Petheram C, Watson I and Stone P (eds) (2013) Agricultural resource assessment for the Flinders catchment. A report to the Australian Government from the CSIRO Flinders and Gilbert Agricultural Resource Assessment, part of the North Queensland Irrigated Agriculture Strategy. CSIRO Water for a Healthy Country and Sustainable Agriculture flagships, Australia. © CSIRO 2013

See <www.csiro.au/FGARA> for full report.

Appendix C

List of figures

Figure 1.1 Major dams (greater than 500 GL capacity), large irrigation areas and selected drainage divisions across Australia	3
Figure 1.2 Schematic diagram of key components and concepts in the establishment of a greenfield irrigation development	7
Figure 2.1 The Flinders and Gilbert catchments within the Gulf region of northern Australia	10
Figure 2.2 The Flinders catchment	11
Figure 2.3 Soil sampling sites and airborne geophysical survey flight lines of the Flinders catchment	14
Figure 2.4 Schematic representation of digital soil mapping method	15
Figure 2.5 Availability of rainfall data in the Flinders catchment	16
Figure 2.6 Crop yield (rice) and applied irrigation water	27
Figure 3.1 Schematic diagram of key natural components and concepts in the establishment of a greenfield irrigation development	34
Figure 3.2 Simplified surface geology of the Flinders catchment	37
Figure 3.3 Soil generic group (SGG) classes for the Flinders catchment	40
Figure 3.4 Surface soil pH of the Flinders catchment	42
Figure 3.5 Minimum soil depth of the Flinders catchment	42
Figure 3.6 Soil surface texture of the Flinders catchment	43
Figure 3.7 Soil permeability of the Flinders catchment	44
Figure 3.8 Plant available water capacity in the Flinders catchment	45
Figure 3.9 Electrical conductivity in soils of the Flinders catchment	46
Figure 3.10 Typical synoptic systems influencing the Flinders catchment	47
Figure 3.11 Mean annual rainfall and mean annual potential evaporation under Scenario A	48
Figure 3.12 Rainfall under Scenario A for the Flinders catchment	49
Figure 3.13 Potential evaporation under Scenario A for the Flinders catchment	49
Figure 3.14 Rainfall deficit under Scenario A for the Flinders catchment	49
Figure 3.15 Rainfall and potential evaporation under Scenario A averaged across the Flinders catchment	50
Figure 3.16 Mean annual rainfall and potential evaporation under Scenario A averaged over the Flinders catchment	51
Figure 3.17 Rainfall variability around Australia under Scenario A	52
Figure 3.18 Runs of wet and dry years in the Flinders catchment under Scenario A	53
Figure 3.19 Percentage change in mean annual rainfall and potential evaporation under Scenario C relative to Scenario A	54

Figure 3.20 Spatial distribution of mean annual rainfall across the Flinders catchment under scenarios Cwet, Cmid and Cdry
Figure 3.21 Mean monthly rainfall and potential evaporation for the Flinders catchment under scenarios A and C
Figure 3.22 Schematic diagram of terrestrial water balance in the Flinders catchment
Figure 3.23 Major aquifers of the Flinders catchment57
Figure 3.24 Schematic cross-section highlighting the connectivity between aquifers of the Carpentaria and Karumba basins of the Great Artesian Basin
Figure 3.25 Groundwater salinity in the Flinders catchment with the recharge area of the Great Artesian Basin and the location of airborne electromagnetic flight lines shown in Figure 3.26 and Figure 3.27
Figure 3.26 Satellite image and conductivity-depth section for flight line 1032560
Figure 3.27 Satellite image and conductivity-depth section for flight line 1021162
Figure 3.28 Map of mean annual groundwater recharge in the Flinders catchment under Scenario A63
Figure 3.29 Likelihood of groundwater inflow at river and waterhole sampling sites in the Flinders catchment65
Figure 3.30 Main rivers and streamflow gauging stations of the Flinders catchment
Figure 3.31 Change in catchment area along the Flinders River from Glendower to Flinders river mouth67
Figure 3.32 Change in catchment area along the Cloncurry River from Agate Downs to confluence with Flinders River
Figure 3.33 Mean annual rainfall and runoff across the Flinders catchment under Scenario A
Figure 3.34 Maps showing 20%, 50% and 80% exceedance annual runoff across the Flinders catchment under Scenario A
Figure 3.35 Runoff in the Flinders catchment under Scenario A69
Figure 3.36 Cloncurry River upstream of Cloncurry (January 2013)69
Figure 3.37 Median annual streamflow (i.e. 50% exceedance) in the Flinders catchment under Scenario A72
Figure 3.38 20% and 80% exceedance of annual streamflow in the Flinders catchment under Scenario A73
Figure 3.39 Flood inundation map of Flinders catchment74
Figure 3.40 Comparative spatial extent and temporal variation of inundation
Figure 3.41 Instream waterhole evolution76
Figure 3.42 Location of key aquatic refugia identified in the Flinders catchment. Inset shows river reaches investigated77
Figure 4.1 Schematic diagram of key components of the living and built environment to be considered in the establishment of a greenfield irrigation development
Figure 4.2 Characteristics of the Flinders River
Figure 4.3 Extent of fish surveys in Flinders catchment87
Figure 4.4 Saw-shelled turtle captured in the Gilbert catchment
Figure 4.5 Example of a typical turbid waterhole in the Flinders River
Figure 4.6 Status of regional ecosystem biodiversity status for the Flinders catchment
Figure 4.7 Spatial representation of important ecological assets across the Flinders catchment

