent a particular asset class or region 

of the system. Hazards that cover dense sections of short, high-capacity transmission might 

dominate the selection. 

Categorized Capacity at Risk 

More diverse samples can be found by categorizing the capacity at risk by hazard and asset 

class. For example, one category might be transmission assets shut down by wildfire risk and 

another category would be generation deratings due to high heat. For 𝐽 categories, the |𝑁̃|/𝐽 

events with the largest capacity at risk from each category can be collected into the final 

sample. 

Clustered Selection  

Clustered selection methods use an automatic clustering method, such as k-means, to form 

groups of similar events and then select an event from each cluster according to some criteria. 

Often the most average point, often termed the medoid, from each cluster is chosen. But it 

may be preferable to select the most severe event from each cluster instead of the most 

typical point.  

A clustered approach is an automatic way to identify categories for the events. A clustered 

approach would be preferable over user-defined categories when there are groups of hazards 

that commonly occur together to create dynamics that are difficult to delineate with user 

defined categories. Clustering may also be attractive because the method is automatic; it 
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provides systematic criteria to justify the event selection beyond subjective user-defined 

preferences.  

D-Optimality  

D-Optimality is a method from the design of experiments subfield of statistics. A D-Optimal 

design is the collection of points that maximizes the determinant of the design matrix, as in 

(56). Where for 𝑃  attributes, 𝑿  is the |𝑁̃| × 𝑃  matrix of sampled event attributes. The 

method was originally developed to select points near the extreme limits of the design space 

to reduce the variance in regression parameter estimates. While the optimization function in 

(56) is technically NP-Hard, the determinant can be updated quickly as points are added or 

removed from the sample 𝑁̃ so efficient search procedures exist to find near optimal designs.    

 

S-Optimality  

S-Optimality is an alternative to D-optimality. S-optimal designs try to select points that are 

far away from one another by maximize the harmonic mean distance between each selected 

event and its nearest selected neighbor. D- and S- optimal designs are usually similar, but D-

optimal design may try to repeat events at larger sample sizes. S-optimal designs will not 

repeat events, but S-optimal selection algorithms are much slower to compute at large 

sample sizes due to the lack of efficient updating procedures.  

Performance-Based Selection 

Performance-based methods simulate one or more candidate plans in the set of extreme 

events and then use performance metrics from the simulations to select disruptive events. 

The performance metrics address one vexing issue with attribute-based methods: identifying 

which events are disruptive. But performance-based selection methods still face the same 

design challenges as attribute-based methods, namely which metrics to use and how to select 

events from the resulting data. Performance-based methods also face the question of how to 

select the initial expansion plans to simulate.  

The best performance metrics for guiding an event sample are often the same metrics that 

are targeted in the capacity planning model. If the optimization’s risk control constraints limit 

unmet demand in events or a composite metric of damages and the total value of lost load, 

then the same metrics in simulated events will be relevant.  

The initial expansion plans that will be simulated do not have to be near-optimal plans. In 

fact, it is better if the plans are deficient because it helps to identify the events and conditions 

that will cause problems if ignored by the optimization. The method to generate candidate 

plans, then, does not need to be advanced. Simple planning heuristics, simplified 

 max
𝑛̃

det(𝑿⊤𝑿) (56) 
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optimizations representing a small number of randomly chosen events, and even the random 

selection of investments are all viable methods for arriving at a collection of initial plans. 

Maximally Disruptive Events 

This approach selects the events with the largest disruptions as measured by the relevant 

simulation performance metric. This ensures that all of the most disruptive events are 

included. But like capacity at risk, the method can still struggle to avoid redundant events that 

represent the same underlying failure mechanism.  

ALFA 

This approach from the academic literature selects operating conditions for transmission and 

generation planning models. Rather than selecting the most disruptive events, this method 

selects events based on the variance and covariance of the performance metric across the 

simulations with different candidate plans. Correlations from the simulations of different 

plans are used to identify and avoid redundant events that represent the same failure 

mechanism and are thus fixed by the same investments. This method is especially powerful 

because it first selects the most disruptive events, but then at larger sample sizes, it favors 

events that represent unique types of disruptions, even if the absolute magnitude of the 

disruption is small compared to the worst events. 

Iterative Optimization and Event Selection 

Iterative methods work in a loop where first an expansion model is solved, then the resulting 

plan is simulated in more detail, and finally the most deficient event or events are selected 

and included in the sample for the next iteration. This guarantees that each selected event is 

both important (because the event causes a disruption) and non-redundant (because 

selections without the event resulted in deficiencies). While this approach will not necessarily 

find the smallest possible robust sample, it will generally be more successful at finding small, 

robust samples than other approaches.  

