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Executive summary 

With the large growth in the share of inverter-based resources (IBRs) in the Australian power 

system, one aspect important for ensuring stable operation of the Australian power system is 

evaluating the system stability and stability margin in the small signal domain, considering the IBRs 

connected to the system. In the research roadmap submitted to CSIRO “Australian Research 

Planning for Global Power Systems Transformation research roadmap around Stability Tools and 

Methods”, ‘stability margin evaluation’ and ‘small signal stability screening methods’ were 

identified as two critical research topics; this stage of the project aims to continue to address 

these two research topics. 

When evaluating the small signal stability involving IBRs, two approaches are commonly adopted. 

A linear system analysis can be performed using the IBR control structure, which can yield an 

insight into the IBR states participating in different oscillatory/unstable modes, thus providing key 

understanding into the potential pathways to ensure stability. However, such an approach is often 

not possible when blackbox models are made available to the network operators by the IBR 

original equipment manufacturers, where the detailed control structure is not available. In such a 

case, a frequency domain scan/model fitting approach can be used to incorporate the IBR model 

in small signal stability evaluation.  

In the previous stage of the project (Stage 2: 2022-2023), two (data driven and analytical 

prediction) algorithms were developed to estimate the impedance characteristics of IBRs across a 

wide range of operating points. In this Stage 3: 2023-2024 project, the first broad objective is to 

enhance this approach: thus, the two algorithms are compared for IBR models with different 

control architectures and different operating points and control parameters. The accuracy of 

estimated impedance is compared, and it is found that the analytical prediction algorithm results 

in a better accuracy for all models tested. Further, a ‘black box’ IBR model is created and utilized 

to test the performance of the analytical prediction method when the exact IBR control structure 

is not known.  

A second broad objective of this Stage 3 work is to perform a small signal stability analysis of a 

large network using positive sequence network model and to utilize the predicted impedance 

characteristics of IBRs from the first objective. The impact of the approximation of using a positive 

sequence network admittance model is tested for a small network. A small signal stability 

framework is utilized for a synthetic network model representing the area served by the National 

Electricity Market (NEM) with more than 2000 buses. The framework is validated using standard 

small network models and scaled for the larger network model including IBRs. It is expected that 

this approach will allow for conduction of stability analysis with blackbox dynamic models. 

In relation to the 2021 Topic 2 Research Roadmap, the work done in this project addresses the 

critical topics listed below and advances the work by the respective percentage amount: 

• Stability margin evaluation (Critical topic) – 60% 

• Small signal stability screening methods (Critical topic) – 60% 
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In addition, the work done in this project also addresses the high priority topic ‘7. Modelling and 

model validation’ and advances the work by 25%.  
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1 Introduction 

With the large growth in the share of inverter-based resources (IBRs) in the Australian power 

system, one aspect important for ensuring stable operation of the Australian power system is 

evaluating the system stability and stability margin in the small signal domain, considering the IBRs 

connected to the system. In the research roadmap submitted to CSIRO ‘Australian Research 

Planning for Global Power Systems Transformation research roadmap around Stability Tools and 

Methods’ [1], stability margin evaluation and small signal stability screening methods were 

identified as two critical research topics; this stage of the project aims to address these two 

research topics. 

When evaluating the small signal stability involving IBRs, there are commonly two approaches that 

are possible: a linear system analysis using the IBR control structure, which can yield an insight 

into the IBR states participating in different oscillatory/unstable modes, thus providing key 

understanding into the potential pathways to ensure stability. However, such an approach is often 

not possible when blackbox models are made available to the network operators by the IBR 

original equipment manufacturers (OEMs), where the detailed control structure is not available. In 

such a case, a frequency domain scan/model fitting approach can be used to incorporate the IBR 

model in small signal stability evaluation. However, there are a lot of practical challenges in 

utilizing frequency domain scan/model fitting techniques in practice. One key challenge here is 

that the small signal estimated impedance model thus calculated by such techniques (or by 

modelling the IBR control structure in detail and using linear system analysis) is valid in a small 

operating region around the operating point at which the measurements/simulations were 

conducted to estimate the IBR impedance model. Paired with the time-intensive nature of the 

frequency scan/model fitting approach, it may not be practical to estimate the IBR impedance 

model at every operating point for all IBRs in a system with a large number of IBRs such as the 

Australian power system.  

To tackle this aspect, in the previous stage of the project, two methods were developed to 

estimate the IBR impedance characteristics at any operating point. Even with such methods, it is 

beneficial to reduce the number of operating points at which frequency scan operation must be 

performed to tune/train the methods to achieve a good accuracy in a wide array of operating 

points. Hence, one of the aims of the project in this stage was to further improve the methods 

developed in the previous stage to find out the impact of the number of operating points as well 

as IBR parameters on the accuracy of the methods. Since one of the key benefits of this approach 

is its applicability to black box IBR models, a black box IBR model was created to test the 

impedance model estimation techniques.  

Small signal stability analysis is one of the standard techniques used by power system engineers 

for identifying potential unstable grid conditions. For a screening/identification of unstable/stable 

behaviour using small signal techniques for a given network operating point, the entire circuit may 

be needed to be modelled, with IBR devices represented in detail. For large circuits involving 

numerous IBRs, a systematic framework to represent the entire network in small-signal stability 

domain is used. However, the existing small signal analysis framework relies on having access to 
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and representing different devices including synchronous machines and IBRs in detail including the 

control block diagrams. With blackbox IBR models, such approach may require modifications. The 

systematic modelling approach used in this project is designed so that estimated impedance 

models from IBRs may be used in the place of actual IBR models.  

IBRs are different from other resources such as synchronous generators in that they limit the 

current to a certain maximum value. When an IBR is operating at the current limit, its control 

structure and response might be very different from when it is operating at another operating 

point where the current limits are not binding. Hence, another aim of this project is to study the 

impact of current limits on the small signal response of IBRs and its impact on the small signal 

stability.  

The Australian power system is recognized to have had a tremendous increase in the shares of 

IBRs and distributed energy resources (DERs), and such increase is expected to continue in the 

near future. With the increased penetration of IBRs in a power system, the oscillatory behaviour of 

the system is expected to change. The change in the oscillatory characteristics can be 

fundamentally related to the change in modes in the network. A network with rotating machines 

has electromechanical modes that dominate. Whereas with an increase in IBRs, depending on the 

bandwidth of control, different ranges of the oscillatory spectrum can equally dominate. Slower 

IBR controls can impact electromechanical modes, while faster IBR controls can interact with 

higher frequency dynamics (including electromagnetic modes), the network, or other controls 

operating in that range.  This can bring about interactions on a much faster time scale. Thus, to 

allow for efficient operation of the network, it will be beneficial to characterize the oscillation 

characteristics at any operating point, especially with the increased uncertainty of variable 

generation.  

Through this research effort, overall system stability assessment along with an accurate plant level 

IBR impedance prediction model can allow the network operators to have a clearer picture about 

the system stability for each operating point. The added insights from the small signal stability and 

oscillation modes for a network as a result of this research can potentially also shorten the 

connection cost for a new IBR, thereby encouraging more IBR integration. While these issues are 

relevant for the global energy sector as a whole, the pioneering nature of Australia’s energy 

transition informed by its high scale and speed, leads these to have added relevance for the 

Australian scenario. 

1.1 Relation to Research Roadmap 

The research carried out in this stage is related to the following open research questions raised 

from the Topic 2 research roadmap document [1] (the subsection number and question numbers 

from the document are given in parentheses): 

• Is it possible to evaluate non-linear stability margins using blackbox IBR models? Here, non-

linear refers to the large signal behaviour of the IBR. Blackbox models more closely reflect the 

actual device behaviour under different conditions. A blackbox model is also expected to 

capture the dynamics of an IBR over a wider frequency range. However, research would need to 

be done to evaluate whether a non-simulation based analytical process can be used to evaluate 
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the stability margins under varying network behaviour. (Roadmap subsection 4.2.1 open 

research question 1) 

• How would stability properties of other sources in the network be represented when designing 

an IBR plant? (Roadmap subsection 4.2.1 open research question 3) 

• Would it be possible to efficiently evaluate small signal modes and stability profile with black 

box models? (Roadmap subsection 4.2.1 open research question 4) 

• Identification of procedures to use impedance-based methods for stability screening and 

screening of converter driven stability risks. The methods and practices should be simple and yet 

reasonably accurate and aimed at reducing the total number of scenarios that need to be 

investigated with the use of detailed EMT time domain simulations. (Roadmap subsection 4.2.2 

open research question 1) 

• Documentation of methods that use extracted impedances to screen for risk of converter 

interactions as well as risk of instability. (Roadmap subsection 4.2.2 open research question 2) 

• The use of linear frequency domain methods, such as linear models and eigenvalue analysis is 

another area that could benefit from additional research. It is well understood that linear 

methods can be used as an additional tool for the evaluation of some of the converter driven 

instabilities mentioned in this document. However, detailed linearized models for IBRs is not 

something that is widely currently available in the industry. While some commercial applications 

for linear/small signal analysis exist, those mainly account for models used to study 

electromechanical modes, such as inter and intra area oscillations. To study faster control 

interactions, the tools and models used would have to account for the faster regulators that 

impact a lot of those control instabilities. To what extent linearized models of IBRs can capture 

some of these phenomena and how those models should be developed is another area that 

would require further investigation. (Roadmap subsection 4.2.2 open research question 4) 

• Development of a multi-operating point small signal model (either impedance based or 

linearized state space). Here again, there should be close synergy with Topic 1 to develop a 

multi-operating point model that can also be easily interfaced with existing small signal stability 

tools used by transmission network service providers (TNSPs) and the system operator (AEMO) 

in Australia. (Roadmap subsection 4.2.2 open research question 5) 

Specifically, the project has progressed work related to two critical topics identified in the research 

roadmap: 

• Stability margin evaluation 

• Small signal stability screening methods 

For each of these topics, the percentages of the research that have been progressed are (in 

relation to the initial 2021 roadmap): 

• Stability margin evaluation – 60% 

• Small signal stability screening methods – 60% 

In addition, the project has progressed work related to a high priority topic identified in the 

research roadmap ‘Modelling and model validation’ and for this topic, the percentage of research 

that has been progressed is (in relation to the initial 2021 roadmap) 25%. 
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1.2 Background work 

1.2.1 Inverter admittance and operating point dependence of admittance 
estimation algorithms 

The impedance (or admittance) of a system is defined as the transfer function from perturbations 

in current (or voltage) considered as inputs to the system and its response in voltage (or current) 

which is considered the output [2]. Figure 1 OP influence on the admittance frequency responses 

of the VSG-based GFMI model. The colour of the trace indicates different OPs, in no specific order.  

 shows admittance Bode plots of an IBR, whose structure is shown in Apx Figure A.2 in Appendix A 

. The admittances are represented in the DQ domain yielding four separate quantities (e.g. Ydd, Ydq, 

Yqd, Yqq). Each of these quantitiesquantities (e.g. Ydd, Ydq, Yqd, Yqq) corresponds to a transfer 

function between voltage (input) and current (output) involving all combinations of the D and Q 

axes.  