Figure 4.8 Diagram of Indigenous dam from the Flinders area	96
Figure 4.9 Current native title determinations and applications in the Flinders catchment	98
Figure 4.10 Indigenous land use agreements and Indigenous-controlled pastoral leases in the Flinders catchment	99
Figure 4.11 Total live cattle export from Australia, September 1992 to September 2012	112
Figure 4.12 Current mining and mineral exploration and development leases in the Flinders catchment.	114
Figure 4.13 Petroleum, geothermal and coal exploration licences and existing dams in the Flinders catchment	115
Figure 4.14 Chinaman Creek Dam looking upstream	117
Figure 4.15 Corella River Dam looking upstream	118
Figure 4.16 Multi-combination vehicles	119
Figure 4.17 Queensland infrastructure map showing accessibility of heavy vehicles, ports and railways in Queensland and the Flinders catchment	120
Figure 4.18 Flinders catchment infrastructure map showing accessibility of heavy vehicles, ports, railways and high voltage powerlines	121
Figure 5.1 Schematic diagram of key engineering and agricultural components to be considered in the establishment of a greenfield irrigation development	132
Figure 5.2 Schematic diagram of an embankment dam	135
Figure 5.3 DamSite model results for the Flinders catchment overlain on transparent geology and shaded relief map	138
Figure 5.4 Cost of water in \$/ML versus cumulative divertible yield at 85% annual time reliability	143
Figure 5.5 Cave Hill dam site looking upstream	145
Figure 5.6 Dam cross-section, height, volume and reservoir surface area for Cave Hill dam site	145
Figure 5.7 Cave Hill Dam depth of inundation and property boundaries	146
Figure 5.8 Annual time reliability and volumetric reliability for Cave Hill dam under scenarios A and C	147
Figure 5.9 Comparisons of inundated area with and without the construction of Cave Hill dam under Scenario A	147
Figure 5.10 Regional ecosystems inundated by the potential Cave Hill dam reservoir at full supply level.	148
Figure 5.11 A depiction of the O'Connell Creek offstream storage, looking upstream	149
Figure 5.12 Dam cross-section, height, volume and reservoir surface area for O'Connell Creek offstream storage	150
Figure 5.13 O'Connell Creek offstream storage depth of inundation and property boundaries	150
Figure 5.14 Annual time and volumetric reliability for O'Connell Creek offstream storage under scenarios A and C	151
Figure 5.15 Regional ecosystems inundated by the potential O'Connell Creek offstream storage at full supply level	152
Figure 5.16 Porcupine Creek dam site looking upstream	153
Figure 5.17 Dam cross-section, height, volume and reservoir surface area for Porcupine Creek potential dam site	153
Figure 5.18 Porcupine Creek dam depth of inundation	154

