

Woomera Hanger 5

Environmental Baseline Measurements

Document No. | 706815_01_Rev01 December 2018 684331

JACOBS[®]

CSIRO – Woomera Site Measurements

Project No:	706815
Document Title:	Environmental Baseline Measurements at Hanger 5
Document No.:	706815_01_Rev01
Revision:	Revision 01 - Revised Draft for Client Review
Date:	December 2018
Client Name:	Commonwealth Scientific and Industrial Research Organisation (CSIRO)
Client No:	684331
File Name:	\\SYDFPP03\es\Projects\706815 - Woomera Site Measurements for CSIRO\D4-Deliverables\Environmental
	Baseline Measurements

CH2M HILL Australia Pty Ltd (On December 15, 2017, CH2M HILL Companies Ltd. and its subsidiaries, including CH2M HILL Australia Pty. Ltd., became part of Jacobs Engineering Group Inc. [Jacobs])

177 Pacific Highway1999 Bryan Street, Suite 1200 Dallas, Texas 75201 United States T +1.214.638.0145 9928 2100 www.jacobs.com

© Copyright 2018 Jacobs Engineering Group Inc. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Contents

Execut	ive Summary	i
Finding	js	i
1.	Introduction	1
1.1	Objectives	1
1.2	Scope of Works	2
1.3	Guidance Documents	
2.	Site Location and Description	3
2.1	Regional Geology and Hydrology	3
2.2	Site Features	3
2.3	Surrounding Land Use	4
2.4	Site Services	4
2.5	Previous Environmental Investigations	4
2.5.1	Historical Environmental Audits	4
2.5.2	ARPANSA Inspection April 2016	4
2.5.3	CSIRO Site Visit November 2016	5
3.	Contamination Status	7
3.1	Contaminants of Potential Concern and Preliminary Conceptual Site Model	7
3.1.1	Radioactive Elements of Concern and Analysis of these Elements	7
4.	Site Assessment Criteria	9
4.1	Soil Criteria	9
4.1.1	Heath Investigation Levels	9
4.1.2	Health Screening Levels	10
4.1.3	Natural Radionuclides in Soil	11
4.1.4	Waste Classification of Excavated Soil	12
5.	Site Investigation Methodology	13
5.1	Investigation Works	13
5.2	Service Clearance	13
5.3	Measurement of Emissions from the Annex	13
5.4	Systematic, Gridded Soil Sampling	13
5.5	Composite Soil Sampling	15
5.6	Laboratory Analytical Schedule	15
5.7	Field and Data Quality Assurance and Quality Control	15
5.8	Soil Sample Storage after Analysis	16
6.	Data Validation and Quality Assessment	17
7.	Observations and Results	18
7.1	Gamma Survey of the Exterior of the Annex	18
7.2	Field Observations and Measurements	18
7.3	Soil Analytical Results	18
7.3.1	Composite Sampling – Chemical Analysis	18
7.3.2	Grid Sampling – Chemical Analysis	18

7.3.3	Grid Sampling – Radiological Analysis	19
7.3.4	Waste Classification of Excavated Soil	19
8.	Discussion	20
8.1	Composite Soil Samples of Stained Layer Under Bitumen	20
8.2	Heavy Metal Analysis of Site Soil Samples	20
8.3	Radiological Analysis of Site Soil Samples	21
9.	Limitations	23
10.	References	24
10.1	Websites	24
10.2	Documents	24

Tables

Table 4-1: Selected Health Investigation Levels	. 10
Table 4-2: Selected Health Screening Levels – For Information Only	
Table 4-3: Natural Radionuclide Content in Soil	. 12
Table 5-1: Laboratory Analytical Schedule	. 15

Appendices

Appendix A - Figures	25
ppendix B – ARPANSA Soil Sampling - Laboratory Reports	
Appendix C - Exterior Dose Rate Measurements at Annex	27
ppendix D – Laboratory Results for Chemical Analysis	28
ppendix E - Laboratory Results for Radiological Analysis	29
ppendix F –Comparison of Composite Samples vs. Chemical Screening Criteria	
ppendix G - Comparison of Gridded Samples vs. Chemical Screening Criteria	31
ppendix H – Comparison of Gridded Samples vs. Natural Radiological Criteria	

Figures - Appendix A

- Figure 1 Location of Annex, South Australia
- Figure 2 Site Plan
- Figure 3 Surrounding Land Use
- Figure 4 Preliminary Conceptual Site Model
- Figure 5 Soil Sampling Plan
- Figure 6 Composite Soil Sampling Locations
- Figure 7 Exceedances of Residential Soil Criteria

Figure 8 – Box and Whisker Plot of Uranium. Thorium and Radium-226 vs The Natural Distribution in Soil

JACOBS[®]

Acronyms and Abbreviations

µSv/hr	Micro-Sieverts per Hour
ANSTO	Australian Nuclear Science and Technology Organisation
ARPANSA	Australian Radiation Protection and Nuclear Safety Agency
AS	Australian Standard
As	Arsenic
B(a)P	Benzo(a)pyrene
B(a)P TEQ	Benzo(a)pyrene Toxicity Equivalent Quotient
Bq	Becquerel
Bq/kg	Becquerel per kilogram
BTEX	Benzene, Toluene, Ethylbenzene and Xylene
BTEXN	BTEX and Naphthalene
Cd	Cadmium
CoC	Chain of Custody
Cr	Chromium
CSIRO	Commonwealth Scientific and Industrial Research Organisation
Cu	Copper
EPA	Environment Protect Authority
GPS	Global Positional System
H5	Hanger 5
HIL	Health Investigation Level
HSL	Health Screening Level
Hg	Mercury
IAEA	International Atomic Energy Agency
LOR	Limit of Reporting
m	Metre
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Litre
mm	Millimetres
NATA	National Association of Testing Authorities
NEMP	National Environmental Management Plan
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
Ni	Nickel
Pb	Lead
PAH	Polycyclic Aromatic Hydrocarbons
CoPC	Contaminants of Potential Concern
PCSM	Preliminary Conceptual Site Model

JACOBS[®]

PEF	Potency Equivalence Factor
SWMS	Safe Work Method Statement
Th	Thorium
TRH	total recoverable hydrocarbons
U	Uranium
UCL	Upper Confidence Limit
UNSCEAR	United Nations Scientific Committee on the Effects of Atomic Radiation
WPA	Woomera Prohibited Area

Executive Summary

CH2M HILL Australia Pty Ltd (Jacobs) was commissioned by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) to prepare an environmental baseline survey around the radioactive waste store located in the Annex to Hanger 5, Evetts Field, Woomera Prohibited Area (WPA), South Australia. CH2M was acquired globally by Jacobs in December 2017 and in this report CH2M will be referred to as Jacobs.

The store (the Annex) has been used to store radiologically contaminated soil that was discovered at the former CSIRO and Aeronautical Research Laboratory at Fishermans Bend in Victoria. The soil had been contaminated with residues from uranium and thorium extraction processes

This report is to be incorporated in a compendium of baseline reports collated by CSIRO. This portion of the environmental baseline survey is mainly focused on soil sampling. The objectives of this report include:

- Documentation of the existing soil's radiological and chemical nature surrounding the Annex
- Provision of data suitable for a baseline monitoring study, as required by the International Atomic Energy Agency's safety standards
- Investigation of a thin, stained layer of soil underlying the bitumen surrounding the Annex, to determine if this layer was contaminated due to historic soil stabilisation processes
- Constructing a preliminary conceptual site model for the Annex, which graphically represents possible contamination dispersion
- Investigation of a previously identified, localised area which had radiological emissions that were above average (when compared with the surrounding areas)

A secondary objective was to conduct a survey of gamma emissions from the Annex. The primary survey was to be carried out by the Australian Nuclear Safety and Technology Organisation (ANSTO), and this primary survey is reported in a separate ANSTO report¹.

The soil sampling was undertaken on a systematic, gridded sampling pattern around the Annex, and chemical and radiological characteristics of the soil was analysed by off-site laboratories. Samples were taken of the surface layer (0-200 mm) only.

A portion of the site was to be excavated for the construction of a concrete slab in July 2018. As a consequence, the site investigation was carried out in two mobilisations. The first mobilisation examined the areas where the slab was to be built, and the second mobilisation examined the balance of the Site. The objective was to determine if the soil had any impacts that would act as an impediment to the soil being placed in the Woomera West landfill.

Findings

The analysis of the soil samples showed:

- Besides the thin layer of stained soil, there are no visual or analytical indications of contamination impacts in the soil sampled. Laboratory analysis of the stained layer indicates that there is no impediment to incorporation of this stained layer with other excavated soils and placement in the landfill at Woomera West.
- No soil sample exceeded any criteria for Commercial/Industrial land use, which is the current Site use
- Although the land use is not designated for residential use, the soil was also compared to residential criteria
- When soil analyses were compared against residential criteria, the results indicated the soil was suitable for residential land use, except for one sample of the 157 samples analysed, which exceed the criteria of

¹ ARPANSA, Inspection Report, Report No: R16/05292, Licence Holder: CSIRO Hangar 5 Annex, Licence Number: S0013, Date of inspection: 27-29 April 2016, <u>https://www.arpansa.gov.au/sites/g/files/net3086/f/legacy/pubs/regulatory/inspections/2016/R16-05292.rtf</u>

lead at one location. The area where this exceedance occurred is not destined for excavation and transport to Woomera West landfill.

- When soil samples were compared to the normal, world-wide distribution range for natural soils, it was found that:
 - The uranium content is below the minimum of the published range of natural soils
 - The median thorium content is approximately equal to the minimum of the published range of natural soils
 - The median and mean radium-226 content is below the minimum of the published range of natural soils.
- For the soil being transported to Woomera West and stockpiled separately, the chemical and radiological content of the soil does not represent an impediment to the soil being transported to the landfill. This soil stockpile is considered suitable for general reuse

1. Introduction

CH2M HILL Australia Pty Ltd (Jacobs) was commissioned by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) to conduct an environmental baseline survey around the radioactive store located in the Annex to Hanger 5, Evetts Field, Woomera Prohibited Area (WPA), South Australia.

The store (the Annex) has been used to store radiologically contaminated soil that was discovered at the former CSIRO and Aeronautical Research Laboratory at Fishermans Bend in Victoria. The soil had been contaminated with residues from radiological extraction processes carried out by CSIRO. It is understood the residues arose from experiments conducted in the 1950s to extract uranium and thorium. In 1990, the residues and soil mixed in with residues soil was excavated at Fishermans Bend and placed into drums, which were then transported and temporarily stored at the Australian Nuclear Science and Technology Organisation (ANSTO) facility at Lucas Heights, in New South Wales. The drums were subsequently transported to the Annex, located on Department of Defence land at Woomera, in 1994 and 1995.

1.1 Objectives

As indicated in the International Atomic Energy Agency (IAEA) Safety Standards Series No. RS-G-1.8², baseline monitoring studies (which include both monitoring and collection of available statistical data) should be carried out to establish the existing environmental radiation levels and activity concentrations (baseline), against which subsequent impacts can be compared.

This report is to be incorporated in a compendium of baseline reports collated by CSIRO. This portion of the environmental baseline survey is mainly focused on soil sampling.

The objective of the Jacobs work, and documented in this report, was to conduct a portion of the baseline environmental monitoring program, which included:

- Soil sampling to document the existing soil's radiological and chemical characteristics surrounding the Annex
- Provision of data suitable for a baseline monitoring study, as required by the IAEA safety standards
- Investigation of a thin, stained layer of soil underlying the bitumen surrounding the Annex, to determine if this layer is contaminated due to historical soil stabilisation practices
- Constructing a preliminary conceptual site model (PCSM) for the Annex, which graphically represents possible contamination dispersion
- Investigation of a previously identified localised area, which had radiological emissions that were above average when compared with the surrounding areas.

A secondary objective was to conduct a survey of gamma emissions from the Annex. The primary survey was to be carried out by the ANSTO, and this primary survey is reported in a separate ANSTO report³.

Note that in-situ gamma surveys of the soil and the Annex, and studies of radon emissions from soil, are being undertaken by others. The data and reports from this work will form part of the compendium of reports collated by CSIRO.

² IAEA Environmental and Source Monitoring for Purposes of Radiation Protection; Safety Guide No. RS-G-1.8

³ Boardman, D and Hagan, S, Woomera Characterisation: Gamma Survey of Area 1, ANSTO Report Number R180057S, 15 May 2018

1.2 Scope of Works

Preliminaries

- Prepare a Work, Health, Safety and Environment Plan (WHSEP), inclusive of a Safe Work Method Statement (SWMS) for the execution of the sampling.
- Discussion with Defence to determine if underground services are present in proximity to the proposed soil sampling locations.

Investigation Works

- Measure the gamma emissions from the wall of the Annex.
- Soil sampling Undertake systematic (grid-based) and land-form specific baseline soil sampling of the topmost 200 mm of soil.
- Soil analysis analyse the chemical composition of the soil samples for heavy metals, uranium and thorium, and a subset of samples for specific radionuclides by gamma spectrometry.
- Submit samples to National Association of Testing Authorities (NATA) accredited laboratories for analysis of contaminants of potential concern (CoPC).
- Compare the reported chemical analyses results to screening criteria presented in National Environment Protection Council, *National Environment Protection (Assessment of Site Contamination) Measure (NEPM*, 1999 (2013 amendment) as applicable to the identified land use.
- Preparation of this Environmental Baseline report.

1.3 Guidance Documents

Relevant state and national assessment guidelines were considered during the development of this environmental baseline report, including:

- Australian Standard (AS) 4482.1 2005, Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: non-volatile and semi-volatile compounds
- NEPM (1999, 2013 amendment)
- South Australian Environment Protection Authority, *Guidelines for the Assessment and Remediation of Site Contamination*, July 2018 (we note that these guidelines default to NEPM guidelines where applicable)

2. Site Location and Description

The Annex is located approximately 50 km from the Woomera township, as indicated on **Figure 1** in **Appendix A.** An aerial view, with site features indicated, is presented on **Figure 2** in **Appendix A**. The area located inside the fence-line is considered as the "Site" (**Figure 2**). A large portion of the Site had a bitumen surface, which was degrading in places. A concrete slab was constructed over portions of the area surrounding the Annex, as indicated on **Figure 2** in **Appendix A**. Construction of the concrete slab commenced in July 2018.

The Site and the surrounding land is understood to be Crown land, managed under the South Australia Crown Land Management Act 2009. The land is military grounds (Commonwealth owned). According to the South Australia Department of Environment and Water website⁴, the land and its surroundings are described as:

Parcel Identifier:	H833800SE358
Title:	CT5864/105
Property:	Lot 358
Address:	Stuart Highway
Suburb:	Wirraminna
State:	South Australia

In accordance with NEPM (1999, 2013 amendment), the Site land use would be classified as for Commercial / Industrial purposes.

2.1 Regional Geology and Hydrology

The area in which the Site is located is described in references as the Koolymilka regional area, which is reported⁵ to be underlain at shallow depth by Cretaceous aged kaolinitic siltstone, shale and sandstone with erratic boulders, gravels and conglomerates.

A previous investigation⁶ at the Site reported the natural soil profile below the bitumen surface to comprise a layer of orange brown sand to clayey sand over medium and high plasticity, yellow and orange brown clay.

Groundwater in the Koolymilka area is within an unconfined aquifer, at least 25 m deep, with salinity more than 12,000 milligrams per litre (mg/L)⁷. The recharge rate is less than 1 mm per year.

2.2 Site Features

With reference to Figure 2 in Appendix A, the Site (within the fence-line) consists of:

- The Annex and Hanger 5 (H5) structures, which all have concrete floors
- The surrounding hardstand, which in July 2018 was predominately degrading bitumen to the north and west and some areas of concrete to the north of H5 (At the time of this December 2018 revision of this report, the concrete areas depicted in Figure 2 in Appendix A had been constructed)
- Offices, mess room, ablution block and covered breezeways north of H5
- Unsealed soil east and south of H5

⁴ <u>http://maps.sa.gov.au/plb/</u>

⁵ Geological Survey of South Australia Andamooka Map, SA Geological Atlas Series Sheet SH 53-12, 1:250,000, May 22, 2012, Marree Subgroup (Bulldog Shale)

⁶ Wallbridge Gilbert Aztec (WGA), Hangar 5 Hardstand Pavement, Geotechnical Investigation, 10 November 2017

⁷ Kellett, J; et al, Hydrogeological Assessment of a Region in Central Northern South Australia, Bureau of Rural Sciences, 1999

The Site and the surrounding area is gently graded with drainage lines directing surface flow away from the structures and fenced area. Outside of the fence-line, greener areas can be seen, particularly west of the Annex. These are local (minor) depressions, which accumulate rainwater run-off from the hardstand.

2.3 Surrounding Land Use

The surrounding land use is associated with rocket range activities, namely Range Head E Launcher site, as well as the adjacent (disused) Evetts Field airfield (refer to **Figure 3** in **Appendix A**). It is understood that the associated activities, and possible ordinance, have not impacted the soil within the fenced area.

With regard to radiological areas in the surroundings:

- The Olympic Dam mine (the largest uranium mine in the world) is located approximately 100 km north east of the Site
- The Maralinga test site, where nuclear bombs were detonated between 1956 and 1963, is located approximately 600 km west of the Annex.

2.4 Site Services

No service maps are available from Defence. Consequently, the possible location of services was discussed with Defence personnel, and known services were avoided during soil sampling.

2.5 Previous Environmental Investigations

2.5.1 Historical Environmental Audits

Investigations have been carried out and documented in several radiological "Environmental Audits", including the following:

- Australian Radiation Laboratory⁸, Environmental Audit of Evetts Field Waste Facility November 1996
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), *Environmental Audit of Evetts Field Waste Facility - January 2004,*
- CH2M HILL, March 2009 Environmental Audit, Hanger 5 Annex, Evetts Field, Woomera Test Facility, Aug 2009
- CH2M HILL, April 2013 Environmental Audit, Hangar 5 Annex, Evetts Field, Woomera Test Facility, April 2013

All of the above audits concluded that the radiation emanating from the Annex/store is not a concern for human health, the drums appear to be in good condition, and measured radon emissions are low.

2.5.2 ARPANSA Inspection April 2016

In April 2016, ARPANSA conducted an inspection of the Annex drum store. The ARPANSA Inspection Report⁹ found:

- Concerns regarding the future integrity of the drums. Evidence was sighted that indicates that the drums are now beginning to deteriorate rapidly
- A radiation measurement was taken that had elevated from 90 nSv.hr-1 to 2 μSv.hr-1 when compared to the same measurement conducted by ARPANSA eight (8) years ago. A spectrum was taken at this location confirming the presence of 226-Ra [radium-226]. It was unclear whether the elevated dose rate was due to the in-growth of daughter products or due to material that may have leaked from the drums.

April 2016, https://www.arpansa.gov.au/sites/g/files/net3086/f/legacy/pubs/regulatory/inspections/2016/R16-05292.rtf

 ⁸ The Australian Radiation Laboratory was replaced by ARPANSA, which was established by the Australian Radiation Protection and Nuclear Safety Act 1998 (ARPANS Act). ARPANSA, commenced operation on 5 February 1999. ARPANSA also replaced the Nuclear Safety Bureau.
 ⁹ ARPANSA, *Inspection Report, Report No: R16/05292, Licence Holder: CSIRO Hangar 5 Annex, Licence Number: S0013*, Date of inspection: 27-29

Document No. 706815_01_Rev01 – Revised Draft for Client Review

- There is also the potential for the build-up of hydrogen gas within the drums due to the hydrolysis of water mixed with concentrated thorium.
- There is the possibility that some of the drums may be leaking into the environment.

Because of these observations, ARPANSA inspectors collect soil samples, which were submitted for chemical and radiological analysis. These soil results were issued to CSIRO, and made available by CSIRO to Jacobs for incorporation into this report. The laboratory reports of the chemical and radiological analysis are included in **Appendix B**. The chemical analysis of the two soil samples¹⁰ were compared by Jacobs to the NEPM (1999, 2013 amendment) health intervention levels (HILs) for commercial/industrial land use. A thorough explanation of the HILs and other adopted assessment criteria is provided in **Section 4.1**. However, to interpret the ARPANSA results, a brief explanation is provided here.

HILs are scientifically based, generic assessment criteria designed to be used in the first screening stage of an assessment of potential risks to human health from contaminants. They are conservative and are based on reasonable, worst-case scenarios for four generic land use settings, namely:

- HIL A Residential with garden/accessible soil, also includes children's day care centres, preschools and primary schools
- HIL B Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats
- HIL C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths.
- HIL D Commercial/industrial such as shops, offices, factories and industrial sites.

The reported results from the two ARPANSA soil samples were compared to HIL D criteria (**Appendix B**), with the results below the screening criteria. To examine the data further, the results were compared to HIL A and HIL B residential criteria, with the results less than the conservative residential HILs.

The radiological analysis¹¹ of the six soil samples were compared by Jacobs to the world-wide mean natural radionuclide content in soil, as reported in Appendix B, Table 5 of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 report¹², which gives mean soil values for potassium-40 (140 to 850 Becquerels per kilogram (Bq/kg)), uranium-238 (16 to 110 Bq/kg), radium-226 (17 to 60 Bq/kg) and thorium-232 (11 to 64 Bq/kg). Comparison with these mean soil values is a valid appraisal and is used in other contexts, including by ARPANSA, in their report "*A Survey of Naturally Occurring Radioactive Material Associated with Mining*¹³". The ARPANSA soil samples reported detectable radionuclides for potassium-40 and radium-226, however the results were within the published range of mean soil values. The maximums reported were 450 ±54 Bq/kg for potassium-40 and 35.4 ±4.9 Bq/kg for radium-226.

In summary, the ARPANSA soil samples showed:

- No chemical analysis which exceeded NEPM (1999, 2013 amendment) commercial/industrial or residential HIL soil criteria
- No radiological analysis that exceeded UNSCEAR 2000 mean natural soil radionuclide content

2.5.3 CSIRO Site Visit November 2016

On 6 November 2017, a site visit was conducted by CSIRO, where informal gamma measurements were conducted of the soil outside the Annex. These field measurements identified one area of the Site where the soil had greater than average gamma emissions when compared to the surrounding soils. The area

¹⁰ ChemCentre Residues Laboratory, Report of Examination, Reference 15S2516, 8-Aug-2016.

¹¹ ARPANSA, Radioactive Analysis Report EA16-075 (Interim Report), received 30 May 2017,

¹² United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, UNSCEAR 2000, Report to the General Assembly, United Nations.

¹³ Long, S et al, A Survey of Naturally Occurring Radioactive Material Associated with Mining, ARPANSA, Technical Report No. 161, August 2012

(approximately 3 m by 4 m) was outlined with road paint for future investigation. The discovery of this area with above average emissions coincided with the location of above average gamma emission from the drums stored inside the Annex. In addition, a termite was discovered in one of the pallets in the same location.

The November site visit also visually confirmed the existence of a stained layer of soil underlying the bitumen. This layer was 2 - 4 mm thick on average. It was understood that an old practice of stabilising soil was to spray a heavy oil over the soil before putting on a bitumen surface. As the bitumen and soil were to be excavated for the construction of a concrete slab, there was a concern that the stained soil layer may exceed landfill acceptance criteria for the landfill at Woomera West (within the WPA).