Of course, an iterative approach is computationally costly because it requires a series of 

capacity expansion optimizations and a series of event simulations, each of which are among 

the two most computationally expensive steps of the planning process. A single run of these 

two programs can take hours of processor time, and if dozens of events are needed, a simple 

iterative approach will be unrealistic on its own.  

Techniques to reduce the iteration count are especially valuable here. One possibility is to 

start the first iteration with an already strong selection of events from a different sampling 

method; then only the few outlier events need to be identified and added to the sample. 

Another way to reduce the iteration count is to select more events per iteration; this will 

result in some redundancy in the sample but ultimately running fewer iterations will outweigh 

the computational cost of slightly larger optimization models.  
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The computational cost of the optimization and simulation steps can also be reduced. The 

optimization run time can be reduced by using the solution from the previous iteration as a 

starting point in the next run. The simulation step can be expedited by only simulating events 

that were deficient in the previous iteration; the full event set will then only be simulated as 

a final check once a robust plan has seemingly been found.  

Test System 

System Data 

We demonstrate these resilience planning principles on a small network with 6 buses, 9 line 

corridors, and 26 generators. All system components are assigned coordinates, which are 

used to determine whether the component is exposed to hazards. The system and asset 

coordinates are shown in Figure 1 and is loosely based on the Garver test system [43]. Four 

investment stages are modeled with progressively worsening climate parameter 𝜔, which 

determines the severity of hazards in events. The model was developed and run using the 

adaptive coordinated expansion planning tool (ACEP) [44] 

 

Figure 3: Test system schematic and asset coordinates 

Hazards and Events 

Hazards representing extreme heat and wildfires are represented in this system. We use an 

event creation algorithm to construct hazardous events based on the climate parameter and 
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several random variables. In practice, planners might use historical weather data or weather 

simulations might to construct and event set. 

Extreme heat causes generation and transmission deratings as well as demand increases. The 

magnitude of the derating depends on the system component and the temperature of the 

heat event. The size, location, and temperature of heat hazards are all functions of random 

variables and the climate scenario parameter. 

We break wildfire hazards into two categories: fire ignition risk conditions, in which grid 

operations are at risk of igniting a fire; and active wildfire conditions, in which a wildfire is 

ongoing near system components. Ignition risk conditions can force preventative shutdowns 

of equipment, whereas active fire conditions require generator crew evacuations and 

equipment shutdowns. We use the shorthand Level 1 (L1) to refer to ignition risk fires and 

Level 2 (L2) to refer to active fire conditions. 

The quantity, location, and severity level of wildfire hazards in each event are functions of 

random variables and the climate scenario parameter. 

Wildfire hazard movement is modeled according to a vector field representing the wind 

patterns of the region. The vector field points counterclockwise around the map, and its 

magnitude is weakest near the center of the map and strongest around the periphery, 

especially in the northeast and southwest regions. 

Hardening Options 

Two hardening options are available for transmission and one for generation. The first option, 

available to both transmission and generation, represents overhead covered conductor 

transmission lines and other equipment that reduces the risk of igniting a wildfire. Assets 

hardened with this option can operate as normal under fire ignition risk conditions, but still 

cannot operate under active wildfire conditions due to assumed damage to the asset.  

The second option, available only to transmission, represents underground transmission 

lines. This option is significantly more expensive, but it protects the transmission line during 

active wildfire conditions. We assume this option allows for normal transmission operations 

under all fire hazards because the ground acts as a heat barrier for the equipment [15].  We 

do not model a similar option for generators because generator crews are assumed to be 

evacuated during active wildfire conditions, so no hardening option is available that would 

allow generators to continue normal operations during an active wildfire. 
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Results and Analysis 

Case Study Solutions 

In this section we briefly summarize the results of the planning study. These results are 

specific to this case study and its assumptions, and as such should not be taken to be 

representative of other systems or resilience planning in general. The results are primarily 

intended to demonstrate the methods discussed in this report. 

Comparison of Baseline and Resilient Solutions 

We run the planning optimization with event risk limits ranging from the baseline plan, which 

allows unlimited unmet demand in events, to a fully robust plan, which does not allow any 

unmet demand in any event. This allows us to compare the baseline plan to the fully robust 

plan and to track the transition from one to the other. Doing so allows us to observe some of 

the possible outcomes of resilience planning, as well as some of the insights that might 

emerge from resilience plans in real systems.  