Figure 5.19 Annual time reliability and volumetric reliability for Porcupine Creek dam under scenarios A and C155
Figure 5.20 Comparisons of inundated area with and without the construction of Porcupine Creek dam under Scenario A
Figure 5.21 Regional ecosystems inundated by the Porcupine Creek dam at full supply level156
Figure 5.22 Schematic diagram of sheet piling weir157
Figure 5.23 Rectangular ring tank160
Figure 5.24 Annual volume of streamflow extracted versus annual time reliability for streamflow gauge 915204A
Figure 5.25 Annual volume of streamflow extracted versus annual time reliability for streamflow gauge 915008A
Figure 5.26 Annual volume of streamflow extracted versus annual time reliability for streamflow gauge 915003A
Figure 5.27 Land suitability for offstream water storages in the Flinders catchment
Figure 5.28 Reported conveyance losses from irrigation systems across Australia (ANCID, 2001)168
Figure 5.29 Efficiency of different types of irrigation systems169
Figure 5.30 Probability of crop yield potential for dryland and fully irrigated mungbean sown in Richmond climate on 15 January
Figure 5.31 Probability of yield potential for dryland and fully irrigated sorghum (grain) sown in Richmond climate on 15 January
Figure 5.32 Probability of yield potential for dryland and fully irrigated cotton sown in Richmond climate on 15 January
Figure 5.33 Crop yield plotted against applied irrigation water in Richmond climate181
Figure 5.34 Applied irrigation water for planting on the 15th day of each month for sorghum (grain) at Richmond
Figure 5.35 Crop yield for planting on the 15th day of each month for sorghum (grain) at Richmond187
Figure 5.36 The area associated with each land suitability class for a selection of 13 crops in the Flinders catchment
Figure 5.37 Modelled land suitability for sorghum (grain). Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water
Figure 5.38 Sorghum (grain)
Figure 5.39 Modelled land suitability for mungbean. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water
Figure 5.40 Mungbean
Figure 5.41 Modelled land suitability for Rhodes grass and sorghum (forage). Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water
Figure 5.42 Bambatsi
Figure 5.43 Modelled land suitability for lablab and lucerne. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water
Figure 5.44 Lablab

Figure 5.45 Modelled land suitability for cotton. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water	.206
Figure 5.46 Cotton	.206
Figure 5.47 Modelled land suitability for sugarcane. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water	.209
Figure 5.48 Sugarcane	.209
Figure 5.49 Modelled land suitability for sweet corn and tomato. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water	.212
Figure 5.50 Sweet corn	.212
Figure 5.51 Modelled land suitability for mango and Indian sandalwood. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water	.215
Figure 5.52 Indian sandalwood	.215
Figure 5.53 Modelled land suitability for mango and Indian sandalwood. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water	.219
Figure 5.54 Mangoes	.219
Figure 6.1 Schematic diagram of key components and concepts in the establishment of a greenfield irrigation development.	.228
Figure 6.2 Growth patterns of beef cattle in northern Australia	.231
Figure 6.3 Land tenure in the Flinders catchment	.252
Figure 7.1 Schematic diagram of key components and concepts in the establishment of a greenfield irrigation development	.256
Figure 7.2 Steady-state watertable level for (a) various recharge rates and hydraulic conductivities (K) and (b) an irrigation area of 100 ha, at varying distances to the river	.261
Figure 7.3 Steady-state watertable level for an irrigation area of 1000 ha, plotted against distance to the river	.261
Figure 7.4 Steady-state watertable level at varying distances to the river for an irrigation area of (a) 250 ha and (b) 500 ha	.262
Figure 7.5 Steady-state watertable level at varying distances (d) to the river for (a) an irrigation area of 1000 ha and (b) various irrigation area and distance combinations	.262
Figure 7.6 Watertable level for various aquifer diffusivities (D) and distances to river (d), for an irrigation area of 100 ha and recharge rate of 100 mm/year	.263
Figure 7.7 Flux response for different aquifer diffusivities, for different hydraulic conductivities (K), specify yields (Sy) and distances to river (d)	.263
Figure 7.8 Variation in watertable level beneath two neighbouring 500-ha irrigation developments at different distances of separation	.264
Figure 7.9 Conductivity–depth section (lower panel) for flight line 10230. Location of flight line on a satellite image is shown in upper panel. This flight line transects the Flinders River downstream of Hughenden	.265
Figure 8.1 Schematic diagram illustrating the components of the case study for an irrigation development near Cloncurry, with feedlot, abattoir and Cave Hill dam	.277
Figure 8.2 (a) Satellite map and (b) relief map of the area surrounding Cave Hill dam	.280
Figure 8.3 (a) Soil generic group map and (b) land suitability map of the area surrounding Cave Hill dam for spray-irrigated sorghum (grain)	.282