3. Contamination Status

Besides the above average gamma readings from one area outside the Annex, there is no solid evidence of contamination escaping from the Annex. However, insufficient data has been collected to satisfy the IAEA Safety Standards Series No. RS-G-1.8, "*Environmental and Source Monitoring for Purposes of Radiation Protection*", which requires collection of a baseline of statistical data, to establish the existing environmental radiation levels and activity concentrations. This data is then used for subsequent comparisons, to determine if there are impacts arising from the material stored at the site.

As there is no solid evidence of contamination escaping from the Annex, and the depth to groundwater is approximately 25 m, no measurement of groundwater was considered necessary at this stage of the investigation.

3.1 Contaminants of Potential Concern and Preliminary Conceptual Site Model

A PCSM was developed for the Site (refer to **Figure 4** in **Appendix A**), and it included possible mechanisms for the transfer of radionuclides, including dispersion and reconcentration mechanisms. The following possible radiological sources of contamination were identified:

- Natural atmospheric and terrestrial radiological deposition
- Wind-blown dust or radon gas from Olympic Dam uranium mine, 100 km away
- Radon emissions from soil and the drums stored in the Annex, which would then decay to lead-210, which can deposit onto the soil
- Possible leakage from drums, which could leak water or solids to the concrete floor of the Annex (note that no leakage from drums has been detected – however, restricted access limits the inspection to perimeter drums close to the Annex doors)
- Possible migration of leaked water through the concrete to the underlying soil
- Postulated movement of spilled material by physical transport by termites to one area where above average gamma emissions were recorded – this was speculatively proposed because a termite was discovered in one wooden pallet adjacent to the area with above average emissions
- Possible leakage or transport of material onto the bitumen outside the Annex, which is then transported by rainwater to the drainage area west of the Annex

Chemically, there is also the possibility of the layer of stained soil under the bitumen having heavy, long chain hydrocarbons, or polycyclic aromatic hydrocarbons (PAH), contained in the layer. Volatile hydrocarbons are not considered as a concern, as the layer under the bitumen has been exposed to full sun for decades, and volatiles would have likely already evaporated.

3.1.1 Radioactive Elements of Concern and Analysis of these Elements

As reported in **Section 1** of this report, the drums contain the by-products of experiments to extract uranium and thorium. Consequently, the radiological contaminants of concern are the most prevalent isotopes, namely uranium-238 and thorium-232, as well as their decay products. However, measurement of uranium-238 and thorium 232 isotopes is difficult and time consuming, as their half-lives are 4,500,000,000 years and 14,000,000,000 years, respectively. Measurement is usually accomplished by measuring the daughter products or progeny in the decay chain, and assuming the series is in equilibrium. However, soil of interest to this study is surface soil. At the surface, the series will not be in equilibrium, as equilibrium will be disrupted by: radon gas emanation; vegetation uptake; deposition of other radionuclides from solar and terrestrial sources, and other factors. In addition, as the drums are the result of extraction experimentation, the series would have been disrupted by the extraction or concentration processes that the material had been subjected to. Consequently, chemical measurement of uranium and thorium-232. It is acknowledged that this measurement will overestimate the amount of uranium and thorium, and consequently will be a conservative estimate. In natural uranium deposits, approximately 99.28% of the uranium is uranium-238, so chemical analysis would

overestimate by approximately 1%. The natural abundance of thorium-232 is 99.98%, so the over-estimation by chemical analysis would be negligible.

Chemical measurement of uranium and thorium provides a mass concentration in in milligrams per kilogram (mg/kg). However, data on the distribution of the radionuclides of uranium and thorium is typically reported in Bq/kg. The conversion factors for the primordial nuclides are given by¹⁴:

- 1 Bq/kg uranium-238 = 8.1 x 10⁻⁸ g/g, or 0.081 mg/kg or conversely 1 mg/kg = 12.3 Bq/kg
- 1 Bq/kg thorium-232 = 2.46 x 10⁻⁷ g/g or 0.246 mg/kg or conversely 1 mg/kg = 4.07 Bq/kg

The uranium-238 series includes the elements: astatine, bismuth, polonium, protactinium, radium, radon, thallium, and thorium, and terminates with stable lead-206. The thorium-232 series includes the elements actinium, bismuth, polonium, radium, radon and thallium, and terminates with stable lead-208. All elements are present, at least transiently, in any natural sample. **Figure 4** in **Appendix A** presents a simplified uranium-238 series, with short-lived, transient elements excludes. The figure also shows the half-lives of longer lived elements, which includes radium-226 and lead-210.

Measurement of the radium-226 isotope from the uranium series is possible. This isotope was reported in the ARPANSA April 2017 report. In addition, there is published data on the terrestrial distribution of radium, so comparison can be made.

Both series terminate with stable lead. However, chemical measurement of lead is not a good indicator of the disrupted series, as lead is wide spread in the environment.

¹⁴ http://radiopurity.in2p3.fr/conversion.html

4. Site Assessment Criteria

The following section outlines the site assessment criteria adopted for the Site, against which individual analyte results have been compared.

4.1 Soil Criteria

The current and intended future use of the Site is Commercial / Industrial, as defined by the NEPM (1999, 2013 amendment). Therefore, investigation and screening criteria developed for Industrial (HIL D) were adopted unless otherwise specified.

4.1.1 Heath Investigation Levels

The NEPM (1999, 2013 amendment) presents health investigation levels (HILs) applicable for assessing human health risks via relevant exposure pathways for a range of metal and non-volatile organic substances. The HILs are generic to all soil types. The HIL D values, applicable for a commercial/industrial site, such as shops, offices, factories and industrial sites, have been adopted for comparison of the soil analytical results, unless otherwise noted. The HILs are generic to all soils types and apply generally to a depth of 3 m below the surface.

The ARPANSA soil analysis (refer **Section 2.5.2**) results indicated that the Site's soil was not contaminated by the presence of the drummed material stored in the Annex. Consequently, comparison was also be made against residential criteria (as if the Site were a "greenfield" site), but this comparison is for information only.

As stated previously, HILs are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1 or 'screening') of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario for four generic land use settings:

- HIL A Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools this is the most conservative HIL
- HIL B Residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats
- HIL C Public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a site-specific assessment where appropriate
- HIL D Commercial/industrial such as shops, offices, factories and industrial sites.

Heavy metals for all soil samples have been compared against HIL D screening levels, but are also viewed against HIL B and HIL A residential screening levels – this is for information only.

Carcinogenic PAHs and heavy metals for soil samples taken from the stained soil layer underlying the bitumen have been compared against HIL D screening levels, but are also viewed against HIL B and HIL A residential screening levels – this is for information only.

A summary of these screening levels is presented in Table 4-1.

Table 4-1: Selected Health Investigation Levels

		For Inform	ation Only
Analyte	Commercial/ industrial HIL D	Residential B HIL B	Residential A HIL A
Arsenic	3 000	500	100
Cadmium	900	150	20
Copper	240 000	30 000	6000
Lead	1 500	1200	300
Mercury	730	120	40
Nickel	6 000	1200	400
Zinc	400 000	60 000	7400
Carcinogenic PAHs (as B(a)P TEQ ^[1] ,)	40	4	3

Notes

[1] Toxicity Equivalent Quotient

4.1.2 Health Screening Levels

Health screening levels (HSLs) are also listed in the NEPM (1999, 2013 amendment), which were developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below surface to >4 m.

The HSLs for petroleum compounds are predominately for volatile compounds, particularly benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX). Other volatile concerns relate to total recoverable hydrocarbons (TRH) where the carbon chain is less than or equal to 16 carbon atoms (C6 to C16), and naphthalene (a C10 aromatic compound consisting of two fused benzene rings).

At the Site, volatiles and light fractions are not a concern, as the only indication of petroleum derived substances is the stained soil layer under the bitumen. In addition:

- This layer has been exposed to full sun for decades, and no volatile components would remain.
- The soil is not beneath any occupied buildings, and consequently does not pose an inhalation risk

As BTEX and TRH data is available from laboratories when requesting PAH analysis, the data will be compared against Industrial HSL criteria. However, this comparison will be made for information only.

A summary of these HSLs that used for comparison are presented in Table 4-2

	For Information Only For vapour Intrusion - Sand 0 m to <1 m	
Analyte	Commercial/Industrial HSL D	Residential A and B HSL A & B
Benzene	3	0.5
Ethylbenzene	Non-limiting ^[1]	55
Toluene	Non-limiting ^[1]	160
Xylene	230	40
TRH >C6 - C10 less BTEX (F1)	260	45
>C10-C16 less naphthalene	Non-limiting ^[1]	110
Naphthalene	Non-limiting ^[1]	3

Table 4-2: Selected Health Screening Levels – For Information Only

[1] The HSLs are based on three-phase equilibrium theory and soil vapour is limited by the maximum solubility limit of the chemical in the soil pore water phase. The soil saturation concentration is the condition where pore water is at its solubility limit and soil vapour is at the maximum vapour concentration. When a calculated HSL in soil or groundwater exceeds this limit, the vapour cannot result in an unacceptable vapour risk and is denoted as **non-limiting**. Also, soil vapour HSLs that exceed the possible maximum contaminant vapour pressure are similarly denoted as **non-limiting**.

4.1.3 Natural Radionuclides in Soil

As stated in **Section 2.5.2**, UNSCEAR 2000 reports that naturally occurring radionuclides of terrestrial origin (also called primordial radionuclides) are present in various degrees in all media in the environment, and that natural irradiation from soil is mainly by gamma radiation from radionuclides in the uranium-238 and thorium-232 series, as well as Potassium-40. As CSIRO's experimentation at Fishermans Bend involved the processing of uranium and thorium ore and mineral sands, it is appropriate to compare the soil surrounding the Annex with the natural terrestrial concentrations of uranium and thorium, as a mechanism to determine if any leakage of material from the Annex has altered the natural concentration of these two elements in the soil.

UNSCEAR 2000 has published data on the natural radionuclide content in soil for different regions/countries around the world. These include concentrations of uranium-238 and thorium-232, as well as radium-226 from the uranium-238 series. Unfortunately, no data is presented for Australia.

Due to the lack of data on Australia, the median range of all soils worldwide will be used as the basis of comparison for the soils sampled on site. As stated before, this is a valid comparison, and has been adopted by ARPANSA and others.

The world-wide mean natural radionuclide content in soil, as reported in Appendix B, Table 5 of UNSCEAR 2000 report¹⁵, gives mean soil values for uranium-238 (16 to 110 Bq/kg, median 35 Bq/kg), radium-226 (17 to 60 Bq/kg, median of 35 Bq/kg) and thorium-232 (11 to 64 Bq/kg, median of 30 Bq/kg). These are summarised in **Table 4-3**. It is noted that the comparison of a single soil sample is not compared against either the maximum or minimum or median of the range. Rather, the results are compared against the range, as is described in **Section 7.3.3**

¹⁵ United Nations Scientific Committee on the Effects of Atomic Radiation, *Sources and Effects of Ionizing Radiation*, UNSCEAR 2000, Report to the General Assembly, United Nations.

Table 4-3: Natural Radionuclide Content in Soil

Analyte	Mean Minimum Bq/kg	Mean Maximum Bq/kg	Median Bq/kg
Uranium or uranium-238	16	110	35
Thorium or thorium-232	11	64	30
Radium-226	17	60	35

4.1.4 Waste Classification of Excavated Soil

Soil that was to be excavated and transported to Woomera West landfill is required to be classified under waste acceptance criteria. The assumed waste acceptance criteria are those used by the South Australian Environment Protect Authority (EPA), especially if the stockpiled soil is reused elsewhere and may be placed on land that is not Commonwealth land.

The South Australian EPA has published criteria for the classification of waste¹⁶. The classification system divides the material into two categories for acceptance by the waste depots, namely "Intermediate" and "Low-level Contaminated" material, with the "Intermediate" classification being more stringent.

In addition, the EPA also defines criteria for reuse of material, with this material being defined as "Waste Derived Fill". The criteria for "Waste Derived Fill" is more stringent than for "Intermediate"

The EPA supports the beneficial reuse of wastes specifically recovered for use as fill and should comply with the Environment Protection Act 1993 (EP Act) to ensure the reuse of waste derived fill constitutes a genuine waste resource recovery and reuse activity, as distinct from waste disposal.

A summary of these screening levels is presented in Table 4-1.

Analyte	Intermediate Waste	Waste Derived Fill
Arsenic	<200	20
Cadmium	<30	3
Copper	<2,000	60
Lead	<1,200	300
Mercury	<30	1
Nickel	<600	60
Zinc	<14,000	200
PAH (Total)	<40	5
TPH > C9	<1,000	1,000

Table 4-4: Selected Waste Classification Criteria

¹⁶ South Australian EPA, Current criteria for the classification of waste—including Industrial and Commercial Waste (Listed) and Waste Soil, Issued March 2010, EPA 889/10:

5. Site Investigation Methodology

The site investigation methodology is discussed in the below sections.

5.1 Investigation Works

The investigation program comprised the following scope of work to address the project objectives (Section 1.1).

- Measure emissions from the wall of the Annex.
- Undertake grid-based sampling of the topmost 200 mm of the soil profile.
- Analyse the chemical nature of the soil sampled, and a subset of samples for specific radionuclides by gamma spectrometry
- Analyse the chemical nature of the stained layer of soil underlying the bitumen surface

The soil sampling was completed in two mobilisations to the Site to accommodate the construction schedule of the concrete slab. The concrete slab required the soil to be excavated to between 500 and 600 mm below ground level, prior to backfilling, compaction and pouring of the concrete. Approximately 3,000 m³ of soil was excavated for the slab's construction. The excavation activities would result in the data from the natural distribution of chemicals and radionuclides from this soil being lost when the soil is disturbed. In addition, there was concern that the soil might be contaminated, and might exceed waste disposal criteria. Consequently, the first mobilisation was in February 2018, with samples taken from locations where the concrete slab was to be constructed.

The second mobilisation occurred in June 2018, when the balance of the soil samples was collected.

5.2 Service Clearance

No drawings of underground services were available. Discussions with Defence indicated where services were, and the sampling locations were positioned away from known services.

In addition, as all soil samples were planned to be taken by hand augur, and the samples were only to a depth of 200 mm, the risk of striking and damaging services was low.

5.3 Measurement of Emissions from the Annex

A survey was conducted on Tuesday 6 February 2018 during the February mobilisation using a Ludlum 2401 with an open window.

The Ludlum was moved continuously over the wall of the exterior of the Annex. It was moved in a pattern that surveyed from (approximately) 0.3 m above ground level to 2.0 m above ground level. The pattern moved the detector vertically up, then horizontally along (approximately) 0.25 m, then vertically down, then along 0.25 m. This pattern was repeated all along the outside wall of the Annex until all the accessible perimeter was surveyed. The perimeter was divided into subsection, designated by physical divisions in the structure (for example, each Annex door was considered as a section and reported on separately.

The analogue meter was monitored at all times, to observe fluctuations, and a record was made of the range of measurements. Each subsection was measured separately if the average micro-Sieverts per hour (μ Sv/hr) were consistent. When there was greater variation over a subsection (e.g. the span of a door), the span was subdivided into smaller sections. Occasional peaks of radiation from particular locations were also recorded.

5.4 Systematic, Gridded Soil Sampling

A systematic, gridded soil sampling plan was prepared based on the following premises:

- Samples were to be taken in close proximity to the Annex, as this area was most likely to exhibit the
 greatest impact from any leakages from the Annex
- Sample grids should step out from the Annex, with an increasing grid spacing further away from the Annex
- A greater sampling density should be over the area previously identified to emit above average gamma emissions
- All sample points should be surveyed to obtain their spatial coordinates.

Based on these premises, the sampling plan shown on **Figure 5** in **Appendix A** was developed. The area with the highest sampling density was sampled on a 1 m x 1 m grid, as depicted in **Photograph 5-1**.

Photograph 5-1 – One Meter Grid Pattern in Above Average Area

As can be seen on **Figure 5** in **Appendix A**, each sample was given a unique identifier. The numbering was constructed with the following identifiers:

Primary Location	Distance from Structure (in	Sequence number	Depth of soil
Identifier	m) or		sample
(ID)	secondary ID		in mm

An example of a sample number is given below

The assigned location identifiers chosen were:

Primary ID	Meaning	Secondary ID	Meaning
Ν	North of Annex	Р	Outside Perimeter Fence
E	East of Annex	D	Drainage Area
W	West of Annex	R	Road at Entry
S	South of Annex		

A survey of each sample location was undertaken using a Trimble[®] handheld global positional system (GPS). The Trimble[®] has a horizontal accuracy of <0.5 m, which is considered sufficient for the purposes of this investigation.

5.5 Composite Soil Sampling

Composite soil sampling was taken to determine if the average concentrations of possible contaminants in the layer underlying the bitumen. The choice of composite sample locations was determined in the field, and carried out to produce samples representing:

- The area where there is above average gamma radiation (two composite samples)
- The area west of the Annex where the slab would be located and soil transported to the Woomera West landfill (one composite sample)
- The area north of Hanger 5 where the slab would be located and soil transported to the Woomera West landfill (one composite sample)

The sample locations chosen to make up the composite samples are depicted on Figure 6 in Appendix A.

5.6 Laboratory Analytical Schedule

The chemical and primary radiological laboratory analysis was carried out by SGS Australia (SGS). Secondary radiological analysis (of duplicate samples) was undertaken by ANSTO. No secondary analysis was undertaken of chemical analysis.

National Association of Testing Authorities (NATA) accredits organisations and their test methods. SGS is NATA accredited for the chemical analysis carried out in this report. NATA accreditation does not cover the radiological analysis, so neither SGS nor ANSTO are NATA accredited for radiological analysis.

The analytical schedule is presented in **Table 5-1** below.

Table 5-1: Laboratory Analytical Schedule

Analyte	Number of Primary Samples	Number of secondary samples
Heavy metals – arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), zinc (Zn)	157	0
Metals – uranium (U), thorium (Th)	157	0
TRH, BTEX and naphthalene (BTEXN) and PAH – testing of composite samples only	4	0
Radionuclides by gamma spectrometry – lead-210, radium-226, radium-228, thorium-228	75	12

5.7 Field and Data Quality Assurance and Quality Control

All samples were collected by experienced environmental scientists/engineers from Jacobs in general accordance with Jacobs standard operating procedures.

All soil samples were collected by hand augur. Due to the homogeneity of the soil sampled, the augur was not washed between samples. Instead the augur was brushed clean prior to the next sample being taken.

At each sampling location, and at each soil depth, a new set of disposable nitrile gloves were used to collect the sample. The samples were placed into laboratory prepared sample jars/bottles for chemical analysis, or bags for radiological analysis.

Receipt temperature was not a concern for this analysis, as there was no concern about volatiles in the four composite samples taken of the stained soil layer, as the material had been exposed to full sun for decades. Consequently, no samples were placed on ice. Instead, all samples were collected and placed in laboratory provided cooler boxes (for transport purposes only) and transported to the relevant laboratories under Jacobs chain of custody (CoC) protocols.

5.8 Soil Sample Storage after Analysis

.

All samples sent for laboratory analysis were collected from the analytical laboratories after analysis had been completed. The samples were relocated for storage at the CSIRO Waite Campus¹⁷.

¹⁷ Personal correspondence, Dr Dirk Mallants

6. Data Validation and Quality Assessment

Data Quality Indicators (DQIs) were developed to provide goals for the quality of data required to sufficiently meet the specific objectives of this investigation. Precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters), are indicators of data quality and attributes of the DQIs. An assessment of the quality of assurance and quality control indicators is included in **Appendix I**.

Minor non-conformances of PARCCS indicators were identified, however the majority of the PARCCS indicators were within the specified DQIs. The nature of the minor non-conformances is also considered to present negligible impacts on data quality. On this basis, the data is considered to be of sufficient quality to meet the objectives of the assessment. Discussion of the non-conformances is included in **Appendix I**.

7. Observations and Results

The following sections provide details of field observations made during the investigation, along with the reported analytical results.

7.1 Gamma Survey of the Exterior of the Annex

A technical memorandum was produced detailing the radiological measurements collected in February 2018. The memorandum was issued to CSIRO separately to this report. For completeness, the results of this survey are included in **Appendix C**. The maximum average reading recorded $(1.0 - 2.0 \,\mu\text{Sv/h})$ was over one subsection of the Annex doors, which is located closest to the entry gate.

7.2 Field Observations and Measurements

As documented in the geotechnical investigation¹⁸ and in this investigation, all sample locations reported natural soil below the bitumen pavement, which comprised orange brown sand to clayey sand. The stained soil layer was present immediately below the pavement in all areas and was sampled separately for composite samples. Due to the homogeneity of the samples, no bore logs were produced during this investigation.

During hand auguring in the area, where there were above average gamma emissions, no termite tunnels were observed. Visual observation confirmed the soil below the stained soil layer was homogeneous.

In all soil samples, there was no visual or olfactory indicators of contamination, except for the stained layer beneath the bitumen.

7.3 Soil Analytical Results

The soil analytical results are presented below.

7.3.1 Composite Sampling – Chemical Analysis

Composite soil sampling was undertaken of the stained soil layer underlying the bitumen. The composites were taken from the locations shown on **Figure 6** in **Appendix A**.

The soil analytical results were compared to heavy metals and PAH criteria presented in **Table 4-1** and also compared for information only against the screening criteria presented in **Table 4-2**. The laboratory analytical reports for chemical analysis and the CoCs are presented in **Appendix D**, and a table comparing the data to the adopted criteria presented in **Appendix F**.

Assessment of the composite results does not report any exceedances of the adopted criteria for Commercial/Industrial (HIL D). Further comparison was carried out which demonstrated there were no exceedances for residential criteria (HIL A and B)

7.3.2 Grid Sampling – Chemical Analysis

Grid soil sampling was undertaken according to the sampling plan shown on Figure 5 in Appendix A.

The chemical soil analytical results were compared to heavy metals criteria presented in **Table 4-1**. The laboratory analytical reports for chemical analysis and the CoCs are presented in **Appendix D**, and a table comparing the data is presented in **Appendix G**.

Assessment of the grid-based soil results does not report any exceedances of the adopted criteria for Commercial/Industrial (HIL D).

¹⁸ Wallbridge Gilbert Aztec (WGA), Hangar 5 Hardstand Pavement, Geotechnical Investigation, 10 November 2017

As the ARPANSA analysis (reported in **Section 2.5.2**) found that soil samples did not exceed residential criteria, the results were also compared against residential criteria (HIL A and B). Only one exceedance, equal to HIL B criteria, was evident amongst all the soil samples. This location of this exceedance (sample E-0-C-200) is indicated on **Figure 7** in **Appendix A**.

7.3.3 Grid Sampling – Radiological Analysis

Grid soil sampling was undertaken according to the sampling plan shown on Figure 5 in Appendix A.

Chemical measurement of uranium and thorium (in mg/kg) was converted to Bq/kg using the conversion factors discussed in **Section 3.1**. This data, and the laboratory analysis for radium-226, were compared to the natural radionuclides distribution presented in **Table 4-3**. The laboratory analytical reports for chemical analysis of uranium and thorium, and the CoCs are presented in **Appendix D**, and the radiological analysis plus CoCs is presented in **Appendix E**. The analytical results are tabulated in **Appendix H**.

To compare the large amount of radiological data in a simple and visual manner, the approach used by ARPANSA in their report "*A Survey of Naturally Occurring Radioactive Material Associated with Mining*¹⁹" was replicated. In the report, a plot, similar to the box and whisker plot, was compared against the range for natural distribution. The box and whisker plot displays a five-number summary of a set of data, namely the: minimum; first quartile; median; third quartile; and maximum. Box and whisker plots are produced as a standard option in Microsoft Excel, and these plots also include a plot of outliers. In a box plot, a box is drawn from the first quartile to the third quartile, a vertical line goes through the box at the median and the whiskers go from each quartile to the minimum or maximum.