The curves in the figure are produced by varying the IBR terminal voltage between 0.9 pu and 1.1 

pu, output active power between 0.0 pu and 1.0 pu and output reactive power between -0.5 pu 

and 0.5 pu. This reactive power range has been considered to allow for normal operation of the 

inverter prior to any disturbance. It is clear from the figure that the inverter’s admittance along 

certain axes is operating point (OP) dependent, particularly and more significant for lower 

frequencies. Note that each curve’s colour corresponds to a unique OP for visual clarity. The 

operating point dependency comes about due to non-linear control loops such as the outer loop 

controls. These have relatively low bandwidths – i.e., less than 10 Hz. The faster dynamics 

comprising the voltage control loop, current control loop and electrical resonances are linear in 

nature. Therefore, the operating point has no impact on their dynamics.  
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Figure 1 OP influence on the admittance frequency responses of the VSG-based GFMI model. The colour of the trace 

indicates different OPs, in no specific order.  

1.2.2 Admittance prediction algorithms 

The dependence of inverter admittance on the OP and the fact that the admittance of black-box 

models at each OP can only be determined through time consuming identification, which creates 

challenges for the use of such models for the purpose of evaluating the stability of a network. To 

deal with this challenge, in the previous stage, the team developed algorithms to predict inverter 

admittance at any OP based on a set of training data provided by the user. Two distinct algorithms 

were developed as part of this process: an Analytical Prediction Method (APM) and a Data Driven 

Prediction Method (DDPM).  

The APM relies on a unified admittance model of the IBRs in the form of:   

𝑦𝜀|𝑠=j𝜔0
=

∑ ∑ 𝑣𝑑
𝑖 (∑ 𝑏𝑛

𝜀𝑖𝑑
𝑗

𝑖𝑞
𝑚−𝑖−𝑗𝑚−𝑖

𝑖=0 )𝑚
𝑖=0

𝑀
𝑚=0

∑ ∑ 𝑣𝑑
𝑖 (∑ 𝑎𝑛

𝜀 𝑖𝑑
𝑗

𝑖𝑞
𝑚−𝑖−𝑗𝑚−𝑖

𝑖=0 )𝑚
𝑖=0

𝑀
𝑚=0

 (1) 

Where εϵ {dd,dq,qd,qq}; ω0 is the investigated frequency point; an
ε and bn

ε represent the 

coefficients of the polynomial term vd
iidjiqm-i-j in the denominator and numerator respectively. The 

triplet (m,i,j) is indexed by: 

𝑛 =
𝑚(𝑚 + 1)(𝑚 + 2)

6
−

𝑖(𝑖 − 2𝑚 − 3)

2
+ 𝑗 (2) 

An important parameter when applying the APM is the relative model order (M) and its optimal 

value depends on the inverter control structure. An inappropriate value can result in increased 

prediction errors. One method for determining this value is by increasing the model order (and 

corresponding training set size) until a required prediction error threshold is achieved. 



6  |  CSIRO Australia’s National Science Agency 

In contrast, the DDPM utilizes a machine learning Gaussian process regression algorithm for 

admittance prediction. Though several data-driven prediction methods exist, this particular 

method was selected in the previous stage of this study for its robustness and reliability given 

limited training data size. 

1.2.3 C code based blackbox IBR model 

A generic C code based blackbox model was utilized in this project to test the admittance 

prediction algorithm. The C code based IBR model used for this project has been developed using 

a standardized code format being developed under the IEEE/CIGRE B4-82 working group and as a 

result, the code-based model can be seamlessly used in any EMT domain simulation software. 

Code based IBR model is tested and validated for both small and large signal performance [3]. 

1.2.4 Small-signal analysis framework 

The framework that is utilized for the small-signal analysis in this work, was developed previously 

as part of EPRI’s annual research portfolio, to address primarily control and general dynamic 

interactions during power system restoration [4]. 

Previous work at EPRI examined IBR-based blackstart for bulk transmission power systems. During 

that process, as more circuit elements, loads and generators came online, operating conditions 

and network topology changed drastically in each stage. The small signal framework was 

developed as part of this prior research effort to efficiently assess small-signal stability, identify 

what equipment contributes to each oscillatory mode and particularly what control loop is 

responsible. This allows efficient identification of drivers of instability and enables efficient control 

retuning, given that the responsible loops can be also identified. All this is achieved via eigen-

analysis of the linearized power system model. 

The framework was created to be able to work with positive sequence and EMT formulations of 

power systems and is utilized for this work. 

1.2.5 Synthetic National Electricity Market network model 

The team had also utilized a synthetic network model representing the area served by the 

National Electricity Market (NEM) [5] to develop a set of power flow cases to represent the 

evolution of the network over successive time periods (such as a 24-hour period), and carried out 

a preliminary time domain evaluation to identify any stability issues arising at these operating 

points. The time period corresponding to peak load is used in this stage as the base network 

operating point because it is one of the operating points that showed a tendency towards poorly 

damped oscillations.  

For the considered synthetic network, 90% of generation from New South Wales and Victoria and 

60% generation from Queensland were assumed to be IBRs. Further, the projected 2030 average 

diurnal demand variation from AEMO was used to create 24 hourly cases for this considered 

synthetic network. 

The cases were enhanced using a voltage optimization tool from called Voltage Control Areas 

(VCA) Studio [6] and analysed potential weak grid conditions were evaluated using EPRI’s Grid 
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Strength Assessment Tool [7]. Potential stability issues were identified by developing the dynamic 

data for the network and by performing initial dynamic stability analysis. It was found that when 

using grid following IBR controls (represented by generic REGCCU1/REECCU1 models using a 

Dynamic Linked Library (DLL) user model available from EPRI [8]) for all existing IBRs, for some 

hours the load trip resulted in oscillations, but when 35 new IBRs  using the advanced grid forming 

controls (represented by GNRGFM models) were added to the system, these oscillations were 

eliminated. One of the network cases prepared using this process during the previous stage of 

project has been used in this stage to demonstrate the working/performance of the small signal 

stability framework described in this stage of the project. 

1.3 Summary of work effort  

In this stage of the project, the application of predicted IBR frequency domain characteristics in 

small signal analysis is investigated. For this purpose, the following work efforts are conducted: 

• In the previous stage of the project, two methods to estimate the frequency domain admittance 

characteristics of IBRs for any operating point were developed. In this stage of the project, their 

effectiveness is compared by identifying the impact of the number of operating points used in 

the training data and the chosen operating points sufficient to generate training data.  

• A small signal analysis framework is used with the positive sequence network admittance 

characteristic to identify any small signal unstable conditions and the devices/states that 

participate in oscillation modes that are unstable or poorly damped. This framework can then be 

used to identify the impact of IBRs on the system small signal stability and identify if a set of IBRs 

may be behaving in a cohesive or disruptive manner from the perspective of small signal 

stability. 

• When the details of the controls for IBRs are not available, the frequency domain 

admittance/impedance characteristics of IBRs may be utilized to represent the IBR in a small 

signal stability assessment. A procedure to utilize the frequency domain impedance 

characteristics of IBR to form a state space model that can be incorporated into a small signal 

assessment is demonstrated in this stage of the project. Such models are incorporated into the 

small signal analysis of a large synthetic network model representing the area served by NEM as 

an illustrative example. 

• An IBR is a current limited device, and as a result its stability at steady-state operating point may 

be influenced by such a current limit for particular operating points. The small signal 

characteristics of IBR may be impacted when operating at such a limit, and performing a 

preliminary evaluation of these impacts is another project aim. 
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2 Methodology followed in the project 

The overall methodology from this project can be summarized in the form of a flowchart, 

depicting different work thrusts, as shown in Figure 2. More details of each work thrust are given 

below: 

 

Figure 2 The methodology followed in the project 

For the admittance prediction part of the project, the main objectives were to comprehensively 

compare and test the methods of estimating IBR admittance (analytical prediction method – APM 

and data driven prediction method – DDPM) and enhance it by assessing the impact of the 

number of training points and IBR control parameters for a variety of IBR configurations, using 

analytical inverter models.1.   

In order to test the IBR admittance estimation process on a blackbox model where the IBR control 

structure is not known or assumed when performing the IBR admittance prediction process, a 

generic blackbox IBR model was utilized. For this purpose, an IBR control structure was 

represented as a dynamic linked library (DLL). Using this black box model, the performance of the 

APM model was validated. Such a validation allows for the development of a process to use the 

prediction method for real power systems. 

In parallel, the small signal modelling framework was validated using two standard networks – a 

widely studied two area network [9] and IEEE 39 bus benchmark system [10]. In the case of two 

area network, the linearized models of the systems used positive sequence fundamental 

 

 

1 Analytical models are developed by deriving the fundamental equations which govern the dynamics of the inverter control its electrical 
components. Since the structure of these models are known they are considered to be white box type models. 
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frequency and EMT scale detailed network models. Further, for the small system, a preliminary 

investigation comparing the impact of two load models (constant impedance loads and constant 

current active, constant impedance reactive loads) was undertaken. For this system, the 

frequencies and eigenvalues were compared with the values available in standard textbooks (such 

as [9]) to validate the small signal model. For the 39 bus benchmark system, the step response 

from the small signal model was compared with a time domain simulation using Siemens PSS®E. 

After the small signal framework was validated, it was extended to apply to an operating point for 

the synthetic NEM system. An operating point (hour) was selected for this purpose, and the 

powerflow case/dynamic data for that case from the previous stage of the project was utilized. For 

this operating point, an impulse response from the small signal model was compared with a 

Siemens PSS®E simulation where a very brief fault of 5 ms duration was applied to simulate the 

impulse disturbance. 

The frequency domain impedance characteristics of IBRs obtained from the APM model applied to 

the blackbox IBR model were utilized to fit/form a state space model that approximates the IBR 

response. These state space models were validated against an analytical small signal model of the 

blackbox IBR, and were subsequently integrated to replace some of the IBR models in the 

synthetic NEM system to illustrate how such state space models based on frequency domain 

impedance characteristics might be used in a small signal study of a large network. 