Figure 8.4 Landscape of the potential Cave Hill dam irrigation development, facing east	.283
Figure 8.5 (a) Monthly rainfall and (b) monthly potential evaporation, under Scenario A at Cloncurry	.284
Figure 8.6 (a) Maximum monthly temperature and (b) minimum monthly temperature, under Scenario A at Cloncurry	.284
Figure 8.7 Annual streamflow at the Cave Hill dam site under Scenario A	.285
Figure 8.8 Crop yield versus applied irrigation water under Scenario A for sorghum (grain) in the Cloncurry area	.290
Figure 8.9 Mean annual applied irrigation water supplied to the field in (a) ML and (b) ML/ha under Scenario B for the irrigation development associated with the Cave Hill dam	.292
Figure 8.10 (a) Median annual applied irrigation water supplied to the field and (b) percentage of years that the maximum area is planted under Scenario B for the irrigation development associated with the Cave Hill dam	.292
Figure 8.11 Ratio of evaporation from the reservoir to the applied irrigation water under Scenario B for the irrigation development associated with the Cave Hill dam	.293
Figure 8.12 (a) Percentage of time the volume of the reservoir is less than dead storage volume and (b) percentage of time the volume of the reservoir is less than 20% of the full supply level volume under Scenario B for the irrigation development associated with the Cave Hill dam	.293
Figure 8.13 Mean annual streamflow quotient at (a) gauge 915203A and (b) gauge 915003A for the irrigation development associated with the Cave Hill dam	.294
Figure 8.14 (a) Median of the 30-year mean values (M30M) for crop yield and (b) standard deviation of the 30-year mean values (S30M) for crop yield under Scenario B for the irrigation development associated with the Cave Hill dam	.295
Figure 8.15 Annual crop yield from the irrigation development under Scenario B for three different scheme areas	.295
Figure 8.16 (a) Median of the 30-year mean values (M30M) for specific yield and (b) percentage of time 82,500 t of grain is exceeded under Scenario B for the irrigation development associated with the Cave Hill dam	.296
Figure 8.17 (a) Median of the 30-year mean values (M30M) for gross margin and (b) median of the 30- year mean values for gross margin per hectare under Scenario B for the irrigation development associated with the Cave Hill dam	.297
Figure 8.18 (a) Median of the 30-year net present values and (b) standard deviation of the 30-year net present values under Scenario B for the irrigation development associated with the Cave Hill dam	.298
Figure 8.19 (a) Median of the 30-year net present values and (b) standard deviation of the 30-year net present values under Scenario B for the irrigation development associated with the Cave Hill dam	.299
Figure 8.20 Gross margins for sorghum (grain) under Scenario B for the irrigation development associated with the Cave Hill dam, with a scheme area of 12,000 ha and crop area decision of 4 ML/ha: (a) time series and (b) box plot	.300
Figure 8.21 Percentage exceedance plots of (a) net present value and (b) internal rate of return under Scenario B for the scheme-scale irrigation development of 12,000 ha associated with the Cave Hill dam.	.301
Figure 8.22 Percentage exceedance plots of net present value under Scenario B for the farm-scale irrigation development of 12,000 ha associated with the Cave Hill dam	.302
Figure 8.23 Change in depth to watertable for different values of saturated hydraulic conductivity (K): (a) low recharge rate of 67 mm/year and (b) high recharge rate of 118 mm/year	.303
Figure 9.1 Schematic diagram illustrating the components of the case study for an irrigation development near Maxwelton, with O'Connell Creek offstream storage	.309