To plot the results, the statistical deviation of each result was removed, and the datum is analysed as a single number. For all data that is below the limit of reporting (LOR), the datum was replaced by the LOR (e.g. < 5 Bq/kg was analysed as if it were 5 Bq/kg, which is conservative). The results are summarised on **Figure 8** in **Appendix A**. It is noted that the comparison of a single soil sample (datum) is not compared against either the UNSCEAR 2000 maximum or minimum or median. Rather, the results of the whole data set are compared against the range.

Assessment of the plotted results on Figure 8 suggests the following:

- The analysis of uranium, thorium and radium all indicate the range of distribution is below the natural mean distribution in soil
- For uranium, the maximum of the fourth quartile, and all outliers, are all below the median distribution of 35 Bq/kg
- For thorium and radium, the maximum of the fourth quartile is approximately at the median for the natural distribution in soil

7.3.4 Waste Classification of Excavated Soil

The grid soil sampling was undertaken according to the sampling plan shown on **Figure 5** in **Appendix A**. The samples that were positioned where the concrete slab was to be constructed were examined by comparison to criteria presented in **Table 4-1**. The grid samples that were outside of the slab's location were removed from data set and the table of results are presented in **Appendix J**.

¹⁹ Long, S et al, A Survey of Naturally Occurring Radioactive Material Associated with Mining, Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Technical Report No. 161, August 2012

8. Discussion

The section below provides a discussion of the results in relation to the objectives of the environmental baseline monitoring.

Soil sampling was undertaken on a systematic and grid-based sampling pattern around the Site and surrounding area. Chemical composition and radiological characteristics of the soil was analysed by off-site accredited laboratories. The samples were taken to determine the baseline environmental conditions of the Site and to examine if the storage of radiological material at the Site had impacted the surrounding environment. Samples were taken of the surface (0-200 mm) as that was determined to be the area most likely to be impacted by the presence of radiological materials stored on site.

A portion of the Site was to be excavated for the construction of a concrete slab. As a consequence, the investigation was carried out in two mobilisations. The first mobilisation examined the areas where the slab was to be built, and the second mobilisation examined the balance of the Site. As the material excavated for the slab's construction included a possible contaminant which was visually identified as a stained soil layer under the bitumen, this layer was also targeted to determine what impacts there were in this stained layer. In addition, the soil to be excavated was compared to waste classification criteria.

A previous gamma survey indicated that one area of the Site had measured above average gamma emissions, and this area was examined in more detail with a denser sampling pattern.

A PCSM was developed for the Site to guide the development of the sampling plan.

8.1 Composite Soil Samples of Stained Layer Under Bitumen

The soil analytical results were compared to the adopted heavy metals and PAH screening, with a table comparing the data presented in **Appendix F**.

Assessment of the results indicates that none of the reported composite sample results exceeded the adopted screening criteria for Commercial/Industrial (HIL D). Further comparison was carried out which demonstrated there were no exceedances for residential criteria (HIL A and B). Besides the thin layer of visual staining, there is no indication of a heavy metal or PAH impacts in this soil layer exceeding any HIL criteria.

The composite samples were also compared to waste criteria for intermediate and "waste derived fill". The criteria for PAH were not exceeded, as no samples reported PAH greater than the limit of reporting. However, the criterion for TPH > C9 was compared to the analytical results for TRH, summed for the ranges C10 to C36, and three of the four results exceeded the TPH criterion. The greatest exceedance is approximately $2\frac{1}{2}$ times the TPH criterion.

The stained layer is 2 to 4 mm and cannot be easily separated from the bulk of the 500 to 600 mm of excavated material. This would reduce the concentration by a factor of approximately 100. With this mixing, the concentration of these long chain THP would make the "waste fill" within criteria, which is consistent with the South Australian EPA's promotion of beneficial reuse of waste recovered for use as waste derived fill.

8.2 Heavy Metal Analysis of Site Soil Samples

All soil samples on Site that were analysed, as well as samples from areas outside of the fence-line, were analysed and the results compared to the adopted criteria. This table of data is presented in **Appendix G**.

Assessment of the results indicates that none of the reported composite sample results exceeded the adopted screening criteria for Commercial/Industrial (HIL D).

In addition, the samples were also compared against residential criteria (HIL A and HIL B). This demonstrated that all soil was suitable for residential criteria, except for one location (sample location E-0-C-200) shown on **Figure 7** in **Appendix A**. This exceedance of residential criteria for lead does not impact on the industrial use

of the site. In addition, this area of the site is not being excavated for construction of a slab, and therefore the soil in this location does not affect any soil being transported to the Woomera West landfill. The origin of this lead is not known, but speculatively could be from a historical activity, such as the use of lead paint on the outside of the Annex.

For the soil being transported to Woomera West, the heavy metal content of the soil was compared to the waste criteria for intermediate and "waste derived fill". There were no exceedances for heavy metals, except for two zinc exceedances (out of 77 samples) of the waste derived fill criterion of 200 mg/kg. The data set (population) for zinc was used to calculate the upper confidence limit (UCL) of the confidence interval of the mean of the data. This is a standard methodology recommended by the NEPM (1999, 2013 amendment), as well as the South Australian EPA's waste classification methodology²⁰. The South Australian EPA recommends that, when classifying "waste derived fill", "*if some samples exceed the chemical concentration criteria, statistical evaluation using 95% UCL calculations can be used*". The 95% UCL demonstrates with 95% certainty that the 'true' mean contaminant concentration will not exceed the value determined by this method.

The methodology defaults to the US EPA provided software, ProUCL²¹, The data set for zinc was analysed using ProUCL, and the output is included in **Appendix J**. ProUCI calculates the 95%UCL, assuming different distributions (e.g. normal, lognormal, etc) and recommends the best 95%UCL for the distribution. The calculated 95% UCL for the dataset was 64 mg/kg (using the ProUCL recommended Chebyshev inequality methodology), which is less than the waste derived fill criterion of 200 mg/kg.

8.3 Radiological Analysis of Site Soil Samples

Soil samples were analysed chemically for uranium and thorium (in mg/kg), and radiologically for radium-226 and other elements. A table compared the normal distribution of the radiological elements uranium, thorium and radium-226 against the soil samples (**Appendix H**). The data was further analysed and is presented as a box-and whisker plot on **Figure 8** in **Appendix A**.

Examination of **Figure 8** shows that uranium, thorium and radium are below the normal world-wide distribution range for soils.

- The uranium content of the soil is below the minimum of the published range of natural soils.
- The median thorium content of the soil is approximately equal to the minimum of the published range of natural soils.
- The median and mean radium-226 content of then soil is below the minimum of the published range of natural soils.

For the soil being transported to Woomera West, the radiological content of the soil does not represent an impediment to the soil being transported to the landfill, as it is below standard background ranges.

Examination of sample point E-0-C-200, where there was the highest concentration of lead, was compared to the radiological analysis for lead-210 measured at that sample location. E-0-C-200 recorded 26.6 Bq/kg ±5.3%. Compared to all other lead-210 results on site, 26 Bq/kg is slightly above average but not the maximum value recorded on site. Any link between the origin of this elemental lead being due to the presence of lead-210 can be discounted.

The PCSM indicated that termites might be responsible for transporting radiological material into the area where above average gamma emissions were detected. There is no evidence to indicate that is occurring, and any update of the CSM should remove that as a possible source of material transportation into the environment.

In summary:

²⁰ South Australian EPA, *Current criteria for the classification of waste—including Industrial and Commercial Waste (Listed) and Waste Soil*, Issued March 2010, EPA 889/10:

²¹ https://www.epa.gov/land-research/proucl-software

- There is no indication of chemical or radiological leakage from the Annex (except for one sample location which shows a lead content that is above average)
- The soil at the Site and in the surrounding area appears to be a natural soil that has not been impacted by leakage from the Annex
- The soil that is to be stockpiled at the Woomera West landfill could be reused within the WPA for capping or other activities requiring uncontaminated soil (or waste derived fill)

9. Limitations

This report is given strictly in accordance with, and subject to, the following limitations:

- The report was prepared for CSIRO ("Client") in accordance with the Scope of Work agreed between CH2M HILL Australia Pty Ltd (Jacobs) and the Client
- Jacobs assumes no responsibility for conditions we were not authorised to investigate, or conditions not
 generally recognised as environmentally unacceptable when the services were performed
- This report is based, in part, on information supplied to Jacobs from several sources (e.g. aerial photographs and investigation reports prepared by others) and on information that is publicly available during the project research. Therefore, Jacobs does not guarantee its completeness or accuracy, and assumes no responsibility for errors or omissions related to this external information
- This report was prepared in accordance with, and by reference to, the applicable EPA and industry standards, guidelines and assessment criteria as listed in this report
- Current understanding of the site conditions depends on the integration of many pieces of information, some regional, some site specific, some structure-specific and some experienced-based, which may be contradictory, inconsistent or subject to interpretation
- Any opinions or recommendations presented herein apply to site conditions existing when services were performed. Jacobs is unable to report on or predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces
- Given the outlined Scope of Works, Jacobs has only assessed the potential for contamination resulting from past and current known uses of the Site
- Jacobs does not guarantee that contamination does not exist at the Site
- This report should not be altered, amended or abbreviated, issued in part and issued incomplete in any way, except for requested review comments, which are then collated by Jacobs and incorporated into later revisions of the report Jacobs accepts no responsibility for any circumstances that arise from the issue of the report which has been modified as outlined above, and
- This report has been prepared for the use of the Client relating to the property as described in the report in accordance with the terms and limitations stated in the agreement. No warranty, expressed or implied, is made.

JACOBS

10. References

10.1 Websites

Google Earth <u>http://earth.google.com</u> <u>https://www.epa.gov/land-research/proucl-software</u> <u>http://maps.sa.gov.au/plb/</u> <u>http://radiopurity.in2p3.fr/conversion.html</u>

10.2 Documents

ARPANSA, *Inspection Report*, Report No: R16/05292, Licence Holder: CSIRO Hangar 5 Annex, Licence Number: S0013, , Date of inspection: 27-29 April 2016,

https://www.arpansa.gov.au/sites/g/files/net3086/f/legacy/pubs/regulatory/inspections/2016/R16-05292.rtf

ARPANSA, Radioactive Analysis Report EA16-075 (Interim Report), received 30 May 2017,

Australian Standard AS4482.1, *Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: non-volatile and semi-volatile compounds*, AS4482.1 [2005]

Boardman, D and Hagan, S, Woomera Characterisation: Gamma Survey of Area 1, ANSTO Report Number R180057S, 15 May 2018

ChemCentre, Report of Examination, ChemCentre Residues Laboratory Reference 15S2516, 8-Aug-2016.

Geological Survey of South Australia, *Andamooka Map*, SA Geological Atlas Series Sheet SH 53-12, 1:250,000, May 22, 2012, Marree Subgroup (Bulldog Shale)

IAEA, Environmental and Source Monitoring for Purposes of Radiation Protection, IAEA Safety Guide No. RS-G-1.8

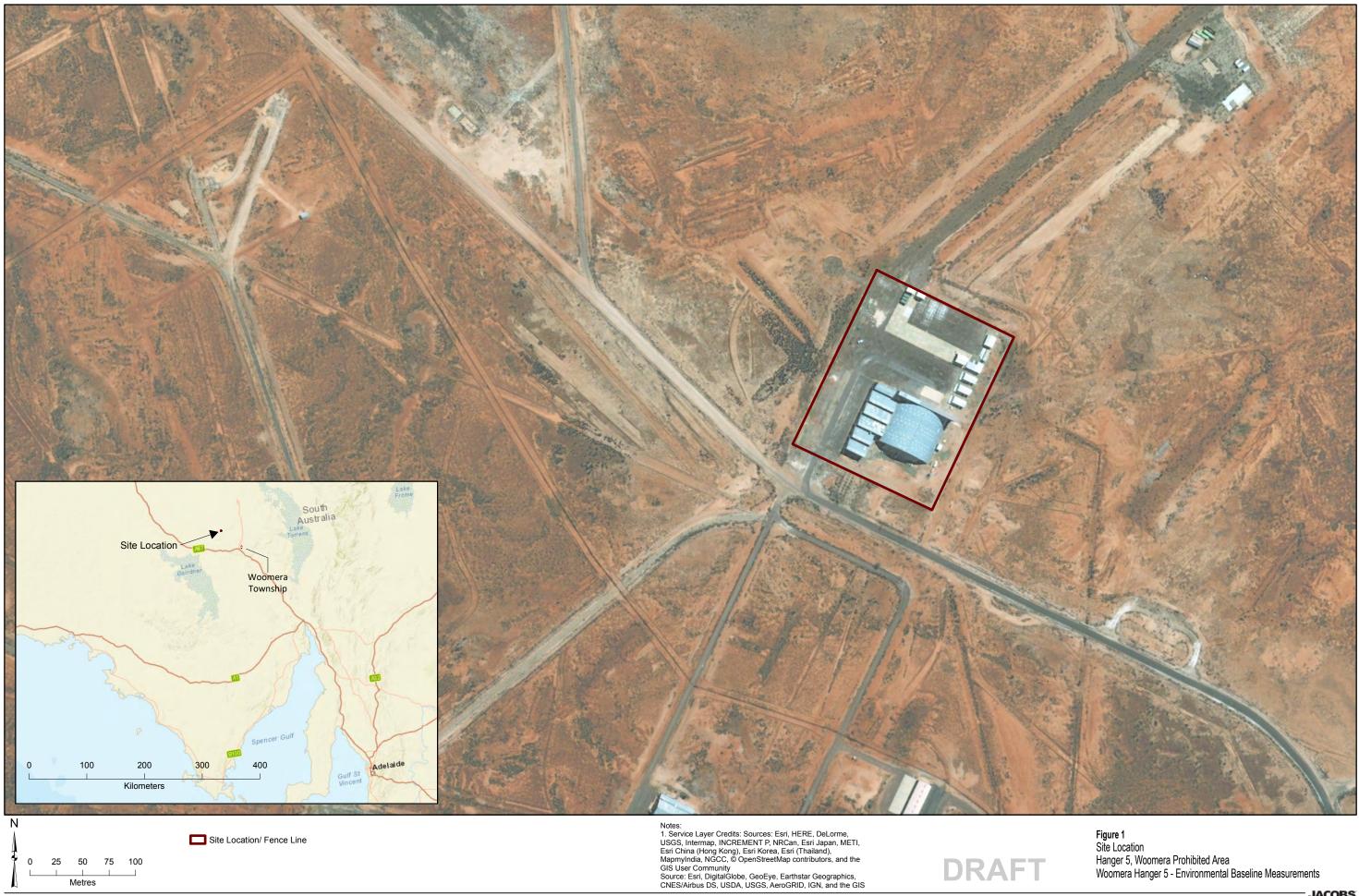
Kellett, J; et al, *Hydrogeological Assessment of a Region in Central Northern South Australia*, Bureau of Rural Sciences, 1999

Long, S et al, *A Survey of Naturally Occurring Radioactive Material Associated with Mining*, Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Technical Report No. 161, August 2012

National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure (NEPM), 1999, 2013 amendment

South Australian EPA, *Current criteria for the classification of waste—including Industrial and Commercial Waste (Listed) and Waste Soil*, Issued March 2010, EPA 889/10

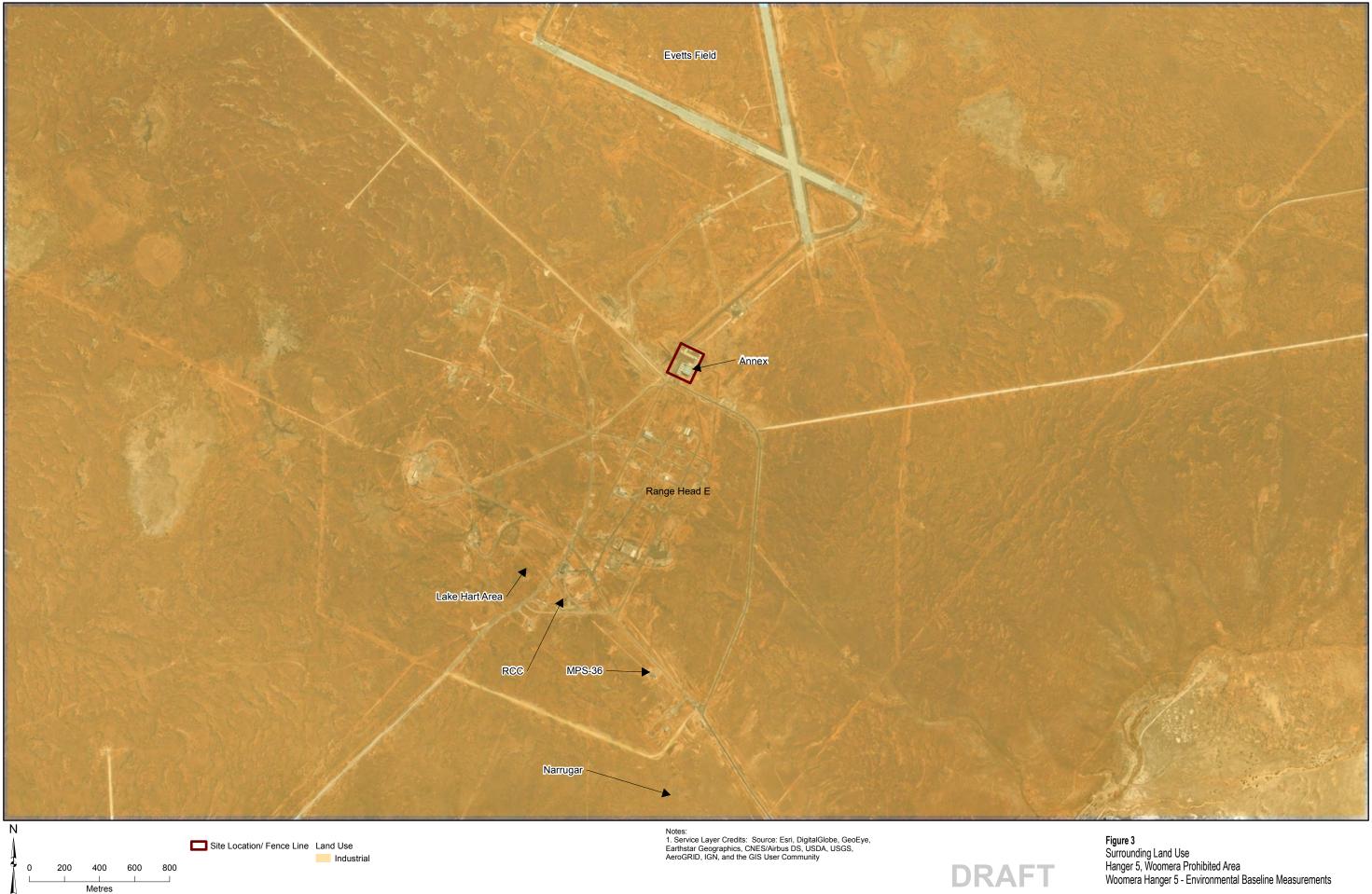
South Australian EPA, Guidelines for the Assessment and Remediation of Site Contamination, July 2018


United Nations Scientific Committee on the Effects of Atomic Radiation, *Sources and Effects of Ionizing Radiation*, UNSCEAR 2000, Report to the General Assembly, United Nations.

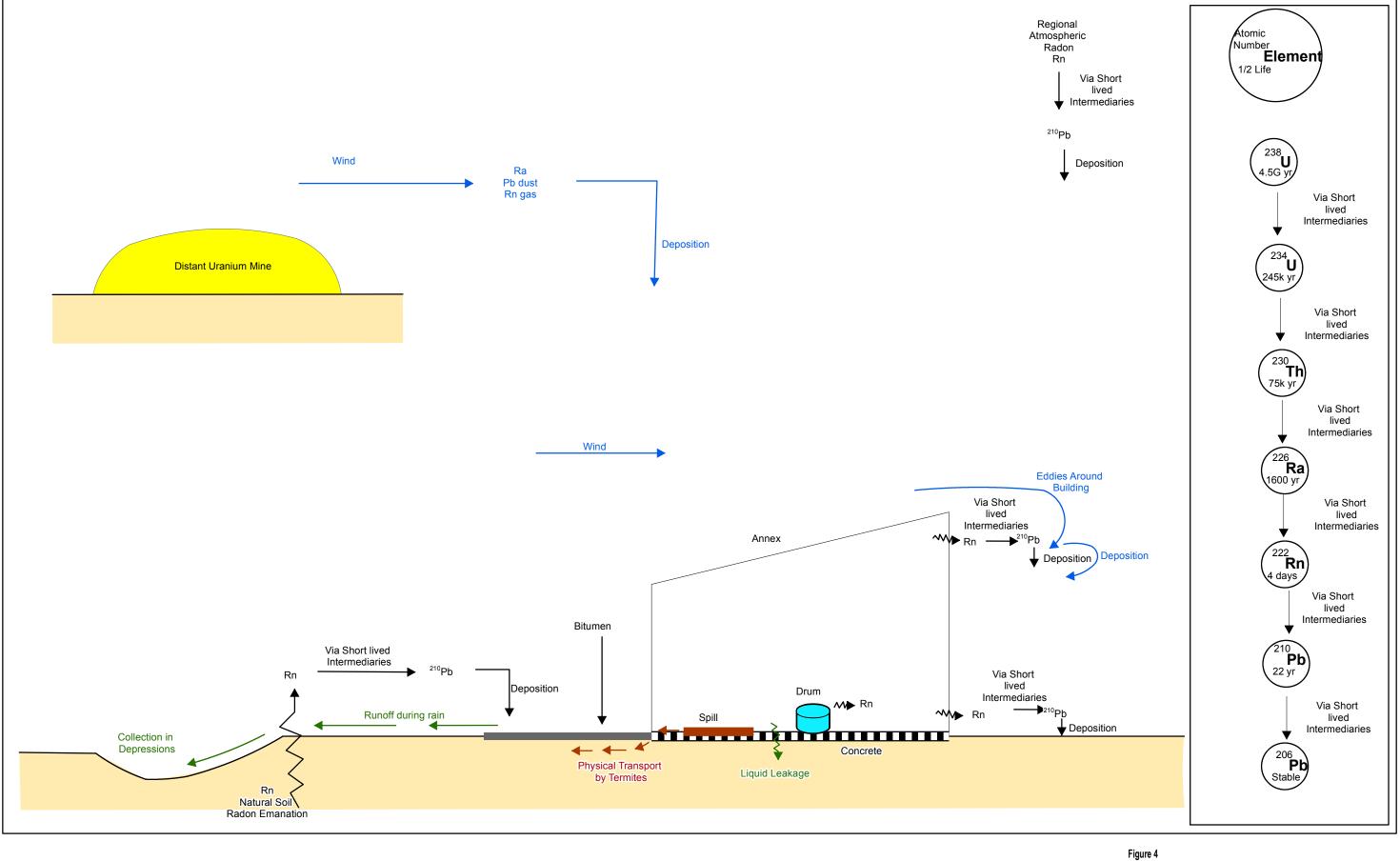
Wallbridge Gilbert Aztec (WGA), Hangar 5 Hardstand Pavement, Geotechnical Investigation, 10 November 2017