Lastly, the small signal model of an IBR was analysed to identify key changes in the dynamics when 

the current limits would become binding.  
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3 Comparison of IBR admittance estimation 
methods 

The two estimation methods developed in the previous stage of this project have the objective of 

predicting admittance at new OPs based on known admittance at known OPs. By comparing the 

error between the predicted and expected values for each method, their performance for 

admittance prediction can be directly compared. 

3.1 Method to compare performance 

To undertake this assessment, the methodology shown in Figure 3 was adopted. This involved 

using a set of uniform random training and test OPs with IBR terminal quantities varied within the 

following range of values:  

• voltage between 0.9 pu and 1.1 pu 

• active power between 0.0 pu and 1.0 pu  

• reactive power between -0.5 pu and 0.5 pu. 

White-box analytical models of several IBRs were used to extract frequency domain admittances 

at these OPs to both train and to test the accuracy of each prediction method. Several training 

data sizes were tested (7, 19, 39)2. These models are detailed in Appendix A . The process was 

repeated 5 times for each test case with 200 randomly generated OPs to test the prediction. 

 

 

2 The training sizes of 7, 19 and 39 were selected because they correspond to discrete APM model orders of 1, 2 and 3 respectively. 
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Figure 3 Process for comparing the performance of the two prediction algorithms 

In addition to overlaying individual admittance results, an overall ‘goodness of fit’ statistic was 

calculated for each OP using the following equation to compare a reference array (the expected 

values) and the test data array (the predicted values): 

𝑒𝑟𝑟𝑓𝑖𝑡 =
‖𝑥𝑟𝑒𝑓 − 𝑥‖

‖𝑥𝑟𝑒𝑓 − mean(𝑥𝑟𝑒𝑓)‖
 (3)  

where the function ‖𝑥‖ represents the 2-norm of array of variable 𝑥, 𝑥 is the test data, array 𝑥𝑟𝑒𝑓 

is the reference data array, and mean(a) indicates the average value of array 𝑎. The ‘goodness of 

fit’ metric yields a value of 0 for perfect alignment and a larger value for poorer alignment. For this 

comparative study, a goodness of fit value below approximately 10E−3 is defined to be a very 

good fit result.  

3.2 Comparison of the APM and DDPM 

Test simulations to obtain expected and predicted admittance data were conducted on two 

distinct IBR models: a grid-forming inverter (GFMI) and a grid-following inverter (GFLI). These two 

structures represent most commonly studied and deployed IBRs. However, their admittances 

show different features due to differences in synchronization and terminal control strategies. The 

goodness of fit metric was calculated for each test OP (comparing the predicted admittance 

against the expected). An overlay of the expected and predicted admittance for one case is shown 

in Figure 4 and Figure 5. These overlay results already indicate that the APM can generate a much 

more accurate prediction compared with the DDPM given the same quantity of training data. 
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Figure 4 Example of predicted and expected admittance for the first IBR model. ‘an’ and ‘dd’ refer to the APM and 

DDPM respectively and ‘M’ is the training data size. The right most number in each legend label is the goodness of 

fit (GoF) of the prediction against the expected value. The operating point is P=0.102 pu,Q=-0.302 pu, and V=1.058 

pu 

 

 

Figure 5 Example of predicted and expected admittance for the second IBR model. ‘an’ and ‘dd’ refer to the APM 

and DDM respectively and ‘M’ is the training data size. The right most number in each legend label is the goodness 
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of fit (GoF) of the prediction against the expected value. The operating point is P=0.738 pu, Q=-0.336 pu, and 

V=0.910 pu 

To systematically compare the performance of the two methods across all the tests conducted, 

histograms of the goodness of fit metric were developed and are shown in Figure 6 and Figure 7. 

From these results, it can be observed that: 

• As the training size is increased, the goodness of fit metric decreases indicating that the accuracy 

of the prediction increases. 

• The goodness of fit metric is consistently and significantly higher for the DDPM compared to the 

APM. This indicates a poorer fit for the DDPM compared to the APM. This corroborates the 

result from Figure 4 and Figure 5 which show the DDPM performs very poorly. 

• For the APM, though the goodness of fit continues to reduce in both cases with further 

increased training size, the increased accuracy may not be significant. Achieving goodness of fit 

results below 10-3 already produces accurate enough results. 

These results demonstrate the superior performance of the APM and justify further investigation 

of this algorithm in the project. 

 

Figure 6 Aggregate goodness of fit histograms for the first IBR model. ‘an’ and ‘dd’ refer to the APM and DDPM 

respectively and ‘M’ is the training data size. Note that the goodness of fit is presented in a logarithm axis. 
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Figure 7 Aggregate goodness of fit histograms for the second IBR model. ‘an’ and ‘dd’ refer to the APM and DDPM 

respectively and ‘M’ is the training data size. Note that the goodness of fit is presented in a logarithm axis. 

 

3.3 Investigation of the APM to inverter control structure and 
parameter sensitivities 

This section details additional sensitivity analysis cases involving variations in model structure and 

parameters that were tested using only the APM. 

Several IBR control structures were tested including: 

• A power controlled GFLI and a voltage controlled GFLI. 

• A VSG controlled GFMI and PI controlled GFMI. 

Note that the purpose of these distinctions is to show that a couple of control structures were 

considered for each of the GFLI and GFMI. These distinctions do not matter for a blackbox model 

where control structure may not be known. For the GFLI control structures, variations were 

considered for the following control parameters: 

• Current controller bandwidth (k_Ci), 

• PLL controller bandwidths (k_pll), 

• P, Q or V outer loop controller bandwidth (k_PQV). 
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For the GFMI control structure on the other hand, variations were considered to the following 

parameters: 

• Current controller bandwidth (k_i), 

• Voltage controller bandwidth (k_v), 

• For the VSG-GFMI, machine acceleration time constant (T_a), damping constant (K_D) and 

voltage droop constant (K_q), 

• For the PI-GFMI, active power and reactive power controller bandwidths (k_pi_P, k_pi_Q) 

The results (see Figure 8 and Figure 9) show that the parameter sensitivities have some influence 

on the prediction accuracy. However, the training data size is much more impactful compared to 

the variation in parameters. With 19 training points, very low mean goodness of fit values are 

observed for both the GFLI control structures irrespective of parameter variations. For the GFMI 

structures, the mean goodness of fit was observed to be marginally above the 10−3 threshold with 

19 training points. With 39 training points however, an extremely low goodness of fit result is 

achieved. These results indicate that for the control structures tested: 

• 19 to 39 training points are adequate in obtaining accurate prediction results using the APM. 

• For the set of tested control structures, it was found that the control structure was more 

influential on the minimum number of training points required to achieve a particular goodness 

of fit, rather than the control parameter. 
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(a) 

 

(b) 

Figure 8 Goodness of fit statistics for (a) power-controlled GFLI and (b) PV-controlled showing the mean and 

standard deviations. The rows correspond to parameter variations, showing the multiple of the base parameter 

value. Columns consist of groups of four bars, each corresponding to Ydd, Yqd, Ydq, Yqq. Each group corresponds to 

a training data size, as indicated on the figure. The colour of the cells indicates the value of the goodness of fit 

metric. 
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(a) 

 

(b) 

 

Figure 9 Goodness of fit statistics for (a) VSG-controlled GFMI and (b) PI-controlled GFMI showing the mean and 

standard deviations. The structure and notation are the same as those in the previous figure. 
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4 Application of IBR admittance estimation 
method to a black box IBR model 

4.1 Black box IBR model 

Testing the admittance prediction algorithms with a blackbox IBR model will provide useful 

feedback and help improve the robustness of the admittance prediction algorithm. Hence, a 

blackbox model was developed by the team for the admittance prediction algorithm. The code for 

a previously developed blackbox model for PSCAD was utilized to create a consistent model for 

Simulink. This base model was a PSCAD model representing inverter-based resources (IBRs) 

developed as part of a prior project that models the IBR control using a dynamic linked library 

compiled from a code written in C based on the IEEE/CIGRE DLL standard currently under 

development [3]. Starting from the PSCAD model, a C-code based control block was used in 

Simulink with the same inputs, outputs and parameters as the original PSCAD model, and the 

actual control code was imported as a DLL, resulting in a blackbox model. A schematic of the 

original PSCAD block as well as created C Function block are shown in Figure 10. The rest of the 

components within the IBR such as the filter were also recreated in Simulink. More details of the 

process followed in creating this model are available in [11]. 

 

Figure 10 A schematic of the PSCAD component modelling the control (left) and Simulink C Function block 

representing the IBR control (right) 

 

In order to test the models, they were connected to an ideal three-phase source behind an 

impedance (SCR=6, X/R=10), and the POC voltages and currents (at 33 kV) between the two 

models were compared for a steady-state active power ramp, a voltage step and a frequency step, 

as shown in Figure 11, Figure 12 and Figure 13, respectively. A good match between the POC 

currents and voltages indicates a good match between the models used in the two software 

platforms. While Figure 11 to Figure 13 are plotted for GFM mode, the POC currents and voltages 

were also found to match for the GFL mode. 
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Figure 11 The comparison of POC voltage and current waveforms of PSCAD and Simulink models for an active 

power ramp applied at 2.0s 

 

 

Figure 12 The comparison of POC voltage and current waveforms of PSCAD and Simulink models for a voltage step 

of 0.05 p.u. applied at 6.01s 
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Figure 13 The comparison of POC voltage and current waveforms of PSCAD and Simulink models for a frequency 

step of 0.5 Hz applied at 6.0s 

 

4.2 Application of admittance estimation methods 

This section describes the application of the analytical admittance prediction method (APM) for 

the created black box IBR model. The Monte-Carlo method [12] is used to validate if APM gives 

consistent results. The following sections describe the testing procedures of how to prepare 

credibly identified data for the APM algorithm. After that, the prediction results are assessed for 

the black-box model working in both grid-following and grid forming mode. 

4.2.1 Testing procedures 

The procedures encompass several key stages: inverter control scope determination, admittance 

determination and dataset preparation, and prediction. 

The initial step involves determining the control scope, a critical aspect as APM relies on the 

premise that the control scope of the inverter is predefined where an inverter tracks its voltage 

and power set-points on the circuit. An identification block is incorporated to ensure that any 

injected perturbation is promptly detected by the inverter's control system. 

Subsequently, admittance is identified for the black-box model. This entails applying a series of 

sinusoidal perturbations at the point of connection and recording the circuit's response. Utilizing 

Discrete Fourier Transformation (DFT), signals corresponding to the injected frequencies are 

extracted. Admittance is then computed by dividing input and output quantities, a method 

elaborated in [13]. For a white box model, the admittance was identified directly from the 

analytical models and as a result, no perturbation methods were applied. Notably, for grid-

following inverters, voltage perturbation serves as the input, while current perturbation 

constitutes the output. Conversely, for grid-forming inverters, the roles are reversed. If a model is 

found to behave in a different manner, the choice of input and output signals are reassessed. The 

selection process for operating points (OPs) aligns with the methodology outlined in Section II, 

ensuring that limiter elements within the inverter's control remain unaffected. Moreover, 
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perturbations are deliberately kept small to mitigate significant nonlinear behavior in the 

response. 