We find that, relative to the baseline plan, the resilient plan builds more transmission 

capacity, and it builds the transmission in earlier stages, Figure 2. This implies that 

transmission redundancy is a key source of resilience for this model. The additional 

transmission allows for increased power transfers between nodes even when some lines are 

inoperable. 
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Figure 4: Transmission investments increase and are made earlier in resilient plans 

 

The resilient plan also invests heavily in both transmission hardening options, and much of 

these hardening investments occur in the early stages of the model Figure 3 and Figure 4. Line 

undergrounding is preferred in the more resilient plans despite its much higher costs. The 

early investment in hardening for these assets indicates that, while more drastic hardening 

measures may not be immediately necessary, it may be beneficial to preemptively take 

stronger measures if they are likely to be necessary in the long-term future. Because many 

utilities attempt to gradually phase climate resilient investments in to the normal asset 

replacement and maintenance cycle, this result indicates that such a strategy may be possible, 

but must begin early.  
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Figure 5: Covered conductor line hardening 

 

Figure 6: Line undergrounding 
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Conversely, the resilient plan does not change the timing or magnitude of generation 

investments. The only change in the generation expansion plan is relocating one CCGT from 

the highly exposed location at bus 1, to the unexposed location at bus 6. This new location 

has a higher natural gas fuel price and requires new transmission to connect to the rest of the 

network, which is why the baseline plan rejects that candidate project. But the frequent 

disruptions at bus 1, and the additional transmission capacity in the system overall, ultimately 

make the location at bus 6 more attractive despite the higher fuel cost.  

While the resilient plan does not install more generation capacity, generator plans for 

retirement are delayed in the resilient plan. Instead, the generators are kept online for use as 

emergency capacity during extreme events. 

Some generators are hardened against fire risk in the resilient plan, but the overall investment 

in generation hardening is well below transmission hardening Figure 5. This is not especially 

surprising because we are assuming that generators will need to evacuate their operations 

crews during fire events for occupational safety. This means there is no hardening option that 

allows generators to stay online during wildfires, whereas such an option does exist for 

transmission. Given these assumptions, the preferred strategy is to locate generation in a 

safe, remote region and invest in fully hardened lines running into high-risk regions. This 

strategy provides consistent resilience and is worth the higher cost of fully hardened lines. 

 

Figure 7: Most hardening investments are for transmission 
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While the net investment in transmission increases in the resilient plan, the transmission 

corridors that receive upgrades differ substantially between the baseline and resilient plans. 

Several corridors that are upgraded in the baseline plan or a partially resilient plan are 

avoided in the resilient plan, in favor of corridors that are not upgraded in the baseline plan. 

In Figure 6 corridors 1 and 7 are upgraded in the baseline plan but not the resilient plan; 

corridors 4 and 6 are upgraded in the resilient plan but not the baseline plan. Corridor 2 is 

only upgraded in some intermediate levels of resilience, indicating several strategies are 

possible to provide different levels of resilience. This indicates that ignoring resilience in plans 

today may result in both maladaptive investments that would be avoided with better planning 

frameworks and in missed investments that provide resilience that is not valued appropriately 

with current capacity planning tools. 

 

Figure 8: Resilient plans select different corridors for capacity expansion 

 

While the total cost from the resilient plan’s objective function increases due to the additional 

investments and hardening, we find that the cost increase is accompanied, and partially offset 

by, reduced operating costs on average Figure 7. This results from the more robust 

transmission network allowing for higher penetration of lower cost generation and 

renewables. It is also worth noting that while the objective function cost of the resilient plan 

increases relative to baseline, this does not indicate that the true cost of the resilient plan is 

greater because the vulnerability of the baseline plan to extreme events is substantial. Some 
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of the considered events would result in catastrophic disruptions and damages under the 

baseline plan. 

 

Figure 9: Resilient plans total cost increase while operating costs fall 

 

Risk Profile Constraints  

We compare uniform risk limits to the CVaR limit constrains. Recall that CVaR constraints are 

a relaxation of uniform limits, so the CVaR solutions will have a lower cost for a given target 

while allowing greater unmet demand in the worst events. Figure 8 shows that this cost 

difference between the two profile methods is small in percentage terms, generally never 

more than 0.25%. Conversely, Figure 9 shows the worst unmet demand event for CVaR can 

increase by about 10%. 

This tradeoff might appear unattractive at face value, but the comparison of the two risk 

profiling constraints is valuable for evaluating possible options that were not considered in 

the capacity expansion planning model. For example, dozens of operations changes might be 

available to mitigate the worst events at a lower cost than the 0.25% difference between 

candidate plans, but these operational practices are not represented in the expansion model. 
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The different risk profiling methods are helpful for estimating the marginal value of protection 

in the worst events. 