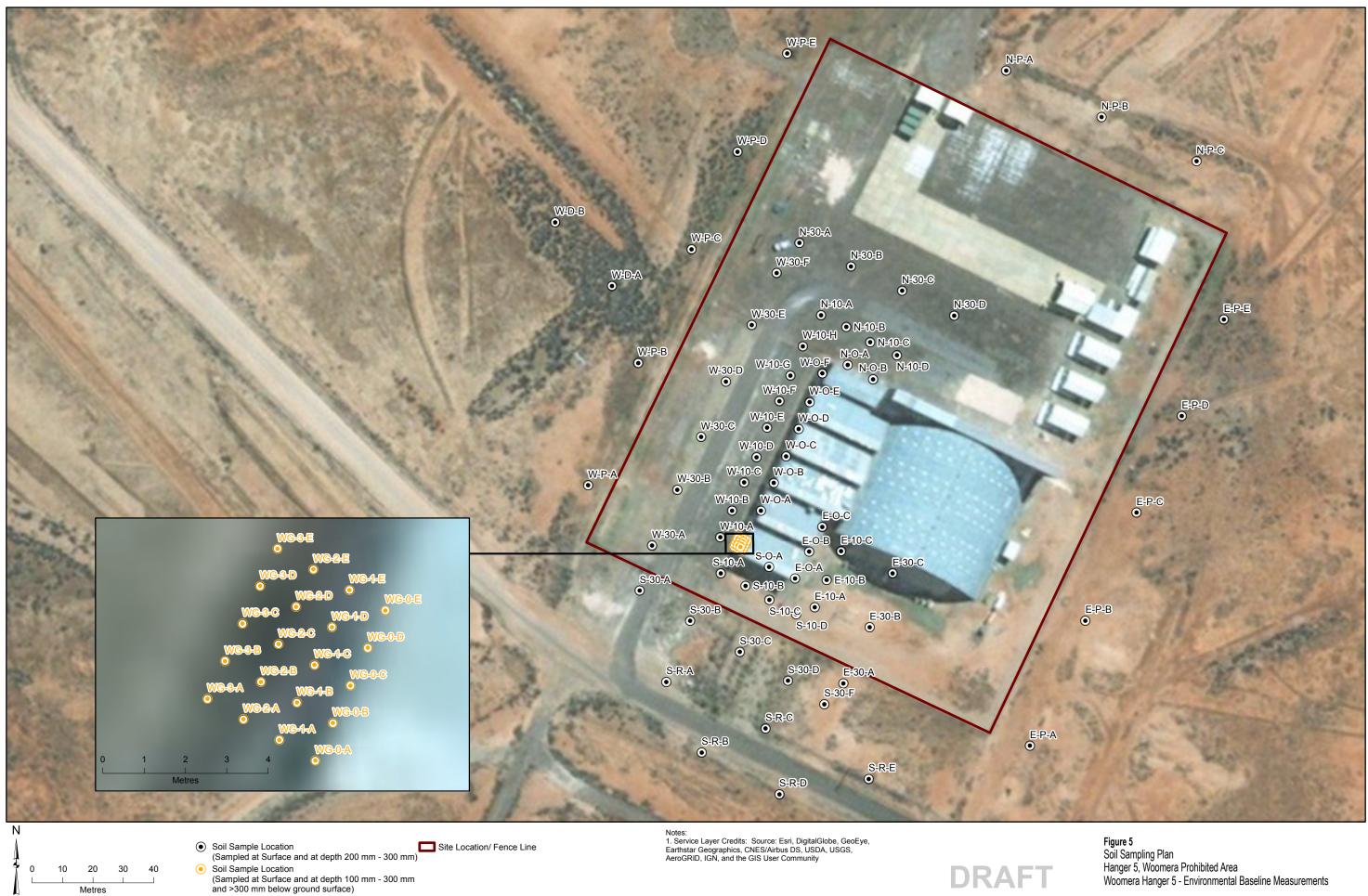
Appendix A - Figures

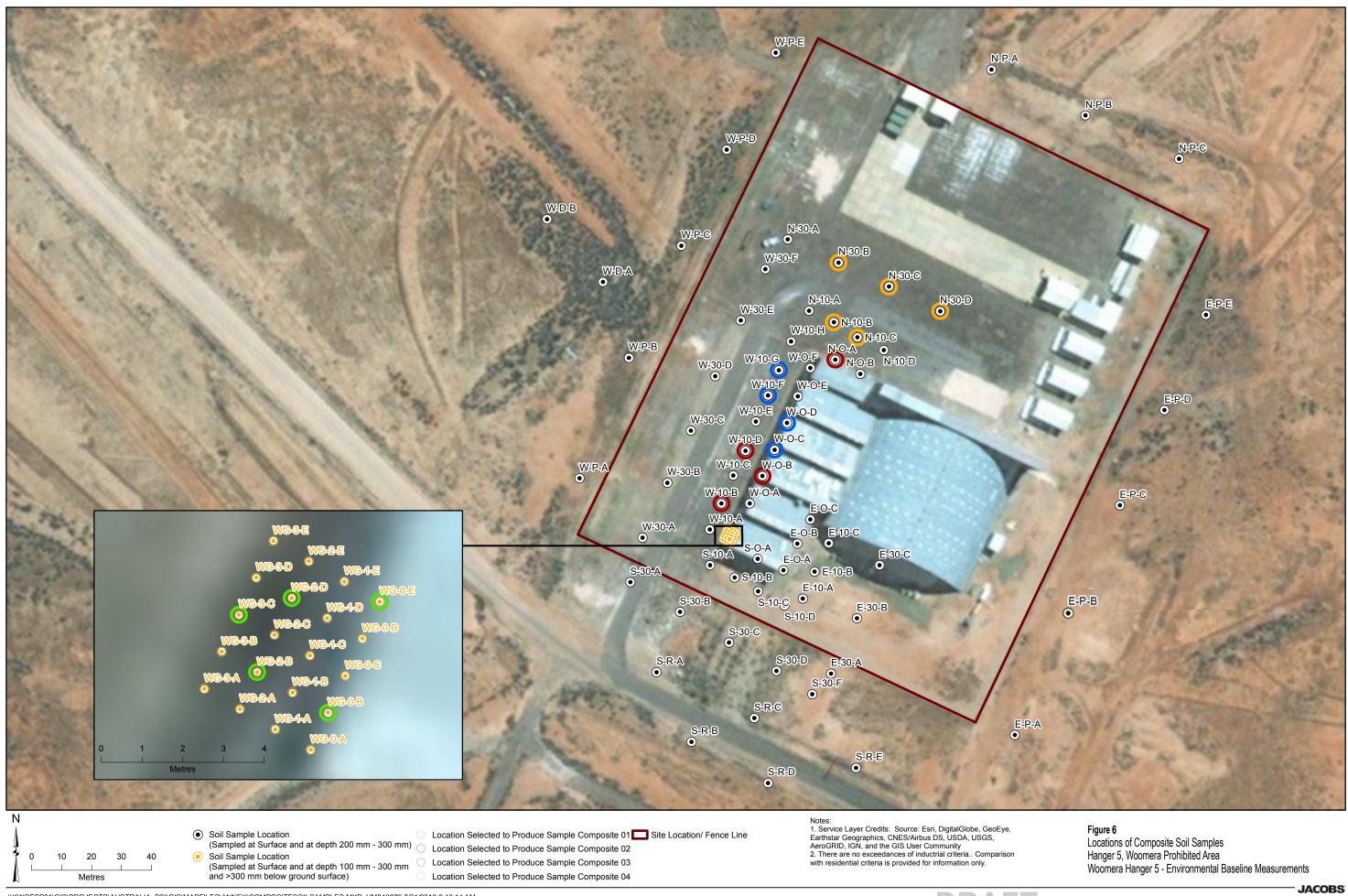
- Figure 1 Location of Annex, South Australia
- Figure 2 Site Plan
- Figure 3 Surrounding Land Use
- Figure 4 Preliminary Conceptual Site Model
- Figure 5 Soil Sampling Plan
- Figure 6 Composite Soil Sampling Locations
- Figure 7 Exceedances of Residential Soil Criteria
- Figure 8 Box and Whisker Plot of Uranium. Thorium and Radium-226 vs The Natural Distribution in Soil

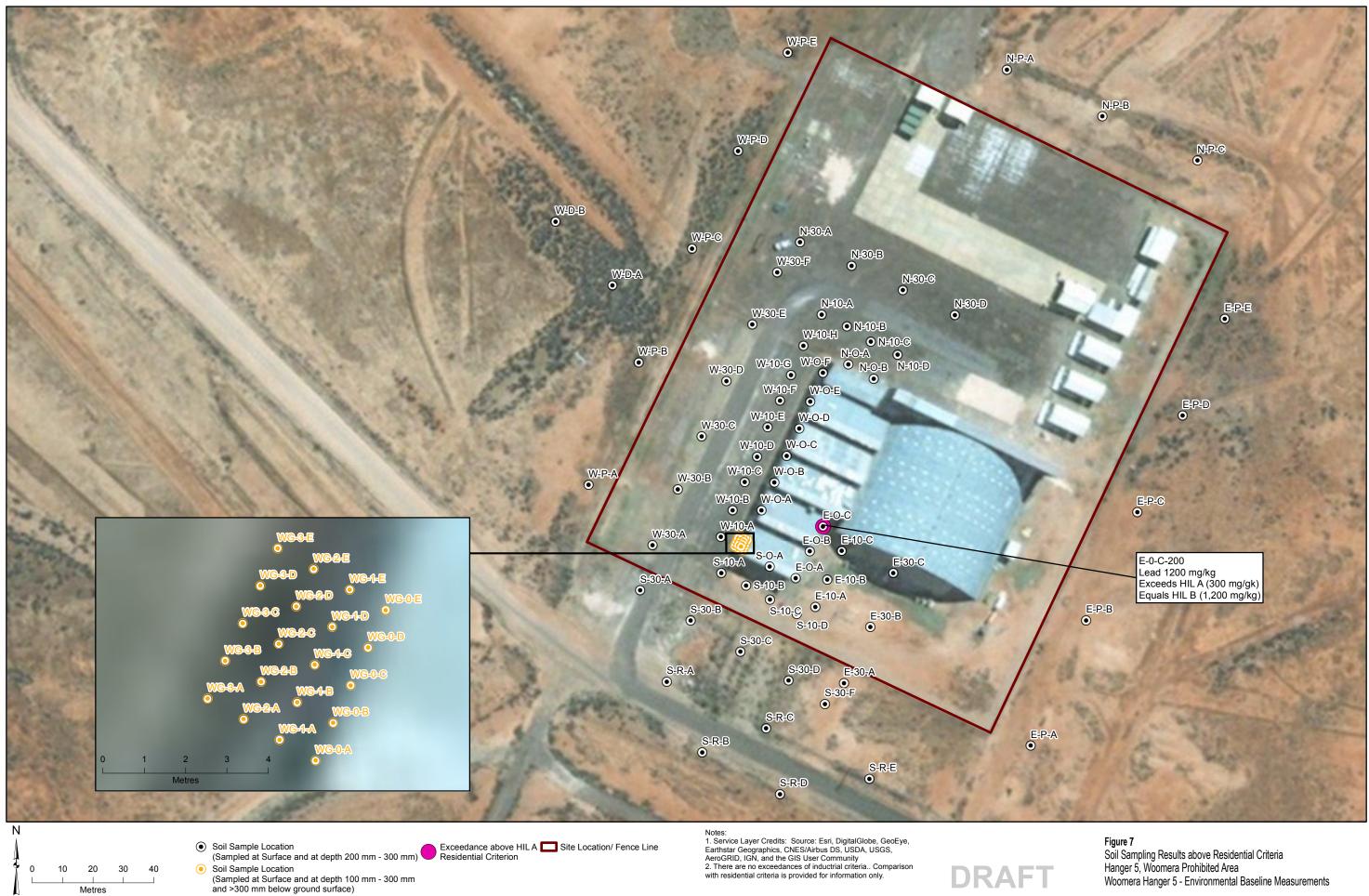


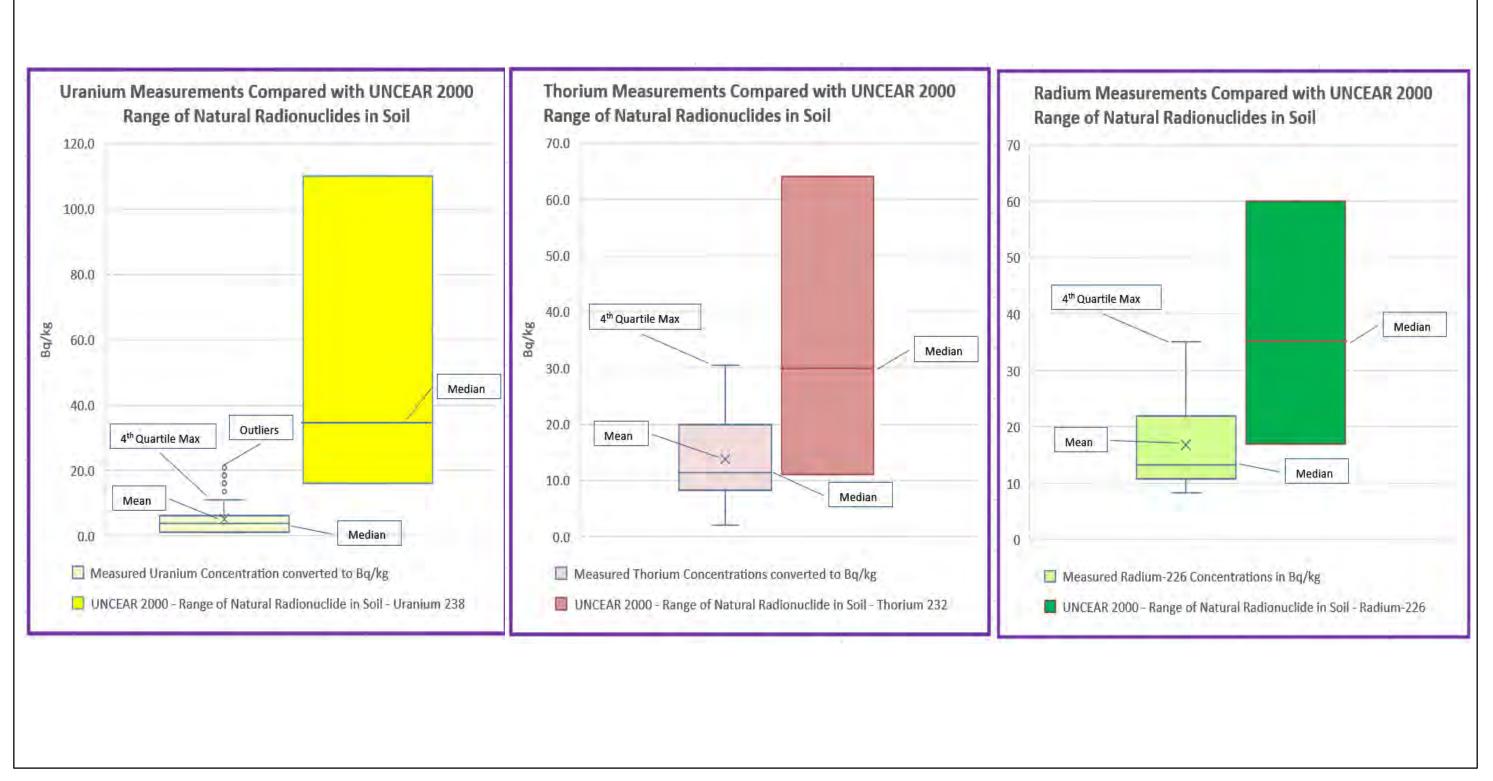
\\KWOFSP01\GIS\PROJECTS\AUSTRALIA_PSI\GIS\MAPFILES\ANNEX\SITELOCATION.MXD VM048279 7/31/2018 9:23:31 AM






Preliminary Concentual Site Model Hanger 5, Woomera Prohibited Area Woomera Hanger 5 - Environmental Baseline Measurements




^{\\}KWOFSP01\GIS\PROJECTS\AUSTRALIA_PSI\GIS\MAPFILES\ANNEX\SOILSAMPLINGPLAN.MXD_VM048279 7/31/2018 8:12:04 AM

DRAFT

Figure 8 Box and Whisker Plot of Uranium, Thorium and Radium-226 vs Natural Distribution in Soil Woomera Hanger 5 - Environmental Baseline Measurements

Appendix B – ARPANSA Soil Sampling -Laboratory Reports

Document No. 706815_01_Rev01 - Revised Draft for Client Review

ChemCentre Residues Laboratory Report of Examination

Purchase Order: None ChemCentre Reference: 15S2516 PO Box 1250, Bentley Delivery Centre Bentley WA 6983 T +61 8 9422 9800 F +61 8 9422 9801 www.chemcentre.wa.gov.au ABN 40 991 885 705

Aust. Radiation Protection & Nuclear Safety Agency P O Box 655 MIRANDA NSW 1490

Attention: Loch Castle

Report on: 2 samples received on 05/05/2016

LAB ID	<u>Material</u>	Client ID and Description
15S2516 / 001	soil	ARP-WOO-07a
15S2516 / 002	soil	ARP-WOO-07b

LAB ID

Client ID

Sampled

Campieu						
Analyte	Method	LOR	Unit			
Aldrin	ORG141S	0.01	mg/kg	<0.01	<0.01	
alpha-Endosulfan	ORG141S	0.01	mg/kg	<0.01	<0.01	
Antimony	iMET2SAMS	0.05	mg/kg	0.27	0.54	
Arsenic	iMET2SAMS	0.2	mg/kg	2.4	7.6	
Azinphos Ethyl	ORG141S	0.1	mg/kg	<0.10	<0.10	
Azinphos methyl	ORG141S	0.1	mg/kg	<0.10	<0.10	
Barium	iMET2SAICP	0.1	mg/kg	140	390	
o-BHC	ORG141S	0.01	mg/kg	<0.01	<0.01	
Beryllium	iMET2SAMS	0.05	mg/kg	0.32	0.73	
3 Chlordane	ORG141S	0.01	mg/kg	<0.01	<0.01	
oeta-Endosulfan	ORG141S	0.01	mg/kg	<0.01	<0.01	
Bifenthrin	ORG141S	0.1	mg/kg	<0.10	<0.10	
admium	iMET2SAMS	0.05	mg/kg	1.6	2.0	
Chlorfenvinphos (E)	ORG141S	0.1	mg/kg	<0.10	<0.10	
hlorfenvinphos (Z)	ORG141S	0.1	mg/kg	<0.10	<0.10	
Chlorpyrifos	ORG141S	0.1	mg/kg	<0.10	<0.10	
hlorpyrifos methyl	ORG141S	0.1	mg/kg	<0.10	<0.10	
Chromium	iMET2SAICP	0.05	mg/kg	18	36	
cobalt	iMET2SAICP	0.1	mg/kg	17	13	
Copper	iMET2SAMS	0.5	mg/kg	13	32	
Cyfluthrin	ORG141S	0.1	mg/kg	<0.10	<0.10	
Cypermethrin	ORG141S	0.1	mg/kg	<0.10	<0.10	
Cyproconazole	ORG141S	0.05	mg/kg	<0.05	<0.05	
DD	ORG141S	0.01	mg/kg	<0.01	<0.01	
DE	ORG141S	0.01	mg/kg	<0.01	<0.01	
DT	ORG141S	0.01	mg/kg	<0.10	<0.10	
-BHC	ORG141S	0.01	mg/kg	<0.01	<0.01	
Deltamethrin	ORG141S	0.1	mg/kg	<0.10	<0.10	
Demeton-S-methyl	ORG141S	0.1	mg/kg	<0.10	<0.10	

001

ARP-WOO-07a

002

ARP-WOO-07b

LAB ID

Client ID

Sampled

001 002 ARP-WOO-07a ARP-WOO-07b

Analyte	Method		11		
		LOR	Unit		
Diazinon	ORG141S	0.1	mg/kg	<0.10	<0.10
Dichlorvos	ORG141S	0.1	mg/kg	<0.10	<0.10
Dieldrin	ORG141S	0.01	mg/kg	<0.01	<0.01
Dimethoate	ORG141S	0.1	mg/kg	<0.10	<0.10
Endosulfan sulfate	ORG141S	0.01	mg/kg	<0.01	<0.01
Endrin	ORG141S	0.01	mg/kg	<0.01	<0.01
Endrin Ketone	ORG141S	0.01	mg/kg	<0.01	<0.01
Ethion	ORG141S	0.1	mg/kg	<0.10	<0.10
Fenamiphos	ORG141S	0.1	mg/kg	<0.10	<0.10
Fenitrothion	ORG141S	0.1	mg/kg	<0.10	<0.10
Fenthion	ORG141S	0.1	mg/kg	<0.10	<0.10
Fenvalerate	ORG141S	0.1	mg/kg	<0.10	<0.10
Fipronil	ORG141S	0.05	mg/kg	<0.05	<0.05
Flusilazole	ORG141S	0.05	mg/kg	<0.05	<0.05
Fluvalinate	ORG141S	0.1	mg/kg	<0.10	<0.10
g-Chlordane	ORG141S	0.01	mg/kg	<0.01	<0.01
Heptachlor	ORG141S	0.01	mg/kg	<0.01	<0.01
Heptachlor epoxide	ORG141S	0.01	mg/kg	<0.01	<0.01
Hexachlorobenzene	ORG141S	0.01	mg/kg	<0.01	<0.01
Hexaconazole	ORG141S	0.05	mg/kg	<0.05	<0.05
Iprodione	ORG141S	0.05	mg/kg	<0.05	<0.05
Lead	iMET2SAICP	0.5	mg/kg	25	190
Lindane	ORG141S	0.01	mg/kg	<0.01	<0.01
Malathion	ORG141S	0.1	mg/kg	<0.10	<0.10
Manganese	iMET2SAICP	0.2	mg/kg	110	250
Mercury	iMET2SAMS	0.02	mg/kg	0.19	0.13
Metalaxyl	ORG141S	0.05	mg/kg	<0.05	<0.05
Methidathion	ORG141S	0.1	mg/kg	<0.10	<0.10
Methoxychlor	ORG141S	0.01	mg/kg	<0.01	<0.01
Mevinphos	ORG141S	0.1	mg/kg	<0.10	<0.10
Molybdenum	iMET2SAMS	0.05	mg/kg	0.43	0.30
Myclobutanil	ORG141S	0.05	mg/kg	<0.05	<0.05
Nickel	iMET2SAMS	0.1	mg/kg	6.2	14
Oxychlordane	ORG141S	0.01	mg/kg	<0.01	<0.01
Parathion Ethyl	ORG141S	0.1	mg/kg	<0.10	<0.10
Parathion Methyl	ORG141S	0.1	mg/kg	<0.10	<0.10
Pendimethalin	ORG141S	0.05	mg/kg	<0.05	<0.05
Permethrin	ORG141S	0.1	mg/kg	<0.10	<0.10
Phorate	ORG141S	0.1	mg/kg	<0.10	<0.10
Piperonyl Butoxide	ORG141S	0.05	mg/kg	<0.05	<0.05
Pirimiphos Ethyl	ORG141S	0.1	mg/kg	<0.10	<0.10
Pirimiphos Methyl	ORG141S	0.1	mg/kg	<0.10	<0.10
Propiconazole	ORG141S	0.05	mg/kg	<0.05	<0.05
Pyrazophos	ORG141S	0.1	mg/kg	<0.10	<0.10
Quintozene	ORG141S	0.05	mg/kg	<0.05	<0.05
Selenium	iMET2SAMS	0.05	mg/kg	0.11	0.35
Silver	iMET2SAMS	0.05	mg/kg	<0.05	0.34
Tebuconazole	ORG141S	0.05	mg/kg	<0.05	<0.05
Tetradifon	ORG141S	0.05	mg/kg	<0.05	<0.05
Tin	iMET2SAMS	0.5	mg/kg	1.5	7.8

LAB ID Client ID

Sampled

Sampled					
Analyte	Method	LOR	Unit		
Zinc	iMET2SAICP	5	mg/kg	860	6400
Electrical Conductivity	(1:5)	1	mS/m	37	11
рН	(H2O)	0.1		8.6	8.2
TRH C6-C10	ORG007SSolv	25	mg/kg	<25	<25
TRH >C10-C16	ORG007S	50	mg/kg	<50	<50
TRH >C16-C34	ORG007S	100	mg/kg	<100	<100
TRH >C34-C40	ORG007S	100	mg/kg	270	120
Total TRHs	ORG007SSolvC	275	mg/kg	360	<280

Method	Method Description
(1:5)	Electrical conductivity of 1:5 soil extract at 25 C by in-house method S02 (Method 3A1; Rayment & Lyons (2011)).
(H2O)	pH of 1:5 soil:water extract by in-house method S01 (Method 4A1; Rayment & Lyons (2011))
IMET2SAICP	Acid digestable metals (dry wt basis) by digestion and ICPAES (USEPA 3051A modification).
iMET2SAMS	Acid digestable metals (dry wt basis) by ICPMS (USEPA 3051A modification).
ORG007S	Total Recoverable Hydrocarbons in Soil
ORG007SSolv	TRH C6-C10 in Soil by Solvent Extraction
ORG007SSolvC	Sum of TRHs in Soils with C6-C10 by Solvent Extraction
ORG141S	Pesticides in Soil by GC-QQQ

"<" signifies a result is less than the limit of quantitation for the method.