The subsequent step involves determining the actual dq voltage and current quantities from the 

DFT applied to the time-series measurements, by extracting their DC components. This is 

necessitated by the inherent constraints of circuit theory, wherein voltage magnitude, real power, 

and reactive power cannot be simultaneously controlled. Following normalization of voltage and 

current, real and reactive power are calculated using prescribed equations, 𝑃𝑒 = −𝑉𝑑𝐼𝑑 and 𝑄𝑒 =

𝑉𝑑𝐼𝑞, given the negative current direction. The curve plot should look smooth in the frequency 

domain, as the identified admittance are resultant from continuous transfer function 

approximation. 

To facilitate the creation of training and testing datasets, the admittance of the black-box model is 

scanned at 150 randomly selected OPs, within a frequency range of ± (1, 65) Hz deviation from the 

fundamental frequency, where OPs exert the most significant impact on dq domain admittance, as 

being illustrated in Section 1.2.1. Seventeen out of the 150 OPs are designated as the testing set to 

assess prediction accuracy, while the remaining 133 OPs constitute the training pool. From this 

pool, individual training OP sets are drawn to execute Monte-Carlo validation. This involves 

randomly selecting a training set comprising 19 points from the pool and executing prediction 

operations on the same 17 test OPs using APM, a process iterated 1000 times. The 150 OPs or 

1000 iterations are chosen for Monte Carlo (MC) procedure that the combination of OPs for 

unknown OP prediction is far larger than the iteration numbers. For example, in the above case, 

the combination of 19 OPs from 133 OP pool gives the following approximate number of 

combinations possible of picking 19 OPs from the pool of 133 training OPs: 

C(133,19) ≈ 4.8 × 1022 ≫ 103 

Subsequently, the prediction's efficacy is assessed. Figure 14 summarizes the procedure of the 

APM implementation on black-box model. 
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Figure 14 Flowchart of implementing APM prediction algorithm on identified black-box model. 

4.2.2 Pre-requisite testing 

APM is based on the assumption that the control scope of the inverter is known. It is vital to 

determine the scope of control. By applying a series of step changes on power/voltage set-points 

of the inverter, it is possible to determine which measurement point is tracking set-point 

references. Figure 15 shows three measurement points that are determined in the black-box 

model. 

 

Figure 15 Measurement points, grid, L1, and E1, of the black-box model. 

Figure 16 illustrates voltage, real power, and reactive power measurements obtained from the 

circuit when the inverter operates in grid-following mode. The plot reveals that the inverter 

effectively controls reactive power at point L1. Additionally, real power remains consistent across 

the point ‘grid’, point ‘L1’, and point ‘E1’ from Figure 15, voltage measurements deviate from the 

set-point references, indicating that grid-following mode primarily exerts control at point L1. If the 

blackbox grid following mode had voltage controller embedded in this control structure, there 

would be a difference in the output reactive power as compared to the reactive power control 

structure. The impact of this difference is to be analysed in future work. 

Similarly, Figure 17 depicts measurements obtained when the inverter operates in grid-forming 

mode. Here, the inverter regulates voltage at both the grid and point L1. Notably, there exists a 

droop correlation between reactive power and voltage, which features a small deviation of the 

reactive power from its reference for balanced power sharing among inverter cluster. Given the 

unknown control structure, it is imperative to evaluate the impact of perturbation injection, where 
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GFLI is perturbed by its Point-of-Coupling (PoC) voltage, and GFMI is perturbed by its PoC current 

by recognizing GFLI as a voltage-controlled current source and GFMI as current controlled voltage 

source. Through an iterative process by replicating the measurement and finding the most 

relevant reference tracking point (as described through this and previous paragraph), it is 

determined that the GFMI controller effectively captures the current perturbing the capacitor 

voltage at point ‘grid’.  

 

Figure 16 P, Q, V terminal responses with respect to their reference step changes at 2, 3, 4 s of the black-box model 

working in grid following mode. 

 

Figure 17 P, Q, V terminal responses with respect to their reference step changes at 2, 3, 4 s of the black-box model 

working in grid forming mode 

4.2.3 Predicting Result Assessment 

Figure 18 exemplifies the spread of training and testing tests arrangement of the OPs for an 

instance of test of the grid following inverter. In the OP space, points are spread randomly without 

clustering. Testing points are randomly chosen from the OP space. It assures the stochastic 

process of the prediction without bias.  
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Figure 18 The distribution instance of training and testing OPs arrangement. 

To quantify if the prediction is reliable, we define a successful prediction at a certain frequency 𝑓𝑖  

to first satisfy the distance criteria. This differs from (3) in that the absolute error deviates from 

the mean of the data set rather than the relative error deviating from an individual data point. 

‖𝑥𝑝
𝑓𝑖 − 𝑥𝑒

𝑓𝑖‖
2

< 𝜇|𝑥𝑒
𝑓𝑖|  (4) 

where 𝜇 =  0.1 is the distance tolerance ratio, 𝑥𝑝
𝑓𝑖 is the predicted admittance with respect to the 

expected value, 𝑥𝑒
𝑓𝑖  ,at fi. The value of μ is a subjective selection for this test. Secondly, a 

successful prediction also needs to satisfy the counting criteria that 90% of points in the frequency 

range should pass (4) on all four axes, i.e., dd, qd, dq, qq. If both criteria are satisfied, we consider 

this a successful prediction. 

Grid-following Inverter testing results 

Figure 19 exemplifies the identified admittance versus 200 out of 1000 predicted ones of the 

black-box model, which was configured as a GFLI. In this case, the predicted admittances mostly 

overlay on the measured admittance, verifying the feasibility of (1) for the black-box model that 

was tested. This demonstrates that the proposed APM is successful when used with this black-box 

model. 

Figure 20 reflects the mean ratio of the wrongly predicted frequency-dependent admittance 

upon dd, qd, dq, qq elements in the predicted frequency range. The error rates of diagonal 

elements (dd, qq) are below 0.002, whereas the off-diagonal (dq, qd) error rates are below 0.03. It 

locates in the zone with relatively small magnitude. In addition, the cross-coupling effect of GFL is 

mostly induced by outer power exchange and synchronization, of which controllers work in lower 

frequency. All impedance predictions are well below the acceptance threshold, which is 0.1. 

Diagonal and off-diagonal elements may have frequency-dependent error tolerance for stability 

studies, which needs further investigation. 
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Figure 19 An overlay of one identified (thick red line) versus 200 predicted admittance (dot-dashed lines) of the 

black-box grid following inverter model at a randomly chosen OP. 

 

Figure 20 The mean error rate of the admittance prediction on 17 testing cases of the black-box grid following 

inverter model. 

Grid-forming Inverter testing results 

Figure 21 exemplifies the identified admittance versus 200 out of 1000 predicted ones of the 

black-box model, which was configured as a GFMI. In this case, the predicted admittances mostly 

overlay on the measured admittance, verifying the feasibility of (1) for the black-box model that 

was tested. Notably, dd- and qq-axis predictions have more inaccuracy than dq- and qd-axis 

predictions. The uncertainty mostly concentrates on the notch of qq-axis. Nonetheless, APM can 

be implemented on the given GFMI model as well. Further improvements need to be done to 

reduce uncertainties.  

Figure 22 reflects the mean ratio of the wrongly predicted frequency-dependent admittance 

upon dd, qd, dq, qq elements in the predicted frequency range. The error rates of diagonal 

elements (dd, qq) are below 0.1 where qq ratio can exceed 0.1. The off-diagonal (dq, qd) error 

rates are below 0.001. As been seen previously, the errors concentrate around the qq- notch area. 

The low magnitude zone of impedance is rescanned with increased perturbation as an accuracy 

improvement measurement. 
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Figure 21 An overlay of one identified (thick red line) versus 200 predicted admittance (dot-dashed lines) of the 

black-box grid forming model at a randomly chosen OP. 

 

Figure 22 The mean error rate of the admittance prediction on 17 testing cases of the black-box grid forming 

inverter model. 
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5 A framework to analyse small signal stability of 
a network. 

Recall in chapter 1 of this document, we mentioned that in order to assess the stability of power 

systems, when subjected to small perturbations, linear or small-signal analysis can be employed as 

an alternative to simulations. Linear methods allow efficient identification of underlying unstable 

dynamics and the participating equipment. However, the requirement for such analysis is the 

existence of a power system/ generation and load model.  

As it is well-known, power system dynamics are non-linear in nature and thus any type of linear 

analysis requires linearization of dynamics around an operating point. These linearizations can be 

carried out either numerically or analytically and yield a representation that captures the stability 

properties of the system close to the operating point and when subject to small disturbances. 

These linearized models can be used for stability analysis via eigenvalue or frequency analysis, 

controller design and identification of groups of machines/ loads that participate in specific 

oscillatory modes. The final consideration when constructing and analysing such models, is the 

frequency of interest to be examined. System-wide studies have been conducted utilizing positive 

sequence models or RMS, i.e., models that assume balanced three phase operation, which usually 

neglect the frequency response of the power network’s elements. When all the relevant circuit 

and high frequency dynamics are modelled, then the model is of the Electromagnetic Transient 

(EMT) type. In these types of models, phenomena like generator stator dynamics, detailed power 

electronic controls and filter and finally transmission network dynamics are fully incorporated. 

These models, as expected, are significantly more complicated, with multiple times more states 

than an RMS model. 

5.1 Impact of EMT vs positive sequence admittance matrix 

The initial step to examine the differences between EMT and positive sequence formulations is to 

examine fundamental examples used for small-signal analysis. For that purpose, the two examples 

utilized were based on the two-area Kundur System [9]. This system was introduced as a benchmark 

system to study and understand inter-area oscillations between groups of coherent machines. 

For the study of the system, the following assumptions was considered: 

1) Generators are modelled by sub-transient models 

2) Generators are equipped with Exciter and PSS 

3) Loads are modelled as constant admittance 

4) Transformers are represented only by their leakage inductance 
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For the EMT cases, the network dynamics were fully modelled. Loads were assumed as shunt 

elements to ground and transmission lines represented by distributed T-sections, to capture the 

frequency response of longer lines more adequately. In the positive sequence setting, no network 

dynamics are assumed (algebraic representations) and lines are modelled by their Pi-section 

equivalent. 