Often fixed investments are not the most cost-effective means to address vulnerabilities so 

the CVaR method helps to automatically avoid the most expensive investments that are only 

needed for a few events. 

 

Figure 10: Risk limit profile costs per threshold. 
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Figure 11: Risk profile worst event versus cost 

Sampling Events 

We test the event selection methods with sample sizes ranging from 1 to 50 events. The 

unmet demand allowance is set to zero for the sampled events, so each model is attempting 

to find the fully robust plan. Once the optimal solution is found for a given method and sample 

size, the solution is simulated on the full set of constructed events and the total unmet 

demand over the event set is calculated. Figure 10 compares some of the methods against 

random sampling as a benchmark. Figure 11 compares the iterative method, max capacity at 

risk to the two simulation-based methods: max unmet demand, and ALFA. Figure 12 shows 

the same data as 10 but with a y-axis limit to show only near optimal results.  

At small sample sizes, the iterative method has the worst performance of the tested methods; 

it quickly improves, but only at sample sizes over ten does the iterative method outperform 

the other high performing methods. However, with only 16 sampled events, the iterative 

method successfully finds the optimal robust expansion plan. Only one other selection 

method (ALFA) finds the robust plan, and 30 sampled events are needed for ALFA to do so. 

So, perhaps unsurprisingly, the iterative optimization and selection approach is the best-in-

class method for finding a robust selection of events. Since the method does not outperform 

other methods at small sample sizes, it may be possible to improve the method by starting 

with a sample from one of the other approaches. 
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As noted, the only other method that finds the robust expansion plan is ALFA, which does so 

fairly consistently with sample sizes of at least 30. ALFA is also has some of the best 

performance at smaller sample sizes. As a simulation-aided performance-based method, 

ALFA requires simulations of candidate plans to make its selection. These simulations can be 

done in parallel and do not require expensive optimizations to find the plans as the iterative 

method does, so ALFA represents a computational savings over the iterative method as long 

as the larger event sample is still tractable in the optimization. 

Maximum capacity at risk is one of the strongest selection methods for this case study. At 

many of the smaller sample sizes, this method returns the best plans. While the method never 

identifies the robust expansion plan, the out-of-sample unmet demand is substantially 

reduced. Maximum capacity at risk also requires the least computation of any of the tested 

methods; it relies entirely on the sorted asset derating information that is given to the 

optimization model. However, while the method has strong performance in this case study, 

this is at least partially an artifact of the details of the system. A larger system with more 

hazards and hardening options would present more diverse events, which would deteriorate 

the performance of this approach. 

Categorized capacity at risk does not, for the most part, improve on the performance of the 

maximum capacity at risk method. But the method does have strong performance, and it 

should protect against some of the scaling risks faced by maximum capacity at risk. Likewise, 

the performance-based methods for selecting events with maximal unmet demand does not 

outperform the other methods, it does have strong performance, and a study that uses this 

approach would be viable. 

D-Optimal, S-Optimal, and clustered selection approaches have performance similar to 

randomly selecting events. These methods demonstrate how finding a good sample 

attributes alone is challenging.  
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Figure 12: Out of sample performance of selected sampling methods. Shown here: iterative, maximum capacity at risk, 

maximum capacity at risk by hazard and asset category, and random event selection 

 

Figure 13: Out of sample performance of selected sampling methods. Shown here: iterative, maximum capacity at risk, 

maximum simulated unmet demand, and ALFA 
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Figure 14: Same as above with Y-axis limit to show near optimal performance 

 

Conclusions 

Resilience planning is becoming an urgent planning necessity; fortunately, many resilience 

considerations can be integrated into existing planning models without excessive 

computational burden or unfamiliar modeling techniques. There are still challenges; sampling 

a small yet robust subset of events will likely require simulation or iterative optimizations. 

Additionally, hazard control constraints for transmission are not straightforward to apply and 

additional research is needed to explore methods to do so in a scalable manner.  

The largest hurdle for planners is in developing climate scenarios, generating credible 

extreme events, and mapping those events to asset level disruptions. Large amounts of data, 

sophisticated weather modeling, and detailed investigations on asset-specific vulnerabilities 

and performance characteristic are needed both for existing and candidate assets. The 

potential protection and performance changes from hardening upgrades must also be 

synthesized within the planning model. The number of possible hazards is large and the scope 

of these studies may need to be broadened to capture relevant impacts. While simple test 

systems can be created without any significant obstacles, implementing the methods on real 

systems and integrating with other planning functions such as resource adequacy or network 

stability will require higher resolution data, and more model interactions than capacity 

planning studies have typically needed.    
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