These results apply only to the sample(s) as received.

Results may not be reproduced except in full.

Unless requested otherwise, sample(s) will be disposed of after 30 days of the issue of this report.

The QC failed for ORG141 pesticide compounds due to sample interferences.

Traces of DDT and Bifenthrin were detected although the levels were below limits of reporting.

Angela Downey Senior Scientist & Research Officer Scientific Services Division 8-Aug-2016

Auir

Bob Muir Principal Scientist Scientific Services Division

Australian Government

Australian Radiation Protection and Nuclear Safety Agency

RADIOACTIVITY ANALYSIS REPORT EA16-075 (Interim Report)

REQUESTED BY: ARPANSA Reg branch Attention: Loch Castle **ORDER No.:** Request received 30/05/16 **SAMPLE DETAILS:** Type: Soil Number of Samples: 6 Date Received: 30/05/2016 Sample Pre-treatment: Samples for radium analysis set in resin. Sampling:. Samples tested as received Date Analysis Started: 02/06/16 **ANALYSES REQUESTED:** Uranium-238, Radium-226, Lead-210, Radium-228, Thorium-228, Uranium-235, Potassium-40 and Caesium-137 **ANALYTICAL METHOD:** Sample measured by high resolution gamma-ray spectrometry based on ANSI N42.14-1999.

Report Prepared By: Sandra Sdraulig, Technical Manager

INNel Civeen Signed:

RAS-FORM-4000b Version: 2 Issue Date: 01/11/11

Date: 13 July 2016

Liesel Green, Analyst Per: Carl-Magnus Larsson CEO of ARPANSA

RPANSA

PO Box 655 MIRANDA NSW 1490 Phone +61 2 9541 8333 Fax +61 2 9541 8314

Web: www.arpansa.gov.au

- Page 1 of 2 -

619 Lower Plenty Road YALLAMBIE VIC 3085 Phone +61 3 9433 2211 Fax +61 3 9432 1835

Freecall: 1800 022 333 (a free call from fixed phones in Australia)

(continued) (Interim Report)	
RADIOACTIVITY ANALYSIS REPORT EA16-075	

-
- 5-4
- Banaria
1
. 3
h
- L
_
6
1.5
(Section 1)
• 7

-	-	Ľ		Radio	Radioactivity Concentration (Bq/kg)	centration (B	q/kg)		
-	Pota:	Potassium -40	Caesium- 137	Uranium- 238	Radium- 226*	Lead-210	Radium- 228*	Thorium- 228*	Uranium- 235
30/05/2016 309 ± 45	309 ±	: 45	1.17 ± 0.32		20.8 ± 2.4	38 ± 15	27.4 ± 3.5	58	
30/05/2016 224 ± 35	224 =	E 35	0.46 ± 0.22		14.5 ± 2.1	32.6 ± 8.2	21.6 ± 3.4	21.6 ± 3.0	
$30/05/2016$ 405 ± 54	405 J	= 54	<1.2		22.3 ± 2.7	19.8 ± 4.8	22.3 ± 2.7 19.8 ± 4.8 31.1 ± 4.6 32.7 ± 4.3	32.7 ± 4.3	
30/05/2016 295 ± 42	295	± 42	<1.1		19.1 ± 2.6	20.8 ± 4.9	20.8±4.9 32.1±4.2 34.5±4.4	34.5 ± 4.4	
30/05/2016 299 ± 43	299 -	E 43	$\begin{array}{c} 0.82 \pm \\ 0.28 \end{array}$		19.4 ± 2.5	128 ± 35	24.9 ± 3.4	26.2 ± 3.4	
30/05/2016 348 ± 49	348 -	± 49	<0.79		24.9 ± 3.1	71 ± 21	35.4 ± 4.9 38.4 ± 4.7	38.4 ± 4.7	

* Radionuclide concentration estimated from short-lived gamma-emitting progeny.

The reported uncertainty is an expanded uncertainty (sample mass and counting uncertainties only) calculated using a coverage factor of 2. These results are reported on a dry weight basis.

Minimum detectable activity concentration (<x): the true activity concentration is estimated to be less than x with 95% confidence, as defined by Currie (Currie, L.A., 1968) Anal. Chem. 40, 586-593)

The radionuclides (from the uranium and thorium series) specified in our reports are the relatively long-lived members of the decay series that can be quantified. If a measure of total radioactivity is required, all radionuclides in the decay series should be considered.

RAS-FORM-4000b Version: 2 Issue Date: 01/11/11

JACOBS[°]

Appendix B

Comparison of ARPANSA Soil Data with NEPM Published Criteria

Summary of ARPANSA Samples with removal of analytes below the limit of reporting Comparison with NEPM health investigation levels (HIL) for different land use scenarios. Exceedances in bold and highlighted in the appropriate highlight colour

	Two ARPAN received 5	•	Residential A	Residential B	Commercial / industrial D
	ARP-WOO-07a	ARP-WOO-07b	HIL A	HIL B	HIL D
Antimony	0.27	0.54	-	-	-
Arsenic	2.4	7.6	100	500	3 000
Barium	140	390	-	-	-
Beryllium	0.32	0.73	60	90	500
Cadmium	1.6	2	20	150	900
Chromium	18	36	Only value fo	r chromium \	/I published
Cobalt	17	13	100	600	4000
Copper	13	32	6000	30 000	240 000
Lead	25	190	300	1200	1 500
Manganese	110	250	3800	14 000	60 000
Mercury	0.19	0.13	40	120	730
Molybdenum	0.43	0.3	-	-	-
Nickel	6.2	14	400	1200	6 000
Selenium	0.11	0.35	200	1400	10 000
Silver	<0.05	0.34	-	-	-
Tin	1.5	7.8	-	-	-
Zinc	860	6400	7400	60 000	400 000

Comparison of total recoverable hydrocarbons (TRH) with ecological screening levels (ESLs) Exceedances in bold and highlighted in the appropriate highlight colour

	Two ARPAN received 5	•	Soil Texture	Urban residential and public open space	Commercial and industrial
	ARP-WOO-07a	ARP-WOO-07b			
TRH >C34-C40	270	120	Coarse	2800	3300
			Fine	5600	6600
Total TRHs	360	<280		-	-

Appendix C - Exterior Dose Rate Measurements at Annex

Exterior Dose Rate Measurements at Annex

PREPARED FOR:	
COPY TO:	
PREPARED BY:	
DATE:	12 February 2018
PROJECT NUMBER:	684331
REVISION NO .:	Draft for Comment

It was requested that a radiological survey be carried out along the exterior wall of the Evetts Field Annex while CH2M personnel were mobilised to Woomera. This memo reports on the measurements of the survey conducted on Tuesday 6 February 2018.

Methodology

Meters used to Record Does Rates

Two radiological meters were brought to site to conduct measurements. These were:

A Fluke 481 radiation survey meter (SGS Calibration CAL-17-12529, recalibration date 16 Oct 2018) hired from TechRentals

A Ludlum Model 2401-P survey meter (ANSTO Calibration 2470, recalibration date 11 Feb 2018), borrowed from CSIRO (note this is the same survey meter used in previous environmental audits conducted by CH2M).

Testing of both meters was conducted prior to use.

The Fluke 481 has an automatic function to zero the background radiation, so if held in one location for several seconds, the readings dropped to zero. This meter was not used in the survey

The Ludlum 2401 has an open window, so it overreads at low KeV values. The Ludlum did not have a slide to compensate for this overreading. Spot checks were made against two instruments that ANSTO personnel had on site. This showed the Ludlum over-reads the dose rate (in μ Sv/hr) by approximately 10%, which is within the instrument error reported for the device. This meter was used throughout to measure the μ Sv/hr emanating from the Annex.

In addition, ANSTO conducted their own measurements of the Annex. The ANSTO results are not reported here, but discussions in the field indicated that similar results to those obtained by CH2M were measured by ANSTO, except that the Ludlum measurements were approximately 10% higher than the ANSTO results

Survey Methodology

The Ludlum was moved continuously in the pattern shown in **Figure 1**, on three sides of the Annex. The sides measured are shown in **Figure 2**. The analogue meter was monitored at all times to observe the fluctuations and record the range of measurements. Occasional bursts of radiation from particular

locations were also recorded. The data is displayed according to which side of the Annex was measured (that is, the western, southern or northern sides, as indicted in Figure 2.

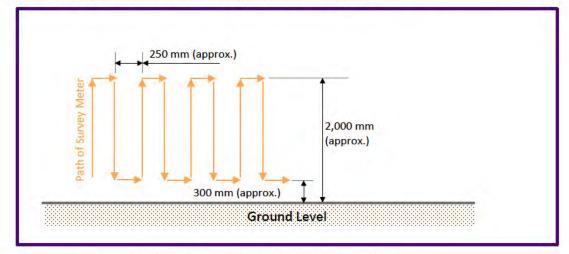


Figure 1 – Survey Pattern Adopted on the Exterior of the Annex

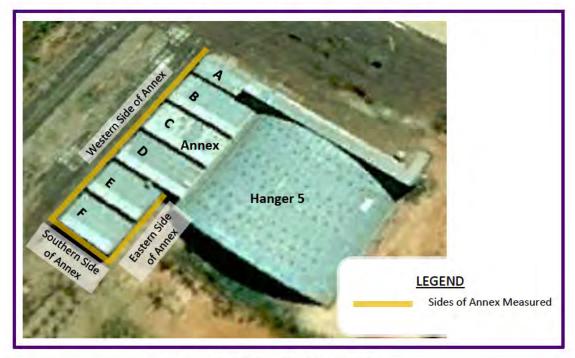


Figure 2 – Survey Areas around the Annex

Survey Measurements of Annex

The results are displayed graphically in Figure 3, Figure 4 and Figure 5.

EXTERIOR DOSE RATE MEASUREMENTS AT ANNEX

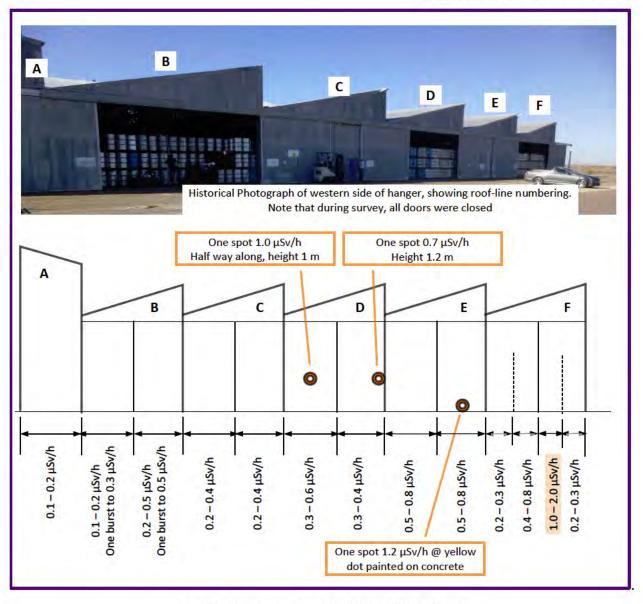


Figure 3 - Measurements along Western Wall of Annex

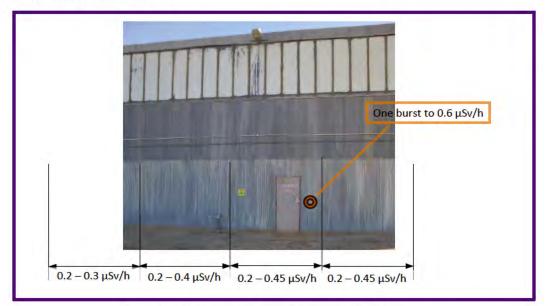


Figure 4 - Measurements along Southern Wall of Annex

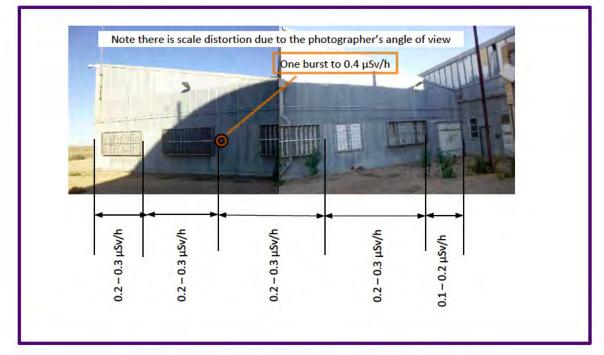


Figure 5 - Measurements along Eastern Wall of Annex

Appendix D – Laboratory Results for Chemical Analysis

Document No. 706815_01_Rev01 - Revised Draft for Client Review

Contact	1 March 1997	Manager	Ros Ma
Client	CH2M HILL AUSTRALIA PTY LTD	Laboratory	SGS Perth Environmental
Address	PO BOX 5392 CHATSWOOD NSW 1515	Address	28 Reid Rd Perth Airport WA 6105
Telephone	61 2 99500200	Telephone	(08) 9373 3500
Facsimile	61 2 99500601	Facsimile	(08) 9373 3556
Email	ch2m.com	Email	au.environmental.perth@sgs.com
Project	CSIRO Woomera - Project # 684331	SGS Reference	PE123413 R0
Order Number	(Not specified)	Date Received	14 Feb 2018
Samples	82	Date Reported	09 Mar 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Total Recoverable Metals:Cr, Cu, Ni & Zn: MSD RPD failed due to sample heterogeneity.

SVOC matrix spikes for sample #55 are not reported due to sample matrix interferences.

TRH: Matrix spikes were analysed on a sample from a different job within the different analytical batch. They could not be reported due to significant TRH within the sample.

Thorium and Uranium subcontracted to SGS Perth Minerals, 28 Reid Rd Perth Airport WA, NATA Accreditation Number 1936, WM182644.

SIGNATORIES

Hue Thanh Ly Metals Team Leader

Stefani Dewi Chemist

mchaped

Michael McKay Inorganics and ARD Supervisor

akile

Rashmi Thakur Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

28 Reid Rd Perth Airport WA 6105 PO Box 32 Welshpool WA 6983

A 6105 Australia 6983 Australia

ia t +61 8 9373 3500 ia f +61 8 9373 3556

www.sgs com.au

		Sample Number Sample Matrix Sample Date Sample Name	PE123413,001 Soil 06 Feb 2018 WG-0-A-10	PE123413.002 Soil 06 Feb 2018 WG-0-A-200	PE123413,003 Soil 06 Feb 2018 WG-0-B-10	PE123413.004 Soil 06 Feb 2018 WG-0-C-10
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/201	8					
% Moisture	%w/w	1 1	8.0	8,4	10.1	9.0
Total Recoverable Elements in Soil by ICPOES Meth	od: AN320 Tested	: 22/2/2018				
Arsenic, As	mg/kg	1012101	<1	2	2	1
Cadmium, Cd	mg/kg	0.3	0.4	0.4	0.9	<0.3
Chromium, Cr	mg/kg	0.5	13	12	13	11
Copper, Cu	mg/kg	0.5	5,3	5.0	7.6	4.8
ead, Pb	mg/kg	1	5	5	15	4
Nickel, Ni	mg/kg	0.5	4.7	4.3	5.6	3.9
Zinc, Zn	mg/kg	2	66	68	380	24
Mercury in Soil Method: AN312 Tested: 22/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: /	ANO41/AN318 Tes	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.1	2.9	3.0	2.8
Uranium, U*	mg/kg	0.1	<0.1	1.5	1.5	1.3
Volatile Petroleum Hydrocarbons in Soil Method: AN	433 Tested: 22/2/	2018				
TRH C6-C9	mg/kg	20	-	-		- 8
Surrogates						
Dibromofluoromethane (Surrogate)	%		-	1.1		-

Dibromofluoromethane (Surrogate)	%	÷	-	1		
d4-1,2-dichloroethane (Surrogate)	%		-	9 G	-	14
d8-toluene (Surrogate)	%	-		······································	1	
Bromofluorobenzene (Surrogate)	%		-		1.00	

	2	Sample Number Sample Matrix Sample Date Sample Name	PE123413.001 Soil 06 Feb 2018 WG-0-A-10	PE123413.002 Soil 06 Feb 2018 WG-0-A-200	PE123413.003 Soil 06 Feb 2018 WG-0-B-10	PE123413.00 Soil 06 Feb 2018 WG-0-C-10
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes VPH F Bands	ted: 22/2/3	2018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	R.
IRH C6-C10 minus BTEX (F1)	mg/kg	25	-		-	8
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
TRH C10-C14	mg/kg	20	-		-	
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·	-	e e
TRH C29-C36	mg/kg	45			· · · ·	
IRH F Bands						
TRH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		(.
RH >C16-C34 (F3)	mg/kg	90	-	20.11	22	6
RH >C34-C40 (F4)	mg/kg	120				12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons	mg/kg	0.1			.	
oluene	mg/kg	0.1	-	200		
thylbenzene	mg/kg	0.1				4
v/p-xylene	mg/kg	0.2		1.0		-
-xylene	mg/kg	0.1		-		-
Polycyclic VOCs						
laphthalene	mg/kg	0.1		÷	2 ÷	÷
Surrogates						
Dibromofluoromethane (Surrogate)	%				1.2. · · · · · ·	14
4-1,2-dichloroethane (Surrogate)	%	· · · ·				1 9 -
18-toluene (Surrogate)	%	-	-	20	-	÷
Bromofluorobenzene (Surrogate)	%		2		2	12

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413.001 Soil 06 Feb 2018 WG-0-A-10	PE123413.002 Soil 06 Feb 2018 WG-0-A-200	PE123413.003 Soil 06 Feb 2018 WG-0-B-10	PE123413.004 Soil 06 Feb 2018 WG-0-C-10
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-		-	(4) (4)
2-methylnaphthalene	mg/kg	0.1	-			
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-	-	
Acenaphthene	mg/kg	0.1	-	- C	2.4	(+
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1		- C 1	2.5	-
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1	-	-		÷
Benzo(a)anthracene	mg/kg	0.1		200	3.4	Q
Chrysene	mg/kg	0.1	-			
Benzo(b&j)fluoranthene	mg/kg	0.1				÷
Benzo(k)fluoranthene	mg/kg	0.1				
Benzo(a)pyrene	mg/kg	0.1	-	-		-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1		44		
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	+	G.,
Benzo(ghi)perylene	mg/kg	0.1	(m)		2.5	
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>0.2</td><td>2</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg	0.2	2			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>0.2</td><td>-</td><td>-</td><td></td><td></td></lor=lor>	TEQ (mg/kg	0.2	-	-		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td></td></lor=lor*<>	TEQ (mg/kg	0.3	-			

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	5	mple Number Sample Matrix Sample Date Sample Name	PE123413.005 Soil 06 Feb 2018 WG-0-C-200	PE123413.006 Soil 06 Feb 2018 WG-0-E-10	PE123413.007 Soil 06 Feb 2018 WG-0-E-200	PE123413.00 Soil 06 Feb 2018 WG-1-B-10
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	8.0	8,4	23.8	9,3
Total Recoverable Elements in Soil by ICPOES Method: AN32	0 Tested:	22/2/2018				
Arsenic, As	mg/kg	1111	2	1	(6	2
Cadmium, Cd	mg/kg	0.3	0.6	0.3	0.6	<0.3
Chromium, Cr	mg/kg	0.5	10	11	27	11
Copper, Cu	mg/kg	0.5	5,3	5.1	18	5,4
Lead, Pb	mg/kg	1	16	4	9	4
Nickel, Ni	mg/kg	0.5	4.6	4.2	14	4.4
Zinc, Zn	mg/kg	2	170	40	49	20
Mercury in Soil Method: AN312 Tested: 22/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A	Los Los	d: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.7	3.5	3.3	2.6
Uranium, U*	mg/kg	0.1	1.3	1.4	1.7	1.3
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	sted: 22/2/20	18				
TRH C6-C9	mg/kg	20		-	-	- 8 -
Surrogates						
Dibromofluoromethane (Surrogate)	%			1.1		-

Dibromofluoromethane (Surrogate)	%	-	-	 1. A	
d4-1,2-dichloroethane (Surrogate)	%			 	14
d8-toluene (Surrogate)	%	1.4		 1	<u></u> P ==
Bromofluorobenzene (Surrogate)	%	-	-	 1000	-

	2	Sample Number Sample Matrix Sample Date Sample Name	PE123413,005 Soil 06 Feb 2018 WG-0-C-200	PE123413.006 Soil 06 Feb 2018 WG-0-E-10	PE123413,007 Soil 06 Feb 2018 WG-0-E-200	PE123413.00 Soil 06 Feb 2018 WG-1-B-10
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons în Soîl Method: AN433 Test VPH F Bands	ted: 22/2/:	2018 (continu	led)			
Benzene (F0)	mg/kg	0.1	- 1	2	-	H.
TRH C6-C10 minus BTEX (F1)	mg/kg	25				
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
RH C10-C14	mg/kg	20			-	н
RH C15-C28	mg/kg	45				- e -
RH C29-C36	mg/kg	45				-
RH F Bands						
RH >C10-C16	mg/kg	25	-			
RH >C16-C34 (F3)	mg/kg	90	~	20.1	3.0	G2
RH >C34-C40 (F4)	mg/kg	120				12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons	mg/kg	0.1			- 1	
oluene	mg/kg	0.1		2 1 1	12	(2°
thylbenzene	mg/kg	0.1	2	- La		4
Vp-xylene	mg/kg	0.2	-			-
-xylene	mg/kg	0.1		-	-	
Polycyclic VOCs						
laphthalene	mg/kg	0.1			28	э.
Surrogates						
ibromofluoromethane (Surrogate)	%					1.14
4-1,2-dichloroethane (Surrogate)	%				-	
8-toluene (Surrogate)	%	- 1	-	2 0 1	-	ų.
romofluorobenzene (Surrogate)	%		-	4	1.2	4