 

Figure 23 Two-Area System Eigenvalues in Complex Plain 

In Fig. 23, the comparison of the frequency dependent network and the positive sequence 60 Hz 

equivalent are presented. Note, this test system uses a 60 Hz fundamental frequency. The frequency 

cannot be altered (to e.g. 50 Hz) without changing the dynamics, since it affects the rate of change 

of angles in the network, following a disturbance. While the actual value of the modes would 

change, the inferences obtained would not change since in a per-unitized setup, the effect on 

outcomes remains the same. In addition, since the power system stabilizers that have been tuned 

to damp the inter-area oscillation, given that the angle dynamics will be altered, might not offer the 

same phase required to achieve the same damping performance.  

It should be noted that the modes in the lower frequency range depicted match adequately with 

small variations in the exact location of well damped modes around 7 r/s. The EMT formulation of 

the network yields higher frequency oscillatory modes, attributed to the RLC elements of the 

circuits. However, those modes remained well-damped. In addition, the inter-area mode between 

areas 1 and 2, appeared to not be affected by the network dynamics, as expected, given it occupies 

the frequency range of 0.6 Hz. 

5.2 Incorporating non-linear loads 

The next analysis conducted in the two-area system was to identify the sensitivity of the oscillatory 

modes in regard to load composition. For this study, the load composition from [9] was utilized, 

where active power loads are modelled as constant current, while reactive power loads are 
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modelled as constant impedance. When comparing the analysis’ results with the results reported in 

the book very small deviations were observed. 

 

Table 1 A comparison of modes for two area system incorporating non-linear loads between the small signal 

framework and reference values from [9] (in parenthesis) 

CASE MODE FREQUENCY DAMPING % 

High gain Exciter +0.014 ± 3.817𝑗 0.607 (0.61) -0.4 (-0.8) 

High gain Exciter + TGR +0.102 ± 3.425j 0.545 (0.55) -3 (-3.6) 

High gain Exciter + PSS −0.526 ± 3.816𝑗 0.607 (0.60) 13.6 (13) 

 

Compared to the constant admittance case, the damping of the inter-area mode, in the case 

where PSS was present in all machines, was worse.  

5.3 Validation of small-signal stability framework 

In the sequel, the team scaled up the small-signal analysis to the 39 Bus IEEE system [10], in order 

to establish the framework to efficiently import positive sequence model data and streamline the 

effort for the NEM network. In addition, this study served as an important benchmarking step for 

the methodology. As it can be noted from the step response comparison below, the response 

present quite similar frequencies, damping and shapes. 
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Figure 24 Impulse Response at Machine 32 Linearized Model (Left) Short High Impedance Fault Simulation (Right) 

 

  

 

Figure 25 Impulse Response at Machine 37 Linearized Model (Left) Short High Impedance Fault  Simulation (Right) 

 

  

Figure 26 Impulse Response at Machine 34 Linearized Model (Left) Short High Impedance Fault  Simulation (Right) 
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Eigenvalue analysis revealed multiple well damped oscillatory modes with multiple machines 

participating. Only one oscillatory mode was observed to be below 10% damping, with 

participation from generators 31-32-38-39. 

 

 

Figure 27 Eigenvalue Analysis of the IEEE 39 bus system 

5.4 Incorporating IBR black box models in small signal analysis 

In a small signal analysis framework, representing the different devices such as synchronous 

machines and IBRs in detail, modelling the control equations in detail is the norm. However, 

sometimes the control structure of the devices may not be fully known i.e., there might be black 

box models used/supplied for simulating a network. For such situations, the impedance or 

admittance characteristics of a device may be used to approximate how the device will interact 

with the rest of the network/devices for assessing small signal stability [2]. In this subsection, a 

procedure used to prepare such blackbox models for representing in a small signal framework is 

described. Such blackbox models can be software-based or hardware based (in case of a 

hardware, proper testing equipment/setup might be needed and there may be additional 

considerations). 

The overall procedure to incorporate a model using its impedance/admittance frequency 

characteristics can be broken into several steps, as given below.  

1. Obtain frequency scans for the IBR device at few select operating points 

2. Use the obtained frequency scans as the training data for the IBR admittance estimation 

method(s) discussed previously in the report 

3. From the network power flow solution, the required operating point(s) can be obtained 

where the device needs to be represented 
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4. Using the IBR admittance prediction algorithm, the IBR admittance frequency 

characteristics at the required operating points are estimated. These are in the format of 

the admittance or impedance values for a pre-determined set of frequencies. 

5. A vector fit method is then used to fit a model representing the IBR characteristics. This can 

be in the form of a transfer function or a state space model. 

6. The state space model thus formed can be incorporated into the network model by 

converting/transforming the inputs and outputs into the required frame of reference or 

format. 

This subsection describes the application of this process for one of the  black box models studied 

in Chapter 4. The details regarding the frequency scans conducted on the black box IBR model and 

application of the admittance prediction method to the blackbox model are presented in Chapter 

4. However, there are certain nuances when applying the admittance characteristics thus obtained 

through the rest of the steps mentioned to integrate the models in the small signal analysis. 

To start with, an analytical model of the blackbox IBR is created for validation purpose, and the 

impedance characteristics obtained from the frequency scan/admittance prediction method are 

compared with the frequency characteristics obtained from the analytical model. Figure 28 shows 

the magnitudes and phase angles of the four impedance terms compared for one of the IBR 

operating points. These operating points are chosen to be obtained from the synthetic NEM 

power flow solution. On the other hand, the training points for APM are chosen as a set of 

randomly determined operating points. 

 

Figure 28 Comparison of the impedance characteristics obtained for the black box models for one of the IBRs 

against analytical small signal model 

The frequency response from the analytical model and the predicted frequency are observed to 

match well for this blackbox model. Now, taking the frequency characteristics obtained from the 

frequency scan/admittance prediction method, vector fitting may be used to create an 

approximate model that exhibits the input-output frequency response very close to the 



 

Topic 2 – Analytical methods for determination of stable operation of IBRs in a future power system  |  33 

impedance or admittance characteristics obtained from the admittance prediction method and 

frequency scans. Here, a vector fitting package described in [14], [15] and [16] is used – different 

implementations of this package are available for MATLAB and Python languages. For this project, 

the MATLAB package is used. Given that the IBR device is represented in 𝑑𝑞 frame, the model has 

two inputs and two outputs corresponding to the currents and voltages in the 𝑑𝑞 frames. The 

vector fitting is performed together for terms with the same input. The two fitted state space 

models corresponding to two inputs thus generated are then combined to form a two input/two 

output model required to represent the entire device. This state space model with the IBR 

terminal currents and voltages as inputs/outputs can be incorporated with the rest of the network 

small signal model to include the selected device in the small signal analysis. For the same 

operating point as Figure 28, Figure 29 shows the frequency characteristics from the admittance 

prediction method/frequency scan (input data for the vector fitting) and the vector fitted model, 

showing that the vector fit is successful in reproducing the frequency characteristics captured in 

the input data. 

 

Figure 29 The input frequency data obtained from admittance prediction method/frequency scan  compared with 

the vector fitted model for one IBR 

However, there are certain nuances that are important to consider here. In Figure 28, the 

reference location selected for injecting the disturbance and measuring the IBR characteristics is at 

the terminal of the IBR, and the frequency characteristics observed from the frequency scan 

match the frequency characteristics obtained from the analytical small signal model of the IBR 

device. However, the reference location selected for the frequency scan/admittance prediction 

method is different (as explained in Subsection 4.2.2) for the IBR acting in the grid forming and 

grid following mode depending on the pre-requisite tests assuming no knowledge of the IBR 

control. It is observed that when the IBR frequency scan location is different, the frequency 

characteristics obtained from the frequency scan/admittance prediction method are different 

(Figure 30) to the analytical model that in both cases provides the small signal characteristics at 

the IBR terminal. This difference may indicate a need to standardize the IBR test procedures 

involving appropriate and consistent frequency scan procedures. 
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Figure 30 Comparison of the impedance characteristics obtained for the black box models for one of the IBRs 

against analytical small signal model - different scan reference location 

Another aspect to consider here is the range of frequencies chosen for the frequency scan. While a 

good vector fit is observed for the GFM device in Figure 29, and thus the vector fitted model 

approximates the IBR device frequency response in this frequency range, the model may or may 

not match outside this frequency range. Here, for example, if the IBR device frequency 

response/characteristics from the analytical small signal model are compared with the fitted 

model based on the frequency scans (Figure 31), it is observed that the fitted model matches with 

the analytical model in the frequency range included for the fitting process, there are differences 

in the characteristics outside the range of frequencies covered by the frequency scans, both in the 

lower frequencies and in the higher frequencies.  
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Figure 31 Vector fitted model based on the data from frequency scans/admittance prediction method compared 

with the analytical IBR small signal model, over a large frequency range 

This points to the importance of selecting the frequencies to include in the frequency scan 

carefully so that the scan captures all poles and zeros of the model in the relevant range. Note that 

‘relevant range’ may mean a wide frequency range or it may exclude some regions, but it might 

also depend on the analysis considered. For example, phasor-domain tools and analysis only 

consider lower frequencies of less than around 10 Hz, or a network operator may choose to focus 

on frequencies lower than the fundamental frequency or up to a 100/200 Hz that usually cover 

some of the slower IBR controls such as the phase locked loop or power controls for a particular 

study. In such case, representing the higher frequency characteristics accurately may not be as 

important. Two key challenges in the frequency selection/scan process are: 

• Since the model under test is assumed to be a black box model, complete knowledge of all 

the poles and zeros of the system may not be possible, and more investigation and 

standardization of the range of frequencies to be considered might be required to ensure 

that the frequency scans capture the required IBR characteristics. 

• As more frequencies are added to the list of frequencies the model is scanned at, the 

computational burden of each frequency scan also increases. This may be a particular 

issue if a large number of devices are to be studied in such a manner. When performing 

the frequency scan, it is important to capture several cycles of the disturbance injected at 

the selected frequency, hence, the frequency scan process is particularly time consuming 

for lower frequencies since they have longer time periods. For example, to capture 10 

cycles of a 1 Hz disturbance, the model must be simulated for at least 10s, while for the 

0.01 Hz disturbance, simulating the model for 1000s is required to capture 10 cycles. This 

can be challenging for very detailed models demanding more computational resources for 

simulation. 