Figure 9.2 (a) Satellite map and (b) relief map of the area surrounding O'Connell Creek offstream storage
Figure 9.3 (a) Soil generic group map and (b) land suitability map for the O'Connell Creek offstream storage and Maxwelton area for sugarcane (spray irrigation)
Figure 9.4 Landscape at Maxwelton looking south
Figure 9.5 Conductivity–depth section (lower panel) for flight line 10,490 (see Figure 9.2), and location of flight line on a satellite image (upper panel)
Figure 9.6 Conductivity-depth section (lower panel) for flight line 10,690 (see Figure 9.2), and location of flight line on a satellite image (upper panel)
Figure 9.7 (a) Monthly rainfall and (b) potential evaporation under Scenario A at Richmond
Figure 9.8 (a) Maximum monthly temperature and (b) minimum monthly temperature, Scenario A at Richmond
Figure 9.9 Annual streamflow at the O'Connell Creek offstream storage under Scenario A
Figure 9.10 Crop yield versus irrigation water under Scenario A for rice in the Maxwelton area
Figure 9.11 Mean annual applied irrigation water supplied to the field in (a) ML and (b) ML/ha under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.12 (a) Median annual applied irrigation water supplied to the field and (b) percentage of years that the maximum area is planted under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.13 (a) Ratio of evaporation from the reservoir to the applied irrigation water and (b) percentage of time the volume of the reservoir is less than 20% of the full supply level volume under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.14 Median annual streamflow quotient at (a) dummy gauge 943 and (b) gauge 915003A for the irrigation development associated with the O'Connell Creek offstream storage. Virtual gauge 943 is a node created within the Source river model
Figure 9.15 (a) Median of the 30-year mean values (M30M) for crop yield and (b) standard deviation of the 30-year mean values (S30M) for crop yield under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.16 Crop yield from the total scheme area under Scenario B for three different scheme areas. Lines correspond to circles show in Figure 9.15
Figure 9.17 (a) Median of the 30-year mean values (M30M) for specific yield and (b) percentage of time 50,000 t of grain is exceeded under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.18 (a) Median of the 30-year mean values (M30M) for gross margin per hectare and (b) median of the 30-year mean values (M30M) for gross margin under Scenario B, for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.19 (a) Median of the 30-year mean values (M30M) for net present value and (b) standard deviation of the 30-year mean values (S30M) for net present value under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.20 (a) Median of the 30-year mean values (M30M) for net present value and (b) standard deviation of the 30-year mean values (S30M) for net present value under Scenario B for the irrigation development associated with the O'Connell Creek offstream storage
Figure 9.21 Gross margins for rice under Scenario B for the 5300-ha irrigation development associated with the O'Connell Creek offstream storage

Figure 9.22 Percentage exceedance plots for the scheme-scale analysis of (a) net present value and (b) internal rate of return under Scenario B for the 5300-ha irrigation development associated with the O'Connell Creek offstream storage
Figure 9.23 Percentage exceedance plots for the farm-scale analysis of (a) net present value and (b) internal rate of return under Scenario B for the 5300-ha irrigation development associated with the O'Connell Creek offstream storage
Figure 9.24 Change in depth to watertable for different values of saturated hydraulic conductivity (K)335
Figure 10.1 Schematic diagram illustrating the components of the case study for the water harvesting irrigation development in the Flinders catchment
Figure 10.2 (a) Relief and broad-scale flood inundation map and (b) offstream water storage suitability map of the Flinders catchment
Figure 10.3 (a) Soil generic group map and (b) land suitability map of surface-irrigated cotton in the Flinders catchment
Figure 10.4 Area associated with each land suitability class for a selection of 13 crops in the Flinders catchment, excluding land inundated by flooding
Figure 10.5 Area associated with each land suitability class for a selection of 13 crops in the Flinders catchment, excluding land underlain by the Rolling Downs Group (Figure 10.3b)
Figure 10.6 Area associated with each land suitability class for a selection of 13 crops in the Flinders catchment, excluding land inundated by flooding, underlain by the Rolling Downs Group (Figure 10.3b) or more than 5 km from a river of catchment area greater than 250 km ²
Figure 10.7 (a) Monthly rainfall and (b) monthly potential evaporation at Richmond under Scenario A349
Figure 10.8 (a) Monthly maximum temperature and (b) monthly minimum temperature at Richmond under Scenario A
Figure 10.9 Reliability of extracting water up to the annual entitlement for ten irrigators for three 'storage size to entitlement-to-pump capacity' (SSEPC) ratios (5, 10 and 20) by 1 February under Scenario B320
Figure 10.10 Reliability of extracting water up to the annual entitlement for ten water harvesting users for three 'storage size to entitlement-to-pump capacity' (SSEPC) ratios (5, 10 and 20) by 1 July under Scenario B320
Figure 10.11 Reliability of extracting water up to the entitlement for ten water harvesting users by 1 January under Scenario B. Assuming a 'storage size to entitlement-to-pump capacity' (SSEPC) ratio of 5
Figure 10.12 Reliability of extracting water up to the entitlement for ten water harvesting users by 1 February under Scenario B. Assuming a 'storage size to entitlement-to-pump capacity' (SSEPC) ratio of 5
Figure 10.13 Reliability of extracting water up to the entitlement for ten water harvesting users by 1 July under Scenario B. Assuming a 'storage size to entitlement-to-pump capacity' (SSEPC) ratio of 5359