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413,005 Soil 06 Feb 2018 WG-0-C-200	PE123413.006 Soil 06 Feb 2018 WG-0-E-10	PE123413.007 Soil 06 Feb 2018 WG-0-E-200	PE123413.008 Soil 06 Feb 2018 WG-1-B-10
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-		14	H.
2-methylnaphthalene	mg/kg	0.1	-			R
1-methylnaphthalene	mg/kg	0.1	-			-
Acenaphthylene	mg/kg	0.1				÷
Acenaphthene	mg/kg	0.1	-	- C		-
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1		- C 14	2.5	
Fluoranthene	mg/kg	0.1	÷		L	14
Pyrene	mg/kg	0.1				÷
Benzo(a)anthracene	mg/kg	0.1	Q		3.4	
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	-			
Benzo(k)fluoranthene	mg/kg	0.1	9			+
Benzo(a)pyrene	mg/kg	0.1	-	-		C.
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			12
Dibenzo(ah)anthracene	mg/kg	0.1	-			Q.,
Benzo(ghi)perylene	mg/kg	0.1		- C - T - 1	2.0	19
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td></td><td></td><td></td><td>5</td></lor=lor>	TEQ (mg/kg) 0.2				5
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>) 0.3</td><td>-</td><td></td><td></td><td></td></lor=lor*<>	TEQ (mg/kg) 0.3	-			

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	Si	nple Number ample Matrix Sample Date ample Name	PE123413,009 Soil 06 Feb 2018 WG-1-B-200	PE123413.010 Soil 06 Feb 2018 WG-1-D-10	PE123413.011 Soil 06 Feb 2018 WG-1-D-200	PE123413.01: Soil 06 Feb 2018 WG-2-A-10
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	10.0	8,4	9.2	6.2
Total Recoverable Elements in Soil by ICPOES Method:	AN320 Tested: 2	2/2/2018				
Arsenic, As	mg/kg	11111	2	3	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	0.6	⊲0.3	<0.3
Chromium, Cr	mg/kg	0.5	11	11	9.3	9.9
Copper, Cu	mg/kg	0.5	4.9	6.1	3,0	5.0
Lead, Pb	mg/kg	1	4	8	3	4
Nickel, Ni	mg/kg	0.5	4.0	5.0	2.4	4.3
Zinc, Zn	mg/kg	2	14	97	12	19
Mercury in Soil Method: AN312 Tested: 22/2/2018						
	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Mercury		0.05 d: 8/3/2018	<0.05	<0.05	<0.05	⊲0.05
Mercury Total Recoverable Metals in Soil by ICPMS Method: ANO			<0.05 2.6	<0.05 2.4	<0.05	<0.05 2.7
Mercury Total Recoverable Metals in Soil by ICPMS Method: ANO Thorium, Th*	41/AN318 Tested	d: 8/3/2018				
Mercury Total Recoverable Metals in Soil by ICPMS Method: ANO Thorium, Th [*] Uranium, U*	41/AN318 Tester mg/kg mg/kg	0.5 0.1	2.6	2.4	29	2.7
Mercury Total Recoverable Metals in Soil by ICPMS Method: ANO Thorium, Th* Uranium, U* Volatile Petroleum Hydrocarbons in Soil Method: AN433	41/AN318 Tester mg/kg mg/kg	0.5 0.1	2.6	2.4	29	2.7
Mercury Total Recoverable Metals in Soil by ICPMS Method: ANO Thorium, Th* Uranium, U*	41/AN318 Tested mg/kg mg/kg Tested: 22/2/201	0.5 0.1 18	2.6 1.5	24 1.2	29 15	2.7 1.4

Dibromofluoromethane (Surrogate)	%		-		1.÷	
d4-1,2-dichloroethane (Surrogate)	%	-	9	1940 T	2.4	1-1
d8-toluene (Surrogate)	%	-		······································		
Bromofluorobenzene (Surrogate)	%		-			-

	5	Sample Number Sample Matrix Sample Date Sample Name	PE123413,009 Soil 06 Feb 2018 WG-1-B-200	PE123413.010 Soil 06 Feb 2018 WG-1-D-10	PE123413.011 Soil 06 Feb 2018 WG-1-D-200	PE123413.01 Soil 06 Feb 2018 WG-2-A-10
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes VPH F Bands	sted: 22/2/:	2018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-			14,
IRH C6-C10 minus BTEX (F1)	mg/kg	25	-			
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
TRH C10-C14	mg/kg	20	- 1			R.
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·		- e -
RH C29-C36	mg/kg	45			· · · · · · · · · · · · · · · · · · ·	
TRH F Bands						
RH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		- A
RH >C16-C34 (F3)	mg/kg	90		20.1	24	G2
RH >C34-C40 (F4)	mg/kg	120				12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons	mg/kg	0.1			- 1	
oluene	mg/kg	0.1	-	2	14	(2°
thylbenzene	mg/kg	0.1	2			4
vp-xylene	mg/kg	0.2	-			4
-xylene	mg/kg	0.1	4	-	-	
Polycyclic VOCs						
Naphthalene	mg/kg	0.1				(÷
Surrogates						
ibromofluoromethane (Surrogate)	%				11.2 ·····	1 k
4-1,2-dichloroethane (Surrogate)	%					(ð -
8-toluene (Surrogate)	%			- 0 1.	-	Ŷ
Bromofluorobenzene (Surrogate)	%		-		1.2	

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413,009 Soil 06 Feb 2018 WG-1-B-200	PE123413.010 Soil 06 Feb 2018 WG-1-D-10	PE123413.011 Soil 06 Feb 2018 WG-1-D-200	PE123413.012 Soil 06 Feb 2018 WG-2-A-10
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-	2	24	н
2-methylnaphthalene	mg/kg	0.1	-			e – e –
1-methylnaphthalene	mg/kg	0.1	-			+
Acenaphthylene	mg/kg	0.1		-		- e
Acenaphthene	mg/kg	0.1	-	- C		2
Fluorene	mg/kg	0.1				
Phenanthrene	mg/kg	0.1	-			-
Anthracene	mg/kg	0.1			2.5	
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1	-	-		4
Benzo(a)anthracene	mg/kg	0.1	-	2.0	24	
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1				÷
Benzo(k)fluoranthene	mg/kg	0.1				
Benzo(a)pyrene	mg/kg	0.1	-	-		(÷
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	+			14
Dibenzo(ah)anthracene	mg/kg	0.1	-		-	Ge
Benzo(ghi)perylene	mg/kg	0.1	(e.)		2.5	10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td>-</td><td></td><td></td></lor=lor>	TEQ (mg/kg) 0.2	-	-		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>) 0.3</td><td>-</td><td></td><td></td><td></td></lor=lor*<>	TEQ (mg/kg) 0.3	-			

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	2	Sample Number Sample Matrix Sample Date Sample Name	PE123413.013 Soii 06 Feb 2018 WG-2-A-200	PE123413.014 Soil 06 Feb 2018 WG-2-C-10	PE123413.015 Soil 06 Feb 2018 WG-2-C-200	PE123413.010 Soil 06 Feb 2018 WG-2-E-10
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	7.5	6.3	10.2	8.5
Total Recoverable Elements in Soil by ICPOES Method: AN3	20 Tested	: 22/2/2018				
Arsenic, As	mg/kg	1.11.100	1	4	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	0.4	<0.3	0.3
Chromium, Cr	mg/kg	0.5	9.0	17	11	12
Copper, Cu	mg/kg	0.5	2.6	11	4.3	5.2
lead, Pb	mg/kg	1	3	9	3	4
Nickel, Ni	mg/kg	0.5	2.3	8,5	3.2	4.5
Zinc, Zn	mg/kg	2	6	29	10	13
Mercury in Soil Method: AN312 Tested: 22/2/2018	_					
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A	N318 Tes	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.5	2.8	2.7	2.9
Jranium, U*	mg/kg	0.1	1.4	1.4	1.5	1.3
Volatile Petroleum Hydrocarbons in Soil Method: AN433 T	ested: 22/2/2	2018				
TRH C6-C9	mg/kg	20	-	-	-	8
Surrogates						
Dibromofluoromethane (Surrogate)	%	+	-			9
	1 17					

Dibromofluoromethane (Surrogate)	%	÷ .	-			
d4-1,2-dichloroethane (Surrogate)	%			9 C		- H
d8-toluene (Surrogate)	%	1.4		······································	1	
Bromofluorobenzene (Surrogate)	%		-	÷	1.00	-

	5	Sample Number Sample Matrix Sample Date Sample Name	PE123413,013 Soil 06 Feb 2018 WG-2-A-200	PE123413.014 Soil 06 Feb 2018 WG-2-C-10	PE123413.015 Soil 06 Feb 2018 WG-2-C-200	PE123413.010 Soil 06 Feb 2018 WG-2-E-10
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes VPH F Bands	sted: 22/2/	2018 (continu	led)			
Benzene (F0)	mg/kg	0.1	-		-	R.
IRH C6-C10 minus BTEX (F1)	mg/kg	25	-			
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
TRH C10-C14	mg/kg	20			-	H.
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·		- A -
RH C29-C36	mg/kg	45			·····	
TRH F Bands						
RH >C10-C16	mg/kg	25	-			
RH >C16-C34 (F3)	mg/kg	90	~	* C 1	22	6
RH >C34-C40 (F4)	mg/kg	120				12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Wonocyclic Aromatic Hydrocarbons Benzene	mg/kg	0.1			.	
oluene	mg/kg	0.1		2		e -
thylbenzene	mg/kg	0.1	2		2	4
v/p.xylene	mg/kg	0.2		1000		- 14 m
-xylene	mg/kg	0.1		-	-	
Polycyclic VOCs						
Naphthalene	mg/kg	0.1				÷
Surrogates						
ibromofluoromethane (Surrogate)	%				1.2	14
4-1,2-dichloroethane (Surrogate)	%					19 -
8-toluene (Surrogate)	%		-	- 0 1.	-	Ŷ
Bromofluorobenzene (Surrogate)	%		-		1.2	

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413,013 Soil 06 Feb 2018 WG-2-A-200	PE123413.014 Soil 06 Feb 2018 WG-2-C-10	PE123413.015 Soil 06 Feb 2018 WG-2-C-200	PE123413.016 Soil 06 Feb 2018 WG-2-E-10
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-	2	-	н
2-methylnaphthalene	mg/kg	0.1	-			
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-		÷
Acenaphthene	mg/kg	0.1	-		5-1	e
Fluorene	mg/kg	0.1	-			-
Phenanthrene	mg/kg	0.1	-			-
Anthracene	mg/kg	0.1	-	- c - 1		
Fluoranthene	mg/kg	0.1	÷	44		14
Pyrene	mg/kg	0.1	-	-		÷
Benzo(a)anthracene	mg/kg	0.1	-	2.0	3.4	Q.
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	4			e la
Benzo(k)fluoranthene	mg/kg	0.1			-	-
Benzo(a)pyrene	mg/kg	0.1	-	-	-	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-	4000		
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	-	G.,
Benzo(ghi)perylene	mg/kg	0.1				10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td>1.2</td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4		1.2	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>0.2</td><td>-</td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg	0.2	-			
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td>G</td></lor=lor*<>	TEQ (mg/kg	0.3	-			G

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	s	iample Number Sample Matrix Sample Date Sample Name	PE123413.017 Soil 06 Feb 2018 WG-2-E-200	PE123413.018 Soil 07 Feb 2018 W-0-A-5	PE123413.019 Soil 07 Feb 2018 W-0-A-200	PE123413.02 Soil 07 Feb 2018 W-10-B-5
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/201	8					
% Moisture	%w/w	: = 1	7.4	7.0	5.8	6.4
Total Recoverable Elements in Soil by ICPOES Metho	od: AN320 Tested	22/2/2018				
Arsenic, As	mg/kg	1.10.1	1	2	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	⊲0.3	<0.3
Chromium, Cr	mg/kg	0.5	9.4	11	9.4	9.5
Copper, Cu	mg/kg	0.5	2.9	5.0	6.9	3.7
Lead, Pb	mg/kg	1	3	4	3	2
Nickel, Ni	mg/kg	0.5	2.4	4.4	3.0	3.0
Zinc, Zn	mg/kg	2	7	15	11	8
Mercury in Soil Method: AN312 Tested: 22/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: /	N041/AN318 Test	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.8	2.3	1.7	1.8
Uranium, U*	mg/kg	0.1	1.4	⊲0.1	<0.1	<0.1
Volatile Petroleum Hydrocarbons in Soil Method: AN	433 Tested: 22/2/2	2018				
TRH C6-C9	mg/kg	20	-	-		8
Surrogates						
Dibromofluoromethane (Surrogate)	%					

Dibromofluoromethane (Surrogate)	%	÷	-			
d4-1,2-dichloroethane (Surrogate)	%		-	9 C	-	1-1
d8-toluene (Surrogate)	%	1.4	-	······································		
Bromofluorobenzene (Surrogate)	%		-		-	-

	S	iample Number Sample Matrix Sample Date Sample Name	PE123413.017 Soil 06 Feb 2018 WG-2-E-200	PE123413.018 Soil 07 Feb 2018 W-0-A-5	PE123413,019 Soil 07 Feb 2018 W-0-A-200	PE123413.02 Soil 07 Feb 2018 W-10-B-5
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te VPH F Bands	sted: 22/2/2	2018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	14
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			8
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3 Tested:	1/3/2018				
IRH C10-C14	mg/kg	20		1	-	н
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·		- A -
RH C29-C36	mg/kg	45				
RH F Bands						
RH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		
RH >C16-C34 (F3)	mg/kg	90	-	20.1	24	G.
RH >C34-C40 (F4)	mg/kg	120				12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons						
lenzene	mg/kg	0.1	-	-	-	
oluene	mg/kg	0.1	-	-		
ithylbenzene	mg/kg	0.1	-		-	-
N/p-xylene	mg/kg mg/kg	0.2	4	-		
Polycyclic VOCs	mgridg	0.1				
laphthalene	mg/kg	0.1		÷		Э.
Surrogates						
Dibromofluoromethane (Surrogate)	%		-	4.0	2	14
4-1,2-dichloroethane (Surrogate)	%				-	19
8-toluene (Surrogate)	%		-	- (),	-	Q.
Bromofluorobenzene (Surrogate)	%		2	4	2	12

PE123413 R0

		imple Number Sample Matrix Sample Date Sample Name	PE123413.017 Soii 06 Feb 2018 WG-2-E-200	PE123413.018 Soil 07 Feb 2018 W-0-A-5	PE123413,019 Soil 07 Feb 2018 W-0-A-200	PE123413.020 Soil 07 Feb 2018 W-10-B-5
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-			14,
2-methylnaphthalene	mg/kg	0.1	-			R
1-methylnaphthalene	mg/kg	0.1				÷
Acenaphthylene	mg/kg	0.1		-		8
Acenaphthene	mg/kg	0.1	-		2.45	-
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	~			-
Anthracene	mg/kg	0.1			2.5	
Fluoranthene	mg/kg	0.1	÷			14-
Pyrene	mg/kg	0.1		÷		÷ -
Benzo(a)anthracene	mg/kg	0.1	-	2.0	34	
Chrysene	mg/kg	0.1	-			i i i i i i i i i i i i i i i i i i i
Benzo(b&j)fluoranthene	mg/kg	0.1	-			÷
Benzo(k)fluoranthene	mg/kg	0.1		-		
Benzo(a)pyrene	mg/kg	0.1	-	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			14
Dibenzo(ah)anthracene	mg/kg	0.1	-			G.,
Benzo(ghi)perylene	mg/kg	0.1			2.0	(#).
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4</td><td></td><td>1</td><td>- E</td></lor=0*<>	TEQ (mg/kg)	0.2	4		1	- E
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>in the second second</td><td></td><td></td></lor=lor>	TEQ (mg/kg)	0.2	-	in the second second		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td></td><td></td><td>Q</td></lor=lor*<>	TEQ (mg/kg)	0.3	-			Q

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-	.+	-	1
d5-phenol (Surrogate)	%		-	2.0	2.4	
2,4,6-tribromophenol (Surrogate)	%	1.00		4.4		4
d14-p-terphenyl (Surrogate)	%		-		1	÷
d5-nitrobenzene (Surrogate)	%		-	-	-	

	5	nple Number ample Matrix Sample Date ample Name	PE123413.021 Soii 07 Feb 2018 W-10-B-200	PE123413.022 Soil 07 Feb 2018 W-10-A-200	PE123413,023 Soil 07 Feb 2018 WG-3-B-10	PE123413.02/ Soil 07 Feb 2018 WG-3-B-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/20	18					
% Moisture	%w/w	E 10	13.3	5.2	7.0	6.5
Total Recoverable Elements in Soil by ICPOES Met	hod: AN320 Tested: 2	6/2/2018				
Arsenic, As	mg/kg	1121	5	2	1	3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	⊲0.3	<0.3
Chromium, Cr	mg/kg	0.5	19	10	10	13
Copper, Cu	mg/kg	0.5	13	4,5	3.6	7.0
Lead, Pb	mg/kg	1	6	3	3	4
Nickel, Ni	mg/kg	0.5	9.9	3.5	3.1	5.7
Zinc, Zn	mg/kg	2	28	10	9	16
Mercury in Soil Method: AN312 Tested: 26/2/2018	6					
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method	AN041/AN318 Teste	d: 8/3/2018				
Thorium, Th*	mg/kg	0.5	4.8	2.0	1.8	3.0
Uranium, U*	mg/kg	0.1	0.3	⊲0.1	⊲0.1	0.2
Volatile Petroleum Hydrocarbons in Soil Method: A	N433 Tested: 22/2/20	18				
TRH C6-C9	mg/kg	20				- 8 -
Surrogates						
Dibromofluoromethane (Surrogate)	%	-				-

Dibromofluoromethane (Surrogate)	%	÷	-		
d4-1,2-dichloroethane (Surrogate)	%	-	Q	1 - C	 14
d8-toluene (Surrogate)	%	-			 <u></u> 2 =
Bromofluorobenzene (Surrogate)	%		-	á en	 -

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413.021 Soil 07 Feb 2018 W-10-B-200	PE123413.022 Soil 07 Feb 2018 W-10-A-200	PE123413.023 Soïl 07 Feb 2018 WG-3-B-10	PE123413.024 Soil 07 Feb 2018 WG-3-B-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes VPH F Bands	ted: 22/2/2	018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	H.
IRH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested:	1/3/2018				
RH C10-C14	mg/kg	20	-	1	-	14.
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·	-	- e
RH C29-C36	mg/kg	45				-
RH F Bands						
RH >C10-C16	mg/kg	25	-			
RH >C16-C34 (F3)	mg/kg	90		20 1	24	ω.
RH >C34-C40 (F4)	mg/kg	120	-			12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons Benzene	mg/kg	0.1	-	. 1	.	14
oluene	mg/kg	0.1	-	20.1	26	G.
thylbenzene	mg/kg	0.1	2	far i		4
vp-xylene	mg/kg	0.2	-			-
-xylene	mg/kg	0.1	4		-	- e.
Polycyclic VOCs						
laphthalene	mg/kg	0.1		i i i i i i i i i i i i i i i i i i i		9
Surrogates						
bibromofluoromethane (Surrogate)	%		-		1	14
4-1,2-dichloroethane (Surrogate)	%	1 - E		-	-	19
8-toluene (Surrogate)	%	-	-	2 0 1	-	φ.
Bromofluorobenzene (Surrogate)	%		2		1,2	1

PE123413 R0

		ample Number Sample Matrix Sample Date Sample Name	PE123413.021 Soii 07 Feb 2018 W-10-B-200	PE123413.022 Soil 07 Feb 2018 W-10-A-200	PE123413.023 Soil 07 Feb 2018 WG-3-B-10	PE123413.024 Soil 07 Feb 2018 WG-3-B-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-	2		4
2-methylnaphthalene	mg/kg	0.1	-			i i i
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-		
Acenaphthene	mg/kg	0.1	-	- C		(2)
Fluorene	mg/kg	0.1	-			-
Phenanthrene	mg/kg	0.1	-			(.
Anthracene	mg/kg	0.1		- c - 1	2.0	-
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1	-	-		÷
Benzo(a)anthracene	mg/kg	0.1	-		340	
Chrysene	mg/kg	0.1	-			-
Benzo(b&j)fluoranthene	mg/kg	0.1	-			÷
Benzo(k)fluoranthene	mg/kg	0.1			4	
Benzo(a)pyrene	mg/kg	0.1	-	-	-	(3
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			14
Dibenzo(ah)anthracene	mg/kg	0.1	-		-	G.,
Benzo(ghi)perylene	mg/kg	0.1	-		2.6	10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td></td><td>in the second</td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	-		in the second	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td>-</td><td></td><td></td></lor=lor>	TEQ (mg/kg) 0.2	-	-		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td>Q</td></lor=lor*<>	TEQ (mg/kg	0.3	-			Q

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413.025 Soii 07 Feb 2018 WG-3-D-10	PE123413.026 Soil 07 Feb 2018 WG-3-D-200	PE123413.027 Soil 07 Feb 2018 S-0-A-5	PE123413.02 Soil 07 Feb 2018 S-0-A-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2	/2018					
% Moisture	%w/w	1	4.0	7.2	13.9	20.0
Total Recoverable Elements in Soil by ICPOES	Nethod: AN320 Tested:	26/2/2018				
Arsenic, As	mg/kg	1.11.10	<1	1	4	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	9.0	10	7.8	28
Copper, Cu	mg/kg	0.5	2.7	4.1	10	19
lead, Pb	mg/kg	1	2	2	3	9
Nickel, Ni	mg/kg	0.5	2.3	3.3	7.6	16
Zinc, Zn	mg/kg	2	6	9	11	46
Mercury in Soil Method: AN312 Tested: 26/2/2	018					
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
		ed: 8/3/2018				0.4
Thorium, Th*	mg/kg	0.5	1.6	1.9	1.4	7.5
Uranium, U*	mg/kg	0.1	<0.1	<0.1	0.4	0.6
Volatile Petroleum Hydrocarbons in Soil Method	: AN433 Tested: 22/2/2	018				
TRH C6-C9	mg/kg	20		-		- 8 -
Surrogates						
Dibromofluoromethane (Surrogate)	%	-				-

Dibromofluoromethane (Surrogate)	%	÷ •	-	÷	1. A	
d4-1,2-dichloroethane (Surrogate)	%		2	- C		ы
d8-toluene (Surrogate)	%	-		······································	1	
Bromofluorobenzene (Surrogate)	%		-		1000	-

	5	Sample Number Sample Matrix Sample Date Sample Name	PE123413.025 Soil 07 Feb 2018 WG-3-D-10	PE123413.026 Soil 07 Feb 2018 WG-3-D-200	PE123413,027 Soil 07 Feb 2018 S-0-A-5	PE123413.028 Soil 07 Feb 2018 S-0-A-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te VPH F Bands	sted: 22/2/2	2018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	н.
RH C6-C10 minus BTEX (F1)	mg/kg	25	-		-	
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3 Tested:	1/3/2018				
TRH C10-C14	mg/kg	20	-		-	4
RH C15-C28	mg/kg	45				
TRH C29-C36	mg/kg	45	-			
TRH F Bands						
RH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		
RH >C16-C34 (F3)	mg/kg	90	-	- 2 C - 1	24	Q.
RH >C34-C40 (F4)	mg/kg	120	2			12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons	mg/kg	0.1			- 1	
Toluene	mg/kg	0.1				
thylbenzene	mg/kg	0.1			2	2
n/p-xylene	mg/kg	0.2	-	1.000		14.000
-xylene	mg/kg	0.1		-	-	-
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	÷	÷<		÷
Surrogates						
Dibromofluoromethane (Surrogate)	%		-		1. A	14
4-1,2-dichloroethane (Surrogate)	%	· · · · ·				19
	%	1 1 1	-	2 0 1 1	-	· · · ·
18-toluene (Surrogate)						