Considering these practical challenges and differences, for illustrating how blackbox IBR models 

may be represented in a large network model, in Section 6.3, the frequency scans obtained from 
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the analytical small signal models are used instead, including IBR characteristics at the frequencies 

used in the frequency scans described in Chapter 4, but also including lower frequencies up to 

0.01 Hz to sufficiently capture the lower frequency characteristics of the IBR device under 

consideration.  
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6 Small signal stability of synthetic NEM network 
with IBRs 

A synthetic network model representing the NEM footprint was selected to test the small signal 

stability framework used in this project on a larger circuit. This system originally had ~2300 buses 

and ~256 generators. The network model from [5] was used in the last stage of the project for 

creating the test cases, and more details regarding the development of original synthetic NEM 

network and work based on the synthetic NEM network can be found through multiple references 

such as [17], [18], and [19].The synthetic network is plotted to illustrate the different NEM 

network regions in Figure 32. The figure also shows the locations of IBRs considered in this project. 

 

Figure 32 An approximate representation of the synthetic NEM network on the map of Australia 

. 

6.1 Operating point and data selection 

From the 24 hourly cases created in the previous stage, the peak load case (hour=19) was selected 

as the initial operating point for studying the NEM network. In the preliminary dynamic simulations 

conducted for this case in the previous stage of the project, it was shown that for a network 

disturbance of tripping a load (~20 MW), the synthetic NEM modelled exhibited oscillations/small 

signal unstable behaviour when all IBRs were set to be grid following, as shown in Figure 33. 

However, adding just 35 IBRs with grid forming controls (to existing 199 IBRs with grid following 

controls), the oscillations were damped.  
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Figure 33 Time domain simulation results for a load trip - (a) when all IBRs have GFL controls and (b) when a select 

number of IBRs have GFM controls for the selected peak load (hour=19) operating point 

 

Hence, this operating point was selected for testing the small signal model on the system. Table 2 

provides some key powerflow details for the selected operating point. Note. Since Tasmania Island 

area is reduced to a single generator, it is not shown in Table 2.  

Table 2 The load, generation and interarea flows in different areas of the synthetic NEM network for the selected 

operating point 

AREA LOAD (GW) GENERATION 
(GW) 

INTERAREA FLOW (MW) 

TO NSW TO VCT TO QNL TO SAU 

NSW 10.220 9.607  -16 -901  

VCT 6.424 6.048 16   -516 

QNL 6.424 7.559 901    

SAU 1.070 1.670  516   

Total 24.139 24.886     

 

6.2 Analysis with white box IBR models - GFLs/GFMs 

This section will present the linear or “small signal’ analysis of the synthetic NEM system for hour 
19. For the purposes of this investigation, we will initially highlight all the assumptions made for the 
model: 

1) Synchronous generators are represented by the GENROU type model with frequency 

dependence of the terminal voltage/ flux. 

2) Loads can be either of the constant current or constant admittance type for active power 

and constant admittance for reactive power. 

3) GFL IBRs are represented by the REEC_C model for electrical controls and REGC_C for the 

converter controls. 

4) GFM models are represented by EPRI’s generic GFM model. 
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5) The network and loads are modelled in their 50 Hz constant representation without any 

frequency dependence. 

Case 1 

For this case, we are assuming the existence of only GFL IBRs in the system and constant current 
active power loads. The simulated step response of the entire linearized synthetic NEM system for 
a disturbance at the terminals of generator 5, can be noted below: 

 

Figure 34 Linearized System SG-GFL IBR Speeds Impulse Response (for IBRs Speed is the PLL integrator state) 

As it can be seen, the system presents a fast unstable mode, previously identified in time domain 
simulations. Upon inspection of the eigenvalues, the mode has been identified to have a frequency 
of 8.929 Hz with a damping ratio of -0.4%  

 

Upon further examining the participation factors of the mode, the following generators appear to 
present significant participation (above 0.1 absolute value when normalized to the maximum 
element of the participation factor) in the unstable mode: 

Synchronous Generators: 

731, 730, 732  

IBRs: 

5, 6, 18, 19, 20, 21, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 56, 64, 65, 66, 67, 69, 70, 73, 74, 75, 
647, 648, 654, 655, 658, 659, 660, 665, 668, 672, 674, 680, 681, 682, 684, 685, 687, 688, 689, 690, 
691, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 712, 721, 728, 729, 733, 956, 986, 1636, 
1640, 1641, 1646, 1651, 1652, 1653, 1654, 1655, 1656, 1658, 1659, 1660, 1661, 1662, 1663, 1665, 
1666, 1667, 1668, 1679, 1681, 1682, 1683, 1684, 1685, 1686, 1690, 1691, 1692, 1693, 1694, 1695, 
1696, 1697, 1699, 1705, 1706, 1708, 1709, 1710, 1711, 1715, 1716, 1719, 1720 

As it is evident, the mode appears to present participation from machines across the NEM system.   
When inspecting the list of IBRs with negative available MVA found in Stage 2, we can note that 
there exists a significant overlap (Table 3). 
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Table 3 IBR buses with lowest available MVA identified in the previous stage of the project, and the participation 

factors of these IBRs in the unstable mode 

Bus MVA Available Normalized to Max PF 

1663 -929.680824 1 

1693 -409.63707 0.9 

1694 -407.433033 0.92 

1685 -401.246548 0.67 

1695 -397.394753 0.47 

1684 -368.928051 0.68 

1686 -358.293247 0.7 

689 -242.50145 0.79 

655 -180.611277 0.33 

986 -165.426064 0.93 

 

When examining the buses with the lowest available MVA, we can note that there is a correlation 
between low SC capability and participation in the instability, i.e., propensity to instability. The 
participation factors of the unstable mode were normalized against the maximum to make it easier 
to compare values. The plant with the most MVA deficit appeared in the participating states, 
indicating that MVA available can be a good metric to screen the potential instability of IBRs. 

In terms of which states, appear to participate, the most impactful states were comprised by the 
VSC voltage states (which is to be expected given the high frequency instability). Other states that 
participated are PLL angles of some IBRs, the voltage transducer state of the REEC_C controller (s0) 
and finally, the voltage regulator state (s3). Aside from the fast IBR driven unstable mode, there 
exist other angle dynamics in the linearized system. In particular, there exist multiple rotor angle 
modes with frequencies below 2 Hz. Several present damping below 10% with the least damped 
having a damping ratio of 0.5%. This particular mode presents participations from generators at 
buses 3, 4, 76, 77, 730, 731 and 732. 

Case 2 

As a countermeasure to these high frequency instabilities, and the weak state of the grid, droop-
based GFM IBRs were installed on the buses with low available MVA values. Those GFMs do not 
contribute any pre-disturbance power but are installed to stabilize the grid. As it can be noted in the 
updated step response, the 9 Hz unstable mode stabilizes.  
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Figure 35 Linearized System SG-IBR Speeds Impulse Response 

The marginally stable mode occupies the frequency of 9.663 Hz with a damping ratio of 1%. Lower 
frequency dynamics are still visible, but they appear well-damped. In the sub 2 Hz range, the 
previously low damping mode presents an increased damping ratio of 2.5%. The marginally stable 
high frequency modes still present participation by mostly GFL IBR states and not the GFM plants. 

6.3 Impact of Load Modelling 

To examine the impact of load modelling on the stability of the system, the case where both active and 
reactive power load are represented as constant impedance is examined. In Case 1, where all IBRs are GFL, 
the 9 Hz mode is no longer unstable. Now the instability occurs at lower frequencies, and particular at 1.1 
Hz. 

 

Figure 36 Linearized System SG-IBR Speeds Impulse Response with all loads represented as constant impedance 

In this mode, participation is observed from the following generators. 

Synchronous Generators: 
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3,4,76,77,730,731,732 

IBRs: 

684,685,687,688,689,690,691,702,703,712,728,730,731,732,733 

The synchronous generators mostly present participation from the rotor mechanical states. The IBRs 
present significant participation from the PLL states and the voltage control state. 

 

Figure 37 Linearized System SG-IBR Speeds Impulse Response with GFM Plants 

Inclusion of GFM plants, improves the damping of the unstable mode but fails to stabilize it. The mode now 

has a damping ratio of -0.5 %. As this instability appears to be rotor angle driven, given the participation of 

synchronous generation and the lower frequency, GFM plants appear to aid slightly but given they are 

modelled as droop-based, they do not yield such significant impact in the lower frequency ranges, due to 

absence of virtual inertia of the power synchronization loop.  

 

 

6.4 Figure 38 NEM Network Simulation with Constant Admittance 
Loads Incorporating blackbox IBR models in the network analysis 

Once the synthetic NEM network is demonstrated with the white box IBR models, this subsection 

demonstrates how the blackbox IBR models are prepared to be incorporated into the network 

small-signal analysis. The overall procedure followed is described in previously in Section 5.4, here 

the details more pertinent to the actual network considered and the models considered are 

provided. 

As mentioned at the end of Section 5.4, the frequency scans used here are obtained from the 

small signal analytical model. The list of frequencies chosen for obtaining the frequency scans 

include the frequencies considered in Chapter 4 as well as 20 more frequencies in the lower 

frequency range from 0.01 Hz to 1 Hz in addition to capture the lower frequencies. Throughout 

the process, the analytical small signal model of the IBR is used for validating the developed 

procedure to create the small signal models. 

For this case study, the 35 newly added grid forming IBRs are considered to be 

replaced/represented using blackbox models. Hence, the active power, reactive power and 



 

Topic 2 – Analytical methods for determination of stable operation of IBRs in a future power system  |  43 

voltage magnitude for these 35 models are extracted from the network power flow solution. At 

these operating points, the frequency characteristics are obtained using the admittance prediction 

method by considering 39 operating points, randomly chosen, as training points for the method, 

These training points are chosen randomly from the region encompassing the maximum and 

minimum values of voltage, reactive power and active power from the 35 operating points for 

more accurate prediction. With such a training dataset, the admittance prediction method 

successfully approximates the IBR frequency characteristics at the 35 operating points – for one of 

the operating points the impedance predicted is compared with the impedance from the analytical 

small signal model as validation in Figure 39.  

 

Figure 39 Expected versus predicted impedance based on admittance prediction method  

Vector fitting is then applied to the predicted impedances corresponding to the 35 operating point 

– terms corresponding to d-axis input are fitted together, and terms corresponding to q-axis input 

are fitted together. Note, one of the impedance terms (Zqd) requires a pole with a positive real 

value for obtaining a good fit (as illustrated in Figure 40), hence such poles are allowed while 

fitting the terms with d-axis inputs, while stable fitting is ensured when fitting the terms with q-

axis inputs. Note, since open-loop frequency response of the IBR device is fitted, there may be 

some eigenvalues/poles with positive real values, however, once the IBR is connected to a 

network such that the IBR operate stably, such eigenvalues can be expected to move to negative 

real plane. The vector fitted model is compared with the input data used (the predicted 

impedances at different frequencies), as shown in Figure 41. 