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413.025 Soil 07 Feb 2018 WG-3-D-10	PE123413.026 Soil 07 Feb 2018 WG-3-D-200	PE123413.027 Soil 07 Feb 2018 S-0-A-5	PE123413.028 Soil 07 Feb 2018 S-0-A-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-			H.
2-methylnaphthalene	mg/kg	0.1	-			R
1-methylnaphthalene	mg/kg	0.1				÷
Acenaphthylene	mg/kg	0.1		-		÷
Acenaphthene	mg/kg	0.1	-	- C		-
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	-			(.
Anthracene	mg/kg	0.1	-	- C 1	2.5	
Fluoranthene	mg/kg	0.1	÷			· · · · · · · · · · · · · · · · · · ·
Pyrene	mg/kg	0.1	-	19 million (19 million)		+
Benzo(a)anthracene	mg/kg	0.1			34	
Chrysene	mg/kg	0.1				-
Benzo(b&j)fluoranthene	mg/kg	0.1				÷
Benzo(k)fluoranthene	mg/kg	0.1				-
Benzo(a)pyrene	mg/kg	0.1	-			(3
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	+			14
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	-	G.,
Benzo(ghi)perylene	mg/kg	0.1	(m)		2.5	14
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td>1.1</td><td></td><td></td></lor=lor>	TEQ (mg/kg) 0.2	-	1.1		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td>Q</td></lor=lor*<>	TEQ (mg/kg	0.3	-			Q

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.029 Soii 07 Feb 2018 S-10-A-5	PE123413.030 Soil 07 Feb 2018 S-10-A-200	PE123413.031 Soil 07 Feb 2018 S-10-B-5	PE123413.03 Soil 07 Feb 2018 S-10-B-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	13.3	9.2	13.9	18.3
Total Recoverable Elements in Soil by ICPOES Method: AN32	20 Tested	: 26/2/2018				
Arsenic, As	mg/kg	1.11.1	4	4	5	6
Cadmium, Cd	mg/kg	0.3	0.6	0.5	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	17	14	13	21
Copper, Cu	mg/kg	0.5	14	11	13	19
lead, Pb	mg/kg	1	16	- 11	5	11
lickel, Ni	mg/kg	0.5	9.8	7.9	11	12
Zinc, Zn	mg/kg	2	160	110	23	47
Mercury in Soil Method: AN312 Tested: 26/2/2018 Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A	N318 Tes	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	3.6	3.1	2.8	5.2
Uranium, U*	mg/kg	0.1	0.3	0.2	0.6	0,5
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	ested: 22/2/	2018				
TRH C6-C9	mg/kg	20	-			1.1.2
Surrogates						
Dibromofluoromethane (Surrogate)	%				-	
	1.1.1					

Dibromofluoromethane (Surrogate)	%	÷		17 C		
d4-1,2-dichloroethane (Surrogate)	%					14
d8-toluene (Surrogate)	%	-		······································	-1	
Bromofluorobenzene (Surrogate)	%	-	-	÷	1.	-

	S	Sample Number Sample Matrix Sample Date Sample Name	PE123413,029 Soil 07 Feb 2018 S-10-A-5	PE123413.030 Soil 07 Feb 2018 S-10-A-200	PE123413.031 Soil 07 Feb 2018 S-10-B-5	PE123413.032 Soil 07 Feb 2018 S-10-B-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes /PH F Bands	ted: 22/2/2	2018 (continu	Jed)			
Benzene (F0)	mg/kg	0.1	-		-	н.
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested:	: 1/3/2018				
RH C10-C14	mg/kg	20	-		-	
RH C15-C28	mg/kg	45	-			
RH C29-C36	mg/kg	45	-		-	-
RH F Bands						
RH >C10-C16	mg/kg	25	-			14
RH >C16-C34 (F3)	mg/kg	90	-	20 1	22	- C
RH >C34-C40 (F4)	mg/kg	120	1			12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons		1 22 1				
lenzene	mg/kg	0.1	-	-	-	-
oluene	mg/kg	0.1	-	-		<u> </u>
ithylbenzene	mg/kg	0.1	-	-	-	-
v/p-xylene	mg/kg	0.2		-	2	-
xylene	mg/kg	0.1	~	-	-	
Polycyclic VOCs						
laphthalene	mg/kg	0.1	· · · · · · · · · · · · · · · · · · ·	+ <		9
Surrogates						
	%		-	4.4	11,2, march 1	4
bibromofluoromethane (Surrogate)	%			4	2	
Surrogates Dibromofluoromethane (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate)						

PE123413 R0

		ample Number Sample Matrix Sample Date Sample Name	PE123413,029 Soil 07 Feb 2018 S-10-A-5	PE123413.030 Soil 07 Feb 2018 S-10-A-200	PE123413.031 Soil 07 Feb 2018 S-10-B-5	PE123413.032 Soil 07 Feb 2018 S-10-B-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	1.0			H,
2-methylnaphthalene	mg/kg	0.1	-	· · · · · · · · · · · · · · · · · · ·		R.
1-methylnaphthalene	mg/kg	0.1	-			÷.
Acenaphthylene	mg/kg	0.1		-		÷
Acenaphthene	mg/kg	0.1	-		2.45	-
Fluorene	mg/kg	0.1	14 C			-
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1		- C 1	2.5	
Fluoranthene	mg/kg	0.1	÷			14
Pyrene	mg/kg	0.1		÷		÷
Benzo(a)anthracene	mg/kg	0.1	-		240	Q
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1				e e
Benzo(k)fluoranthene	mg/kg	0.1			4	
Benzo(a)pyrene	mg/kg	0.1	-			(-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			14
Dibenzo(ah)anthracene	mg/kg	0.1	-		-	G.,
Benzo(ghi)perylene	mg/kg	0.1		-C	2.0	59
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg	0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>0.2</td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg	0.2				
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td>G</td></lor=lor*<>	TEQ (mg/kg	0.3	-			G

2-fluorobiphenyl (Surrogate)	%		-	÷	-	19
d5-phenol (Surrogate)	%	-	-	9.0	2.4	
2,4,6-tribromophenol (Surrogate)	%	1.00				4
d14-p-terphenyl (Surrogate)	%		-		1	
d5-nitrobenzene (Surrogate)	%		-	-	-	

	S	nple Number ample Matrix Sample Date Sample Name	PE123413.033 Soil 07 Feb 2018 S-10-C-5	PE123413.034 Soil 07 Feb 2018 S-10-C-200	PE123413.035 Soil 07 Feb 2018 S-10-D-5	PE123413.03 Soil 07 Feb 2018 S-10-D-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	12.7	13.5	13.7	20.5
Total Recoverable Elements in Soil by ICPOES Method: AN3	20 Tested: 2	26/2/2018				
Arsenic, As	mg/kg	1.10	4	4	6	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.5	0.5
Chromium, Cr	mg/kg	0.5	9.1	9.3	17	28
Copper, Cu	mg/kg	0.5	10	11	13	20
lead, Pb	mg/kg	1	3	3	12	9
Nickel, Ni	mg/kg	0.5	9,3	9.4	11	16
Zinc, Zn	mg/kg	2	12	12	34	45
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041//	AN318 Teste	d: 8/3/2018				
Thorium, Th*	mg/kg	0.5	1.7	1.9	3.6	6.7
Uranium, U*	mg/kg	0.1	0.5	0.6	0,5	0,5
Volatile Petroleum Hydrocarbons in Soil Method: AN433 1	fested: 22/2/20	18				
TRH C6-C9	mg/kg	20	-	-		- 8
Surrogates						
Dibromofluoromethane (Surrogate)	%	÷	-			

Dibromofluoromethane (Surrogate)	%	÷		3.0		
d4-1,2-dichloroethane (Surrogate)	%			9 C		1-1
d8-toluene (Surrogate)	%	-		······································	-1	
Bromofluorobenzene (Surrogate)	%		-	÷	1.	-

	S	iample Number Sample Matrix Sample Date Sample Name	PE123413,033 Soil 07 Feb 2018 S-10-C-5	PE123413.034 Soil 07 Feb 2018 S-10-C-200	PE123413.035 Soil 07 Feb 2018 S-10-D-5	PE123413.03 Soil 07 Feb 2018 S-10-D-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te /PH F Bands	sted: 22/2/2	2018 (continu	ied)			
Genzene (F0)	mg/kg	0.1	-		-	R.
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3 Tested:	1/3/2018				
RH C10-C14	mg/kg	20			-	-
RH C15-C28	mg/kg	45				
RH C29-C36	mg/kg	45				-
RH F Bands						
RH >C10-C16	mg/kg	25	-	I .		1
RH >C16-C34 (F3)	mg/kg	90	~ ~	210 1	22	
RH >C34-C40 (F4)	mg/kg	120			2	12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons						
lenzene	mg/kg	0.1	-			
iluene :::thylbenzene ::thylbenzene ::thylbenzen::thylbenzene ::thylbenzene ::thylbenzene ::thy	mg/kg mg/kg	0.1	-	-	-	4
vp-xylene	mg/kg	0.1		-		
-xylene	mg/kg	0.1		-		
Polycyclic VOCs						
łaphthalene	mg/kg	0.1			2.4	÷
Surrogates						
bibromofluoromethane (Surrogate)	%				1.2.	14
4-1,2-dichloroethane (Surrogate)	%				-	19
8-toluene (Surrogate)	%	÷.		2 0 1	-	÷
Bromofluorobenzene (Surrogate)	%		2	6.00	1.2	

PE123413 R0

		ample Number Sample Matrix Sample Date Sample Name	PE123413,033 Soil 07 Feb 2018 S-10-C-5	PE123413.034 Soil 07 Feb 2018 S-10-C-200	PE123413.035 Soil 07 Feb 2018 S-10-D-5	PE123413.036 Soil 07 Feb 2018 S-10-D-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	141			н
2-methylnaphthalene	mg/kg	0.1	-			
1-methylnaphthalene	mg/kg	0.1	-			-
Acenaphthylene	mg/kg	0.1				8
Acenaphthene	mg/kg	0.1	-	- C		-
Fluorene	mg/kg	0.1				
Phenanthrene	mg/kg	0.1	-			-
Anthracene	mg/kg	0.1	-		2.0	
Fluoranthene	mg/kg	0.1	÷			14
Pyrene	mg/kg	0.1		1.0		4
Benzo(a)anthracene	mg/kg	0.1			340	- Q
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	4			÷
Benzo(k)fluoranthene	mg/kg	0.1				+
Benzo(a)pyrene	mg/kg	0.1	-			(3
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			
Dibenzo(ah)anthracene	mg/kg	0.1	-	· · · · · · · · · · · · · · · · · · ·	-	G-,
Benzo(ghi)perylene	mg/kg	0.1			2.0	142
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg	0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>0.2</td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg	0.2				
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td>- 24</td><td>- Q</td></lor=lor*<>	TEQ (mg/kg	0.3	-		- 24	- Q

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	S	nple Number ample Matrix Sample Date ample Name	PE123413.037 Soil 08 Feb 2018 E-0-A-5	PE123413.038 Soil 08 Feb 2018 E-0-A-200	PE123413.039 Soil 08 Feb 2018 E-0-B-5	PE123413.04 Soil 08 Feb 2018 E-0-B-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1.1	22.5	22.3	16.6	7.0
Total Recoverable Elements in Soil by ICPOES Method: A	N320 Tested: 2	6/2/2018				
Arsenic, As	mg/kg	1.1	7	7	2	2
Cadmium, Cd	mg/kg	0.3	0.6	0.5	⊲0.3	<0.3
Chromium, Cr	mg/kg	0.5	27	27	11	10
Copper, Cu	mg/kg	0.5	19	19	8.7	6.0
Lead, Pb	mg/kg	1	11	12	4	4
Nickel, Ni	mg/kg	0.5	16	16	6.3	4.4
Zinc, Zn	mg/kg	2	57	55	22	45
Mercury in Soil Method: AN312 Tested: 26/2/2018						
	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Mercury		0.05	<0.05	<0.05	<0.05	<0.05
Mercury Total Recoverable Metals in Soil by ICPMS Method: AN04			<0.05	<0.05 6.8	<0.05	<0.05 1.8
Mercury Total Recoverable Metals in Soil by ICPMS Method: AN04 Thorium, Th*	1/AN318 Tester	d: 8/3/2018	1	_		
Mercury Total Recoverable Metals in Soil by ICPMS Method: AN04 Thorium, Th* Uranium, U*	1/AN318 Tester	0.5 0.1	7.0	6.8	22	1.8
Mercury Total Recoverable Metals in Soil by ICPMS Method: AN04 Thorium, Th* Uranium, U* Volatile Petroleum Hydrocarbons in Soil Method: AN433	1/AN318 Tester mg/kg mg/kg	0.5 0.1	7.0	6.8	22	1.8
Mercury Total Recoverable Metals in Soil by ICPMS Method: AN04 Thorium, Th* Uranium, U*	1/AN318 Tester mg/kg mg/kg Tested: 22/2/201	0.5 0.1 18	7.0 0.6	6.8 0.6	22 02	1.8 0.2

Dibromofluoromethane (Surrogate)	%	÷	-			
d4-1,2-dichloroethane (Surrogate)	%			9 C	-	14
d8-toluene (Surrogate)	%	1.4		······································		21 - Q
Bromofluorobenzene (Surrogate)	%		-		-	-

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.037 Soii 08 Feb 2018 E-0-A-5	PE123413.038 Soil 08 Feb 2018 E-0-A-200	PE123413.039 Soil 08 Feb 2018 E-0-B-5	PE123413.040 Soil 08 Feb 2018 E-0-B-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te VPH F Bands	ested: 22/2/	2018 (continu	ued)			
Benzene (F0)	mg/kg	0.1	-		-	14
TRH C6-C10 minus BTEX (F1)	mg/kg	25				
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3 Tested	1: 1/3/2018				
RH C10-C14	mg/kg	20	-			14.
RH C15-C28	mg/kg	45				
RH C29-C36	mg/kg	45	-	-	-	-
TRH F Bands						
RH >C10-C16	mg/kg	25	-			
RH >C16-C34 (F3)	mg/kg	90	-	20.1	24	G.
RH >C34-C40 (F4)	mg/kg	120	2		2	14
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	-		-	
oluene	mg/kg	0.1	-			· · ·
thylbenzene	mg/kg	0.1	-	-		-
n/p-xylene	mg/kg	0.2	-	-	2 -	
)-xylene	mg/kg	0.1		-	-	
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	•			Э.
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	_	4	1.2.	1.4
4-1,2-dichloroethane (Surrogate)	%					9
I8-toluene (Surrogate)	%		~		-	9
Bromofluorobenzene (Surrogate)	%	-	-		12	4

PE123413 R0

		ample Number Sample Matrix Sample Date Sample Name	PE123413.037 Soil 08 Feb 2018 E-0-A-5	PE123413.038 Soil 08 Feb 2018 E-0-A-200	PE123413,039 Soïl 08 Feb 2018 E-0-B-5	PE123413.040 Soil 08 Feb 2018 E-0-B-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-			14
2-methylnaphthalene	mg/kg	0.1	-			e -
1-methylnaphthalene	mg/kg	0.1	-			÷>
Acenaphthylene	mg/kg	0.1		-		8
Acenaphthene	mg/kg	0.1	-	- C		
Fluorene	mg/kg	0.1	14.			1.4
Phenanthrene	mg/kg	0.1	-			-
Anthracene	mg/kg	0.1	-	- c 1		
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1	-	-		-
Benzo(a)anthracene	mg/kg	0.1		2.0	2.4	4
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	-			÷
Benzo(k)fluoranthene	mg/kg	0.1	4			-
Benzo(a)pyrene	mg/kg	0.1	-			
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	-	G
Benzo(ghi)perylene	mg/kg	0.1	-		2.5	
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td>1.2</td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4		1.2	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>0.2</td><td>-</td><td></td><td></td><td>-</td></lor=lor>	TEQ (mg/kg	0.2	-			-
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td></td><td></td><td></td><td>G</td></lor=lor*<>	TEQ (mg/kg	0.3				G

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		24	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	S	nple Number ample Matrix Sample Date Sample Name	PE123413.041 Soil 08 Feb 2018 E-0-C-5	PE123413.042 Soil 08 Feb 2018 E-0-C-200	PE123413.043 Soil 08 Feb 2018 N-0-A-5	PE123413.04 Soil 08 Feb 2018 N-0-A-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	9.6	6.7	3.4	7.1
Total Recoverable Elements in Soil by ICPOES Method: AN32	0 Tested: 2	6/2/2018				
Arsenic, As	mg/kg	1.1	4	4	4	4
Cadmium, Cd	mg/kg	0.3	1.5	1.5	0.3	<0.3
Chromium, Cr	mg/kg	0.5	30	28	14	15
Copper, Cu	mg/kg	0.5	17	38	10	9.6
Lead, Pb	mg/kg	1	170	1200	12	7
Nickel, Ni	mg/kg	0.5	8.2	7.6	7.3	7.5
Zinc, Zn	mg/kg	2	510	670	69	38
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.8	2.2	3.2	3.2
Uranium, U*	mg/kg	0.1	0.4	0.4	0.3	0.3
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	sted: 22/2/20	18				
TRH C6-C9	mg/kg	20		-	-	- 8 -
Surrogates						
Dibromofluoromethane (Surronate)	96				2.	1.5

Dibromofluoromethane (Surrogate)	%	÷ .			1.4	9
d4-1,2-dichloroethane (Surrogate)	%	-	-	9 C		14
d8-toluene (Surrogate)	%	1.4		······································		<u></u> P =
Bromofluorobenzene (Surrogate)	%	-	-	÷	-	-

		ample Number Sample Matrix Sample Date Sample Name	PE123413.041 Soil 08 Feb 2018 E-0-C-5	PE123413.042 Soil 08 Feb 2018 E-0-C-200	PE123413.043 Soil 08 Feb 2018 N-0-A-5	PE123413.04 Soil 08 Feb 2018 N-0-A-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes VPH F Bands	sted: 22/2/2	018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	14
IRH C6-C10 minus BTEX (F1)	mg/kg	25	-			8
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested:	1/3/2018				
IRH C10-C14	mg/kg	20	- 1		-	14
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·		
RH C29-C36	mg/kg	45	-		-	-
RH F Bands						
RH >C10-C16	mg/kg	25	-			
RH >C16-C34 (F3)	mg/kg	90	-			G.
RH >C34-C40 (F4)	mg/kg	120	4			14
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons						
lenzene	mg/kg	0.1	-	-		
iluene :::thylbenzene	mg/kg mg/kg	0.1	-	-	-	4
v/p-xylene	mg/kg	0.1		-		
-xylene	mg/kg	0.2		-		-
Polycyclic VOCs	mgng	0.1				
laphthalene	mg/kg	0.1		÷<		Э.
Surrogates						
ibromofluoromethane (Surrogate)	%		-	4	1.2	1.14
4-1,2-dichloroethane (Surrogate)	%	· · · · · · · · · · · · · ·			-	19
8-toluene (Surrogate)	%		-		-	Ŷ
Iromofluorobenzene (Surrogate)	%	-	-		2	12

PE123413 R0

		ample Number Sample Matrix Sample Date Sample Name	PE123413.041 Soil 08 Feb 2018 E-0-C-5	PE123413.042 Soil 08 Feb 2018 E-0-C-200	PE123413,043 Soil 08 Feb 2018 N-0-A-5	PE123413.044 Soil 08 Feb 2018 N-0-A-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-		-	P.
2-methylnaphthalene	mg/kg	0.1	-		-	
1-methylnaphthalene	mg/kg	0.1	-			÷>
Acenaphthylene	mg/kg	0.1				
Acenaphthene	mg/kg	0.1	-		2.4	-
Fluorene	mg/kg	0.1				4
Phenanthrene	mg/kg	0.1	-		-	
Anthracene	mg/kg	0.1		- C 1	2-	
Fluoranthene	mg/kg	0.1	÷			14
Pyrene	mg/kg	0.1	-			÷
Benzo(a)anthracene	mg/kg	0.1			14.	
Chrysene	mg/kg	0.1	-			
Benzo(b&j)fluoranthene	mg/kg	0.1	-			÷
Benzo(k)fluoranthene	mg/kg	0.1			-	
Benzo(a)pyrene	mg/kg	0.1	-	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			
Dibenzo(ah)anthracene	mg/kg	0.1	-			1. A.
Benzo(ghi)perylene	mg/kg	0.1			2.0	(P)
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>) 0.2</td><td>4</td><td></td><td></td><td></td></lor=0*<>	TEQ (mg/kg)) 0.2	4			
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>) 0.2</td><td></td><td>1.</td><td></td><td></td></lor=lor>	TEQ (mg/kg)) 0.2		1.		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>) 0.3</td><td></td><td></td><td>- 24</td><td></td></lor=lor*<>	TEQ (mg/kg) 0.3			- 24	

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	S	mple Number ample Matrix Sample Date Sample Name	PE123413.045 Soil 08 Feb 2018 N-0-B-5	PE123413.046 Soil 08 Feb 2018 N-0-B-200	PE123413,047 Soil 08 Feb 2018 N-10-A-5	PE123413.04 Soil 08 Feb 2018 N-10-A-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	3,9	3,9	7,3	9,1
Total Recoverable Elements in Soil by ICPOES Metho	d: AN320 Tested: 2	26/2/2018				
Arsenic, As	mg/kg	11.10	3	3	2	2
Cadmium, Cd	mg/kg	0.3	<0.3	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	12	11	12
Copper, Cu	mg/kg	0.5	7.3	7,4	4.4	5.8
lead, Pb	mg/kg	1	14	15	3	3
Nickel, Ni	mg/kg	0.5	5.4	5.2	3.7	4.8
Zinc, Zn	mg/kg	2	76	70	10	13
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: A	N041/AN318 Teste	d: 8/3/2018	r			
Thorium, Th*	mg/kg	0.5	2.4	2.2	2.0	2.3
Uranium, U*	mg/kg	0.1	0,3	0.2	0.1	0.2
Volatile Petroleum Hydrocarbons in Soil Method: AN	133 Tested: 22/2/20	18				
TRH C6-C9	mg/kg	20	-	-	-	- 8 -
Surrogates						

Dibromofluoromethane (Surrogate)	%	÷ .			1. A .	
d4-1,2-dichloroethane (Surrogate)	%			9 C		ы
d8-toluene (Surrogate)	%	1.4		······································	1	
Bromofluorobenzene (Surrogate)	%		-	÷	100.04	-