44  |  CSIRO Australia’s National Science Agency 

 

Figure 40 Vector fitting the qd term without allowing a pole with positive real value (a) and allowing a positive real 

value (b)  

 

Figure 41 Vector fitted model compared with the input frequency characteristics for an IBR model  

Once the vector fit is successful, the models for the d-axis input and q-axis input are combined to 

form a single two input/two output model. For each of the 35 operating points, the frequency 

response from the fitted models are compared with the analytical models for validation over a 

larger range of frequencies, for one of the IBR models this comparison is shown in Figure 42. 

Notice, there are some mismatches in the higher frequencies outside of the frequency range 

considered for the frequency scan. For the considered analysis, this higher frequency range is not 

a focus. A mismatch is also observed in the lower frequency range outside the frequency range 

used for the frequency scan. This mismatch/difference between the analytical and fitted models is 

relatively small (below 10^-5 p.u. ). 

 a  b 
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Figure 42 The frequency response of the vector fitted model compared with the analytical small signal model over a 

wide range of frequencies 

As a further validation, the closed loop poles of the analytical and fitted models are compared in 

Figure 43 for one of the IBRs. It is observed that while the fitted model does not capture all the 

poles of the analytical model, it closely approximates several poles of the analytical small signal 

model. 

 

Figure 43 A comparison of the poles of the open loop fitted model of the IBR and the open loop small signal 

analytical model of the IBR  

Additionally, the fitted models are validated using a single machine infinite bus-type test network. 

At the required operating point, the impedance of the infinite bus is gradually increased (SCR is 

decreased) and the value of SCR at which the model shows small signal unstable behaviour is 

compared between the fitted and analytical model as a validation. It is found that the fitted model 

exhibits similar values of SCR at which it goes unstable, as denoted in Table 4. Here, the SCR value 
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is calculated assuming a maximum active power of 1 p.u. is possible. Note that since this is a grid 

forming type model expected to perform well in weaker (low SCR) situations, the SCR values at 

which an unstable pole is observed are low. The black box time domain model is also observed to 

remain stable under very low SCR values. 

Table 4 A comparison of the fitted and analytical models in terms of the SCR value exhibiting unstable behavior 

Bus 
Number P (p.u.) Q (p.u.) V (p.u.) 

SCR at which a positive real 
pole is observed 

Analytical 
Model 

Fitted 
Model 

2348 0 0.009468 0.9686 0.01 0.01 

2350 0 0.003445 0.9679 0.003 0.003 

2352 0 0.003548 0.9667 0.003 0.003 

2354 0 0.024142 1.0398 0.02 0.02 

2356 0 0.022783 1.0395 0.02 0.02 

2358 0 0.037724 1.0395 0.03 0.03 

2360 0 0.013566 1.0394 0.01 0.01 

2362 0 0.012506 1.0716 0.01 0.01 

2364 0 0.001783 1.0679 0.001 0.001 

2366 0 0.002555 1.0014 0.002 0.002 

2368 0 0.001252 1.0018 0.001 0.001 

2370 0 0.013732 1.0832 0.01 0.01 

2372 0 0.005749 1.0091 0.005 0.005 

2374 0 0.019102 1.0178 0.01 0.01 

2376 0 0.001778 0.9775 0.001 0.001 

2378 0 0.003974 0.9936 0.004 0.004 

2380 0 0.065185 0.9039 0.08 0.08 

2382 0 0.013266 1.0118 0.01 0.01 

2384 0 0.003238 1.0007 0.003 0.003 

2386 0 0.000335 1.0168 0.001 0.001 

2388 0 0.002369 1.1015 0.001 0.001 

2390 0 0.000803 0.9725 0.001 0.001 

2392 0 0.000739 0.9722 0.001 0.001 

2394 0 0.000827 0.9725 0.001 0.001 

2396 0 0.0029 0.9677 0.003 0.003 

2398 0 0.003198 0.9683 0.003 0.003 

2400 0 0.002864 0.9674 0.003 0.003 

2402 0 0.000728 0.9782 0.001 0.001 

2404 0 0.000732 0.9781 0.001 0.001 

2406 0 0.00075 0.9778 0.001 0.001 

2408 0 0.001956 1.0065 0.001 0.001 

2410 0 0.002352 1.0283 0.002 0.002 

2412 0 0.025528 1.0132 0.02 0.02 

2414 0 0.002658 1.012 0.002 0.002 

2416 0 0.027693 1.0189 0.02 0.02 

 

Finally, we integrate the identified dq impedance models with the rest of the linearized power system and 
perform small-signal analysis on the closed-loop dynamics. 
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Figure 44 Closed Loops Poles of System with Analytical and Identified Models 

As it can be noted, if the models are sufficiently well estimated, the pole locations in specific 

ranges of interest can be approximated with great accuracy. In this case, the depicted pole 

locations appear to be matched exactly. Given that the examined GFM model is of the EMT type, 

the ranges of interest we can analyse should be at the lower frequencies (typically sub 10-15 Hz) 

since the frequency dependence of the network can start taking effect after that. The exact 

frequency range where EMT models are required to capture the correct small-signal behaviour of 

the system is an active field of research. At higher frequencies, even if the closed loop dynamics 

present some type of instability, the validity of this instability cannot be verified unless the 

complete frequency dependence of the network is properly represented. 

6.5 Conclusions 

In this chapter, the small-signal analysis of the synthetic NEM system was presented. In the 

original analysis of the peak loading condition, high frequency unstable oscillations were identified 

in linear and time-domain analysis. It was found via participation factor analysis that the GFL IBRs 

were major contributors to the instability. As a remedy, GFM plants were installed on the buses of 

the system where low SC conditions were identified and analysis was performed again. The 

installation of the GFM plants appeared to resolve the instability, improving its damping. 

The second step was to examine the dependency of the identified stability issues on load 

modelling. For that purpose, the active power component, which was initially modelled as 

constant current, was recasted as constant impedance and the analysis was repeated. In that case, 

no high frequency stability issues were observed and the mode of interest occupied the low 

frequency range, with major participation from synchronous generation. Installation of GFM 

generation did not appear to aid significantly that mode, as most of the effects of a droop-based 

GFM, without any virtual inertia, appeared to be mostly realized in the higher frequency range (as 
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noted in the original case). Small-signal issues in the 1 Hz range can be addressed with proper 

power system stabilizer design or power oscillation dampers. 

Finally, the integration of identified black-box models into the small-signal analysis framework was 

examined. For that purpose, the GFM plant analytical models were replaced by impedance 

models, identified via simulated measurements across a frequency range of interest. It was 

demonstrated that if the models’ dynamics are adequately captured from the impedance scans 

and then fitted into a state-space representations, the dynamic behaviour of the closed-loop 

system can be correctly recovered. Thus, a hurdle in the use of state-space methods from linear 

analysis of power systems, it being models without any access to their internal control structure 

aside from terminal measurements, can be overcome via system identification and appropriate 

interface with the rest of the network. 
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7 Impact of current limits on IBR admittance 
characteristics 

An IBR is a current limited device and as a result, stability at its pre-disturbance steady state 

operating point can be influenced by the maximum value of current that can be delivered. In a 

synchronous machine, this impact is lower because even if the machine operates near its power 

limit, there is sufficient over current capability that is available. However, in an IBR, due to the 

lower values of over current capability, operation at or near the power limit can be detrimental to 

the overall stability. Due to non-linear nature of limits the admittance characteristics of the IBR 

may change when limits become binding. One issue which arises when doing small signal analysis 

is that the non-linear elements, such as a limiter, cannot be represented. So, the question arises 

that what will happen if the IBR is working near to its current limits, how the eigenvalues, 

subsequently the small signal behaviour of the system will change?  Let us assume that a PI 

controller is used to generate a signal 𝑢𝑑 as shown below:- 

𝑢𝑑 = (𝑘𝑝 +
𝑘𝑖

𝑠
) (𝑥𝑑

𝑟𝑒𝑓
− 𝑥𝑑) (5) 

Where, 𝑥𝑑
𝑟𝑒𝑓

 reference signal, 𝑥𝑑 is the measured value of variable x. One way to represent (5) in 

small signal form is:  

𝑘𝑝 (Δ𝑥𝑑
𝑟𝑒𝑓̇

− Δ𝑥𝑑̇) = Δ𝑢𝑑̇ − 𝑘𝑖(Δ𝑥𝑑
𝑟𝑒𝑓

− Δ𝑥𝑑) (6) 

Let’s say the variable 𝑥𝑑
ref is at its limit, because of this no further change in 𝑥𝑑

ref is possible. (6) will 

then be modified into: 

−𝑘𝑝Δ𝑥𝑑̇ = Δ𝑢𝑑̇ − 𝑘𝑖Δ𝑥𝑑 (7) 

This shows that there will be a change to the A matrix of the system, which implies that it can also 

impact the eigenvalues. How significant will be the impact of this can be answered only by carrying 

out a detailed small signal analysis. We studied the impact of IBR current limits on small signal 

system stability using two area Kundur system shown in Figure 45 for cases shown in Table 5. 

 

Figure 45: Single line Diagram of Kundur's Two Area System [9]. 
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Table 5: Cases studied. 

 Area 1 Area 2 

Case 1  1 IBR 0 IBR 

Case 2 0 IBR 1 IBR 

Case 3 1 IBR 1 IBR 

Case 4 2 IBRs 0 IBR 

Case 5 0 IBR 2 IBRs 

 

Case 1:  

For this case SG 2 is replaced with a GFL IBR in Area 1; for our study we did not find any difference 

in the analysis based on the location of IBR (i.e. either G1 or G2 can be replaced with GFL IBR and 

the conclusion remains same). Figure 46 shows the eigenvalues that are closer to the imaginary 

axis and thus have higher impact on the system stability. 

 

Figure 46: Eigenvalues for Case 1. 

 Figure 46 shows that when the GFL IBR is working at its current limit, then the eigenvalues with a 

slightly higher frequency component move slightly towards the imaginary axis. 

Table 6: Eigenvalues when IBR is not operating at its current limit. 

Eigenvalues Damping ratio Frequency (Hz) 

-17.603±22.007j 0.625 3.503 

-18.912±15.889j 0.766 2.529 
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Table 7: Eigenvalues when IBR is operating at its current limit. 

Eigenvalues Damping ratio Frequency (Hz) 

-17.651±18.935j 0.682 3.014 

-17.184±23.277j 0.594 3.705 

None of these eigen values are affected by the states of the GFL IBR when the IBR unit is working 

at its current limit. 

Figure 47 shows the eigenvalues in the circled region of Figure 46 . Eigenvalues of particular 

interest are marked by region 1, and 2.  

Region 1 being closer to the imaginary axis is more likely to cause small signal instability. Table 8 

shows the eigenvalues of region 1 and 2 when IBR is not working at its limit.  

Table 8: Eigenvalues of region 1 and 2 

Eigenvalues Damping ratio Frequency (Hz) 

-0.109±2.641j 0.041 0.42 

-1.167±6.446j 0.178 1.026 

 

Figure 47: Zoomed in comparison of eigenvalues 

Eigenvalues in region 2 are only impacted by GFL IBR and the machine in Area where the GFL IBR is 

situated. And both eigenvalues of regions 1 and 2 are impacted by the PLL of the GFL IBR. 

Subsequently, as the PLL gains of the GFL IBR are varied and trajectory of eigenvalue is studied 

when IBR is not working at its current limit and when it is working at its current limit. 

Figure 48 and Figure 49 shows the impact of variation of proportional gain of PLL on eigenvalues 

when IBR is not at its current limit and when IBR is operating at its current limit. It is observed that 

1 

2 
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proportional gain of PLL does not have a significant impact on system stability whether the IBR is 

operating at its current limit or not. 

 

Figure 48: Eigenvalues when kiPLL = 50, and kpPLL is varied from 2 to 30 (IBR not operating at its current limit) 

 

Figure 49: Eigenvalues when kiPLL = 50, and kpPLL is varied from 2 to 30 (IBR operating at its current limit) 

Next, the integral gain of PLL is varied from 50 to 1350, proportional gain kp is kept at 2, results 

are shown in Figure 50 and Figure 51. System remains stable whether the IBR is working at its 

current limit or not. Eigenvalues of Region 1 are not affected by the integral gain, however 

eigenvalues of region 2 have different trajectories depending whether the IBR is operating at its 

current limit or not. For both cases it is observed that the system stability is improved when 

integral gain is increased up to a point, after which the eigenvalues start moving towards the 

imaginary axis. For both the cases (not shown here) for very high value of integral gain system 

becomes small signal unstable. 
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Figure 50: Eigenvalues when kpPLL = 2, and kiPLL is varied from 50 to 1350 (IBR not operating at its current limit) 

 

Figure 51: Eigenvalues when kpPLL = 2, and kiPLL is varied from 50 to 1350 (IBR operating at its current limit) 

Case 2: Similar observations as in Case 1 is made for Case 2, and hence it is not presented here. 

Case 3: In this case one GFL IBR is connected in each area, location of the IBR does not have any 

impact on the results. As shown in Figure 52, varying proportional gain does not have any 

significant impact on the system stability. However, as shown in Figure 53higher value of integral 

gain leads the eigenvalues move closer to the imaginary axis in the case when the IBR is operating 

at its current limit.  
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a.                                                                                   b 

Figure 52: Eigenvalues for Case 3 varying kp, a) not at limit b) at limit 

 

a.                                                                                   b 

Figure 53: Eigenvalues for Case 3 varying ki, a) not at limit b) at limit 

Case 4: In this case all the SG in one area are replaced by GFL. Figure 54shows the eigenvalue of 

the system when the IBRs are not operating at their limit and when they are operating at their 

current limit. It is observed that irrespective of the current limit being reached or not, the system 

becomes unstable. Dominant states associated with the eigenvalues which move to right hand 

side of the imaginary axis are Δω and Δθ of SG and IBRs. 

  

a.                                                                                   b 

Figure 54: Eigenvalues for Case 4 varying ki, a) not at limit b) at limit 

Case 5: In this case all the SG in Area 2 are replaced by GFL IBRs. Similar observations as in Case 4 is 

made. 

Detailed study of impact of network parameters such as line length, load change, change in network 

configuration etc. is yet to be carried out.  
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8 Conclusion and future work 

The following key insights are obtained from the tasks conducted in this stage of the project: 

• This study compared a data-driven prediction method and the APM algorithms for IBR 

admittance with OP variation and revealed the superior performance of the APM, when the 

training data size is limited. Validated using a black-box model, this approach demonstrates 

promising applicability for enhancing grid stability in power systems incorporating IBRs. 

• For the small test circuits, the small signal modelling/analysis framework was validated against 

available test data or PSS®E simulations, indicating that the small signal modelling framework 

accurately modelled the network dynamics for those networks. Similarly, for the synthetic NEM 

network the small signal framework accurately indicated a presence of poorly damped or 

sustained/unstable oscillations for a network with a large number of IBRs, indicating that such a 

tool might be used in the future as a screening mechanism to identify potential unstable 

conditions in the network while not requiring a prohibitive amount of computational 

time/resources. 

• It was observed that for the small two-area network, the positive sequence network 

representation was sufficient when the network was synchronous generator dominated, and 

resulted in similar eigenvalues and modes as when a detailed EMT network representation was 

used during the small signal analysis.  

• It was observed that the network oscillatory modes were impacted by the load model selected 

during the dynamic simulations (as well as small signal analysis), and this highlights the 

importance of selecting the load model carefully when performing a small signal stability 

analysis or a time domain positive sequence stability analysis. 

• The procedure to develop an approximate state space model representing IBRs in a small signal 

study based on just the frequency domain impedance characteristics (such as from a blackbox 

IBR model) was validated against the analytical IBR model – the validation was performed both 

for the model in isolation as well as when the model was incorporated in the synthetic NEM 

network small signal framework.  The approximate models developed based on the frequency 

scans were able to replicate the damping provided by the detailed analytical models of the same 

IBRs. Successful application of this procedure indicates the usefulness of this procedure to 

incorporate blackbox IBR models in small signal assessment studies, including for a large 

network assessment.  

Some avenues for future work based on this research can be: 

• The admittance estimation algorithm can be further enhanced by testing it for different black 

box IBRs with different control configurations, for example, different control architectures 

representing grid following and grid forming IBRs, or IBR control configurations operating in 

different modes or using different additional control signals or measurements. 

• In this project, the developed analysis framework was applied to synthetic networks, including 

smaller benchmark networks and a large synthetic network spanning the area served by NEM. A 

next step can be to apply the framework to an actual utility network. Key learnings here are 
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expected to be identifying practical challenges and corresponding insights that may arise when 

applying the framework to a real network as opposed to a synthetic network. 

• EMT domain IBR models were used in this project to obtain the frequency scans, and the 

process of generating the frequency scans can be computationally burdensome especially if a 

large number of diverse IBRs are to be studied. However, there may be a possibility of using 

positive sequence models to identify certain aspects of the frequency domain characteristics – 

the applicability and limits of such approaches may be studied in a future effort. 

• This stage of the project conducts a preliminary study of the impact of current limits on the 

small signal behaviour of IBRs. In the next stage of the project, this effort can be expanded to 

include the different approaches adopted in grid following and grid forming IBRs to limit the 

current and different responses possible (for example, giving priority to active current, reactive 

current, power factor) when operating at the current limit. 

• A fundamental frequency network equivalent was used in this stage of the project for the large 

network, a comparison of using a multiple-frequency network equivalent to fundamental 

frequency network equivalent for a large network such as the synthetic NEM network may be 

made in the next stage. When using a fundamental frequency network equivalent, we may miss 

out on capturing some of the modes that result due to resonance conditions in the network. 

• The load model was found to have a large impact on the oscillation modes observed in the 

simulations/analysis. A potential future work related to this insight can be to study the IBR-load 

interactions further by including a detailed representation of loads such as by using composite 

load model. 

• While the procedure to incorporate IBR models in small signal studies based on impedance 

characteristics were demonstrated in this stage of the project, there are practical challenges 

that remain, such as:  

– standardization of the procedure to utilize an IBR model to obtain the frequency domain 

impedance characteristics.  

– understanding the of impact of measurement location that is used by control loops of the 

IBR,  

– defining the range of frequencies needed to be captured as well as any pre-requisite tests 

or requirements from the model that may be needed to apply this process for an IBR 

model.  

Aspects of the procedure such as the vector fitting process often need trial-and-error type 

input and engineering judgement, a future effort might also involve a further study of these 

aspects to automate the procedure as far as possible. 

• Future discussions on the topic can also bring in inverter OEMs and commercial software 

vendors to help streamline the process of industry adoption. If inverter OEMs are involved, we 

can hope towards considering the inverter model as a gray box instead of a black box. With 

commercial software vendors involved, we can move towards having the developed stability 

analysis techniques adopted quicker by industry. 
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 Analytical models and parameters 

 

Apx Figure A.1 Structure used for the generic GFLI analytical model. The loop marked CQ represents either a power 

controlled or voltage controlled (with Qe and Q* replaced with Ve and V* respectively) GFLI. 

 

Apx Figure A.2 Structure used for the generic GFMI analytical model. The loops marked CP and CQ represent either} 

a VSG or PI-based power-controlled GFMI. 

Apx Table A.1 GFLI basecase parameter values 

DESCRIPTION VALUE DESCRIPTION VALUE 

VA Power base   1e4 VA Current proportional gain kip 3.8197 pu 

AC voltage line-to-line  Vll,rms 690 V Current integral gain kii 40 pu/s  

Filter impedance Lg 0.30 pu Current decoupling term Xf 0.30 pu 

Filter ESR Rg 0.015 pu Current loop feedforward βi 0 

Real power proportional gain kpp 0.08164823 Real power integral gain kpi 16.32964584 

Reactive power proportional gain kqp 0.08164823 Reactive power integral gain kqi 16.32964584 

Voltage proportional gain kvp 0.08 Voltage integral gain kvp 200 

 

Apx Table A.2 GFMI basecase parameter values 

DESCRIPTION VALUE DESCRIPTION VALUE 

VA Power base   1e4 VA Voltage proportional gain kvp 0 

AC voltage line-to-line  Vll,rms 690 V Voltage integral gain kvi 200 pu / 400 pu 

Filter impedance Ls 0.15 pu Voltage decoupling term Bf 0 
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DESCRIPTION VALUE DESCRIPTION VALUE 

Filter ESR Rs 1e-3 pu Current proportional gain kip 0.01 pu 

Filter capacitance Cf 0.01 pu Current integral gain kii 250 / 400  

Paralleled resistance BCf 0.01 pu Current decoupling term Xf 0.15 pu 

Inertial constant J 2 s / 0.2 s Q droop kq 0.01 pu / 0.1 pu 

Damping ratio D 150  Q LPF cut-off frequency ωQ 40π  

Current loop feedforward βi 0 Voltage loop feedforward βv 0.5 

Real power proportional gain kpp 0 Reactive power proportional gain kqp 0 

Real power integral gain kpi 1.5π Reactive power integral gain kqi 1.5π 
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