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.045 Soil 08 Feb 2018 N-0-B-5	PE123413.046 Soil 08 Feb 2018 N-0-B-200	PE123413.047 Soil 08 Feb 2018 N-10-A-5	PE123413.04 Soil 08 Feb 2018 N-10-A-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te VPH F Bands	sted: 22/2/	2018 (continu	ued)			
Senzene (F0)	mg/kg	0.1	-		-	R.
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			8
RH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3 Tested	: 1/3/2018				
TRH C10-C14	mg/kg	20	- 1		-	
RH C15-C28	mg/kg	45				- A -
RH C29-C36	mg/kg	45	-		-	-
RH F Bands						_
RH >C10-C16	mg/kg	25	- 1			- A.
RH >C16-C34 (F3)	mg/kg	90	-		74	G.
RH >C34-C40 (F4)	mg/kg	120	1			14
VOC's in Soil Method: AN433 Tested: 22/2/2018 Vonocyclic Aromatic Hydrocarbons	mg/kg	0.1			.	
oluene	mg/kg	0.1	-	200		
thylbenzene	mg/kg	0.1	2		1.2	4
νp-xylene	mg/kg	0.2		1000	1.0	14.
-xylene	mg/kg	0.1			14	
Polycyclic VOCs						
laphthalene	mg/kg	0.1				3
Surrogates						
ibromofluoromethane (Surrogate)	%	-			11,2, ·····	14
4-1,2-dichloroethane (Surrogate)	%					1 3 -
8-toluene (Surrogate)	%	-	*		-	Ŷ
romofluorobenzene (Surrogate)	%	-	2	4	2	Sector Sector

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413.045 Soil 08 Feb 2018 N-0-B-5	PE123413.046 Soil 08 Feb 2018 N-0-B-200	PE123413.047 Soil 08 Feb 2018 N-10-A-5	PE123413.048 Soil 08 Feb 2018 N-10-A-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-			H,
2-methylnaphthalene	mg/kg	0.1	-			R
1-methylnaphthalene	mg/kg	0.1	-			-
Acenaphthylene	mg/kg	0.1				÷ ÷
Acenaphthene	mg/kg	0.1	-			
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1		- C 11	2.5	
Fluoranthene	mg/kg	0.1	÷			14
Pyrene	mg/kg	0.1		1.0		-
Benzo(a)anthracene	mg/kg	0.1	-		340	Q.
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1				(e)
Benzo(k)fluoranthene	mg/kg	0.1	9			÷
Benzo(a)pyrene	mg/kg	0.1	-			(-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			12
Dibenzo(ah)anthracene	mg/kg	0.1	-	· · · · · · · · · · · · · · · · · · ·	-	G-,
Benzo(ghi)perylene	mg/kg	0.1			2.0	59
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>0.2</td><td>4</td><td></td><td></td><td>£</td></lor=0*<>	TEQ (mg/kg	0.2	4			£
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>i) 0.2</td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg	i) 0.2				
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td></td></lor=lor*<>	TEQ (mg/kg	0.3	-			

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

		Sample Number Sample Matrix Sample Date Sample Name	PE123413,049 Soil 08 Feb 2018 N-10-B-5	PE123413.050 Soil 08 Feb 2018 N-10-B-200	PE123413,051 Soil 08 Feb 2018 N-10-C-5	PE123413.05 Soil 08 Feb 2018 N-10-C-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/201	8					
% Moisture	%w/w	1	7.9	19.2	12.2	20.0
Total Recoverable Elements in Soil by ICPOES Meth	od: AN320 Tested	: 26/2/2018				
Arsenic, As	mg/kg	10.10	2	6	3	9
Cadmium, Cd	mg/kg	0.3	<0.3	0.6	0.4	0.5
Chromium, Cr	mg/kg	0.5	11	25	14	25
Copper, Cu	mg/kg	0.5	4.5	18	7,3	18
ead, Pb	mg/kg	1	3	8	5	9
Nickel, Ni	mg/kg	0.5	3.8	15	6.2	14
Zinc, Zn	mg/kg	2	10	40	16	37
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
	Participation Participation	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.0	6.5	3.0	6.3
Uranium, U*	mg/kg	0.1	<0.1	0.6	0.1	0,3
Volatile Petroleum Hydrocarbons in Soil Method: AN	433 Tested: 22/2/	2018				
TRH C6-C9	mg/kg	20		-	-	- 8 -
Surrogates						

Dibromofluoromethane (Surrogate)	%	÷		17 C		
d4-1,2-dichloroethane (Surrogate)	%		9	9 C	-	14
d8-toluene (Surrogate)	%	-		······································	1	
Bromofluorobenzene (Surrogate)	%		-		1000	-

		Sample Number Sample Matrix Sample Date Sample Name	PE123413,049 Soil 08 Feb 2018 N-10-B-5	PE123413.050 Soil 08 Feb 2018 N-10-B-200	PE123413.051 Soil 08 Feb 2018 N-10-C-5	PE123413.05 Soil 08 Feb 2018 N-10-C-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes /PH F Bands	ited: 22/2/	2018 (continu	ued)			
Benzene (F0)	mg/kg	0.1	-		-	H.
TRH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
RH C10-C14	mg/kg	20				H.
RH C15-C28	mg/kg	45				
RH C29-C36	mg/kg	45				-
RH F Bands						
RH >C10-C16	mg/kg	25	-			14
RH >C16-C34 (F3)	mg/kg	90		210 1	22	Q.
RH >C34-C40 (F4)	mg/kg	120				12
/OC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons	mg/kg	0.1			- 1	
oluene	mg/kg	0.1		2	14	
thylbenzene	mg/kg	0.1	2			4
Vp-xylene	mg/kg	0.2	-			i ÷s
-xylene	mg/kg	0.1		-	-	.e.
Polycyclic VOCs						
laphthalene	mg/kg	0.1		i i i i i i i i i i i i i i i i i i i	unite in the second sec	÷
Surrogates						
ibromofluoromethane (Surrogate)	%		-			14
4-1,2-dichloroethane (Surrogate)	%				-	19
8-toluene (Surrogate)	%	- 1	-	2 1	-	Ψ.
Bromofluorobenzene (Surrogate)	%	-				12.000

PE123413 R0

	s	ample Number Sample Matrix Sample Date Sample Name	PE123413,049 Soil 08 Feb 2018 N-10-B-5	PE123413.050 Soil 08 Feb 2018 N-10-B-200	PE123413.051 Soil 08 Feb 2018 N-10-C-5	PE123413.052 Soil 08 Feb 2018 N-10-C-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-		-	н
2-methylnaphthalene	mg/kg	0.1	-			- R =
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-		
Acenaphthene	mg/kg	0.1	-	÷ <	2.4	(e
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1		- c 1	2.0	-
Fluoranthene	mg/kg	0.1	÷	4	<u> </u>	14
Pyrene	mg/kg	0.1	-	-	-	÷ -
Benzo(a)anthracene	mg/kg	0.1	-	2.0	2.4	
Chrysene	mg/kg	0.1				4
Benzo(b&j)fluoranthene	mg/kg	0.1	-			÷
Benzo(k)fluoranthene	mg/kg	0.1				
Benzo(a)pyrene	mg/kg	0.1	-	-		(÷
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	+			14
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	-	G.,
Benzo(ghi)perylene	mg/kg	0.1	Se 1		2.0	10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td>-</td><td></td><td></td></lor=lor>	TEQ (mg/kg) 0.2	-	-		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td></td><td></td><td></td><td>Q</td></lor=lor*<>	TEQ (mg/kg	0.3				Q

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	S	mple Number iample Matrix Sample Date Sample Name	PE123413,053 Soil 08 Feb 2018 N-10-D-5	PE123413.054 Soil 08 Feb 2018 N-10-D-200	PE123413.055 Soil 06 Feb 2018 Composite 01	PE123413.056 Soil 06 Feb 2018 Composite 02
Paraméter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	16.9	17.6	4.3	6.1
Total Recoverable Elements in Soil by ICPOES Method: AN32	0 Tested: 1	26/2/2018				
Arsenic, As	mg/kg	1.10	7	7	2	1
Cadmium, Cd	mg/kg	0.3	0.5	0.4	0.8	0.3
Chromium, Cr	mg/kg	0.5	24	25	8.6	9.9
Copper, Cu	mg/kg	0.5	17	18	7.2	4.1
Lead, Pb	mg/kg	1	8	8	13	4
Nickel, Ni	mg/kg	0.5	13	14	5.0	3.8
Zinc, Zn	mg/kg	2	36	38	240	16
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	⊲0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A		d: 8/3/2018				
Thorium, Th*	mg/kg	0.5	6.2	6.1	1.5	1.9
Uranium, U*	mg/kg	0.1	0.4	0,4	0.1	<0.1
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te	sted: 22/2/20	18				
TRH C6-C9	mg/kg	20		-	<20	<20
Surrogates						
Dibromofluoromethane (Surronate)	96				74	103

Dibromofluoromethane (Surrogate)	%	÷.			74	103
d4-1,2-dichloroethane (Surrogate)	%		9		64	108
d8-toluene (Surrogate)	%	1.4		······································	104	103
Bromofluorobenzene (Surrogate)	%	-	-		78	103

	S	ample Number Sample Matrix Sample Date Sample Name	PE123413,053 Soil 08 Feb 2018 N-10-D-5	PE123413.054 Soil 08 Feb 2018 N-10-D-200	PE123413.055 Soil 06 Feb 2018 Composite 01	PE123413.056 Soil 06 Feb 2018 Composite 02
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 VPH F Bands	Tested: 22/2/2	018 (continu	ued)			
Benzene (F0)	mg/kg	0.1	-		⊲0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	-		<25	<25
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN4	103 Tested:	1/3/2018				
TRH C10-C14	mg/kg	20	-		48	52
TRH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·	520	320
TRH C29-C36	mg/kg	45			1900	810
IRH F Bands						
IRH >C10-C16	mg/kg	25	-		96	94
TRH >C16-C34 (F3)	mg/kg	90		2 2 2 1	1400	670
IRH >C34-C40 (F4)	mg/kg	120			2700	1200
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons				_		
Benzene	mg/kg	0.1			⊲0.1	<0.1
Foluene	mg/kg	0.1	-		⊲0.1	<0.1
Ethylbenzene	mg/kg	0.1	*		⊲0.1	<0.1
n/p-xylene	mg/kg	0.2			⊲0.2	⊲0.2
p-xylene	mg/kg	0.1	9	-	⊲0. <mark>1</mark>	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1		÷	⊲0.1	⊲0.1
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	4	74	103
I4-1,2-dichloroethane (Surrogate)	%			-	64	108
18-toluene (Surrogate)	%	1.0 A.C.	-	- 0.00	104	103
Bromofluorobenzene (Surrogate)	%		2		78	103

PE123413 R0

	S	nple Number ample Matrix Sample Date Sample Name	PE123413,053 Soil 08 Feb 2018 N-10-D-5	PE123413.054 Soil 08 Feb 2018 N-10-D-200	PE123413.055 Soil 06 Feb 2018 Composite 01	PE123413.056 Soil 06 Feb 2018 Composite 02
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	1-0		⊲0. 1	<0.1
2-methylnaphthalene	mg/kg	0.1	-		<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	-		⊲0.1	⊲0.1
Acenaphthylene	mg/kg	0.1		-	⊲0.1	⊲0.1
Acenaphthene	mg/kg	0.1	-	- <	⊲0.1	⊲0.1
Fluorene	mg/kg	0.1			<0.1	<0.1
Phenanthrene	mg/kg	0.1			<0.1	<0.1
Anthracene	mg/kg	0.1	-	- c - 1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	4	4	<0.1	<0.1
Pyrene	mg/kg	0.1	-	-	⊲0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	-		⊲0.1	<0.1
Chrysene	mg/kg	0.1	-		<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1			<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	9		⊲0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	-	-	⊲0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-		<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	(m.)		⊲0.1	⊲0.1
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td></td><td>⊲0.2</td><td><0.2</td></lor=0*<>	TEQ (mg/kg)	0.2	-		⊲0.2	<0.2
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td></td><td>⊲0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	-		⊲0.2	<0.2
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td></td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	-		<0.3	<0.3

2-fluorobiphenyl (Surrogate)	%				90	92
d5-phenol (Surrogate)	%	±1.	-	9.0	1.0	Э
2,4,6-tribromophenol (Surrogate)	%	1.4				
d14-p-terphenyl (Surrogate)	%		-		126	128
d5-nitrobenzene (Surrogate)	%		-	-	96	94

		Sample Number Sample Matrix Sample Date Sample Name	PE123413,057 Soil 06 Feb 2018 Composite 03	PE123413.058 Soil 06 Feb 2018 Composite 04	PE123413.059 Soil 06 Feb 2018 W-10-H-5	PE123413.060 Soil 06 Feb 2018 W-10-H-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	6.2	6.1	2.0	15.6
Total Recoverable Elements in Soil by ICPOES Method: A	N320 Tested	: 26/2/2018				
Arsenic, As	mg/kg	11.101	2	2	2	4
Cadmium, Cd	mg/kg	0.3	<0.3	⊲0.3	0.3	0.4
Chromium, Cr	mg/kg	0.5	10	10	5.4	17
Copper, Cu	mg/kg	0.5	4.4	4.3	8.4	10
Lead, Pb	mg/kg	1	6	3	7	6
Nickel, Ni	mg/kg	0.5	4.4	4.0	5.5	8.3
Zinc, Zn	mg/kg	2	34	11	63	24
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN04	1/AN318 Tes	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	1.8	2.0	1.6	3.8
Uranium, U*	mg/kg	0.1	0.1	0.1	1.1	0,3
Volatile Petroleum Hydrocarbons in Soil Method: AN433	Tested: 20/2/	2018				
TRH C6-C9	mg/kg	20	<20	<20	-	
Surrogates						
	1					

Dibromofluoromethane (Surrogate)	%	÷ •	107	99	1.00	
d4-1,2-dichloroethane (Surrogate)	%	-	113	103		- H
d8-toluene (Surrogate)	%	1.4	111	104		
Bromofluorobenzene (Surrogate)	%		114	106	100.04	-

	S	mple Number iample Matrix Sample Date Sample Name	PE123413,057 Soil 06 Feb 2018 Composite 03	PE123413.058 Soil 06 Feb 2018 Composite 04	PE123413.059 Soil 06 Feb 2018 W-10-H-5	PE123413.06 Soil 06 Feb 2018 W-10-H-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Test VPH F Bands	ed: 20/2/20	18 (continu	ied)			
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	- 1	H.
IRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	-	
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested: 2	20/2/2018				
RH C10-C14	mg/kg	20	29	21	-	R.
RH C15-C28	mg/kg	45	260	170		6
RH C29-C36	mg/kg	45	920	400		-
RH F Bands						
RH >C10-C16	mg/kg	25	57	39	······································	- Pe
RH >C16-C34 (F3)	mg/kg	90	670	360	26	Q
RH >C34-C40 (F4)	mg/kg	120	1400	530		12
VOC's in Soil Method: AN433 Tested: 20/2/2018 Monocyclic Aromatic Hydrocarbons						
lenzene	mg/kg	0.1	<0.1	<0.1	-	
ilune ithylbenzene	mg/kg mg/kg	0.1	<0.1	<0.1	-	2
vp-xylene	mg/kg	0.1	<0.2	<0.2	-	
hxylene	mg/kg	0.1	<0.1	<0.1		
Polycyclic VOCs						
laphthalene	mg/kg	0.1	<0.1	⊲0.1		*
Surrogates						
bibromofluoromethane (Surrogate)	%		107	99		4
4-1,2-dichloroethane (Surrogate)	%		113	103		19.
8-toluene (Surrogate)	%	-	111	104	-	Ψ.
Bromofluorobenzene (Surrogate)	%		114	106	1.2	4

PE123413 R0

		ample Number Sample Matrix Sample Date Sample Name	PE123413,057 Soii 06 Feb 2018 Composite 03	PE123413.058 Soil 06 Feb 2018 Composite 04	PE123413,059 Soil 06 Feb 2018 W-10-H-5	PE123413.060 Soil 06 Feb 2018 W-10-H-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 20/2/2018 PAHs						
Naphthalene	mg/kg	0.1	<0.1	<0.1		P4.
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1		- R -
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1		÷
Acenaphthylene	mg/kg	0.1	<0.1	⊲0.1		÷
Acenaphthene	mg/kg	0.1	<0.1	⊲0.1		8
Fluorene	mg/kg	0.1	<0.1	<0.1		12
Phenanthrene	mg/kg	0.1	<0.1	<0.1		
Anthracene	mg/kg	0.1	<0.1	⊲0.1	2.0	
Fluoranthene	mg/kg	0.1	<0.1	⊲0.1		14
Pyrene	mg/kg	0.1	<0.1	⊲0.1	-	÷
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	3.4	Q.
Chrysene	mg/kg	0.1	<0.1	⊲0.1		4
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	⊲0.1		e .
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	⊲0.1	-	+
Benzo(a)pyrene	mg/kg	0.1	<0.1	⊲0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1		14
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	Ge.
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	2.5	(e)
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>⊲0.2</td><td>2</td><td>4</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	⊲0.2	2	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td></td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td></td><td>Q</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3		Q

2-fluorobiphenyl (Surrogate)	%	· · · · · · · · · · · · · · · · · · ·	92	92	-	19.
d5-phenol (Surrogate)	%	1.1	Ξ.		1 -	e e
2,4,6-tribromophenol (Surrogate)	%	1.00	÷		4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
d14-p-terphenyl (Surrogate)	%		128	126	1	-
d5-nitrobenzene (Surrogate)	%		96	90	-	

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.061 Soil 06 Feb 2018 W-0-E-5	PE123413.062 Soil 06 Feb 2018 W-0-E-200	PE123413.063 Soil 06 Feb 2018 W-10-G-5	PE123413.064 Soil 06 Feb 2018 W-10-G-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	8.1	11.8	8.4	6.7
Total Recoverable Elements in Soil by ICPOES Method: AN3	320 Tested	1: 26/2/2018				
Arsenic, As	mg/kg	1.11	2	3	2	<1
Cadmium, Cd	mg/kg	0.3	<0.3	0.4	⊲0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	15	10	8.8
Copper, Cu	mg/kg	0.5	5.8	8,6	3.8	2.6
ead, Pb	mg/kg	1	9	15	3	3
lickel, Ni	mg/kg	0.5	5.4	7.4	3.2	4.4
Zinc, Zn	mg/kg	2	31	29	9	7
Mercury in Soil Method: AN312 Tested: 26/2/2018	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041//	AN318 Tes	sted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.5	3.1	1.9	1.5
Uranium, U*	mg/kg	0.1	0.1	0,4	⊲0.1	0.1
Volatile Petroleum Hydrocarbons în Soîl Method: AN433 1	Fested: 22/2/	2018				
TRH C6-C9	mg/kg	20		- 1		
Surrogates						
Dibromofluoromethane (Surrogate)	%	÷	-			

Dibromofluoromethane (Surrogate)	%	÷		1	1.4	
d4-1,2-dichloroethane (Surrogate)	%		-			Net .
d8-toluene (Surrogate)	%	1.4	-	······································	1	
Bromofluorobenzene (Surrogate)	%	÷=	-		1.000	

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.061 Soil 06 Feb 2018 W-0-E-5	PE123413.062 Soil 06 Feb 2018 W-0-E-200	PE123413.063 Soil 06 Feb 2018 W-10-G-5	PE123413.064 Soil 06 Feb 2018 W-10-G-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Test VPH F Bands	ed: 22/2/	2018 (continu	ued)			
Benzene (F0)	mg/kg	0.1	-		-	н.
TRH C6-C10 minus BTEX (F1)	mg/kg	25	-			
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	1: 1/3/2018				
IRH C10-C14	mg/kg	20	-		-	-
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·		
RH C29-C36	mg/kg	45	-			
IRH F Bands						
RH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		
RH >C16-C34 (F3)	mg/kg	90		20 1	2.2	Q2
RH >C34-C40 (F4)	mg/kg	120				12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	-	-		
foluene	mg/kg	0.1	-			
thylbenzene	mg/kg	0.1	-			-
n/p-xylene	mg/kg	0.2	-			-
-xylene	mg/kg	0.1	-	-	-	
Polycyclic VOCs						
Vaphthalene	mg/kg	0.1		-		9
Surrogates						
Dibromofluoromethane (Surrogate)	%	-	-	4.0	1.2.	1.12
4-1,2-dichloroethane (Surrogate)	%					19
i8-toluene (Surrogate)	%		-		-	÷
	%					

PE123413 R0

	5	mple Number iample Matrix Sample Date Sample Name	PE123413.061 Soil 06 Feb 2018 W-0-E-5	PE123413.062 Soil 06 Feb 2018 W-0-E-200	PE123413,063 Soil 06 Feb 2018 W-10-G-5	PE123413.064 Soil 06 Feb 2018 W-10-G-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-	9.0	-	4
2-methylnaphthalene	mg/kg	0.1	-			é.
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-		
Acenaphthene	mg/kg	0.1	-		5-6	(R)
Fluorene	mg/kg	0.1			-	-
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1		- C 1	2.0	-
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1	-	-		÷.
Benzo(a)anthracene	mg/kg	0.1	-		340	
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	-			e .
Benzo(k)fluoranthene	mg/kg	0.1			-	- ÷
Benzo(a)pyrene	mg/kg	0.1	-	-	-	
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			14
Dibenzo(ah)anthracene	mg/kg	0.1	-		-	G.,
Benzo(ghi)perylene	mg/kg	0.1	-		2.6	10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg)	0.2	-			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td>-</td><td></td><td></td></lor=lor>	TEQ (mg/kg)	0.2	-	-		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td></td><td></td><td>G</td></lor=lor*<>	TEQ (mg/kg)	0.3	-			G

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	S	nple Number ample Matrix Sample Date ample Name	PE123413,065 Soil 06 Feb 2018 W-0-D-5	PE123413.066 Soil 06 Feb 2018 W-0-D-200	PE123413.067 Soil 06 Feb 2018 W-10-F-5	PE123413.060 Soil 06 Feb 2018 W-10-F-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	8.1	7.6	6.2	7.0
Total Recoverable Elements in Soil by ICPOES Metho	d: AN320 Tested: 2	6/2/2018				
Arsenic, As	mg/kg	11.10	2	1	1	1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	⊲0.3	<0.3
Chromium, Cr	mg/kg	0.5	12	11	8.5	9.6
Copper, Cu	mg/kg	0.5	5.6	4.4	2.3	3.2
Lead, Pb	mg/kg	1	4	4	2	3
Nickel, Ni	mg/kg	0.5	5.2	4.1	2.4	2.9
Zinc, Zn	mg/kg	2	14	12	6	8
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: A	N041/AN318 Tester	1: 8/3/2018	ſ			
	N041/AN318 Tester	0.5	2.5	2.3	1.4	1.7
Thorium, Th*			2.5 0.1	2.3 0.1	1.4 <0.1	1.7 <0.1
Thorium, Th* Uranium, U*	mg/kg mg/kg	0.5				
Thorium, Th* Uranium, U* Volatile Petroleum Hydrocarbons in Soil Method: AN4	mg/kg mg/kg	0.5				
Thorium, Th* Uranium, U*	mg/kg mg/kg 33 Tested: 22/2/20	0.5 0.1	0.1	0.1	<0.1	⊲0.1

Dibromofluoromethane (Surrogate)	%			-	1.0	
d4-1,2-dichloroethane (Surrogate)	%	-		9.0	2.4	14
d8-toluene (Surrogate)	%	1.44		······································		
Bromofluorobenzene (Surrogate)	%		-	÷		-

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.065 Soil 06 Feb 2018 W-0-D-5	PE123413.066 Soil 06 Feb 2018 W-0-D-200	PE123413.067 Soil 06 Feb 2018 W-10-F-5	PE123413.06 Soil 06 Feb 2018 W-10-F-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons în Soîl Method: AN433 Tes VPH F Bands	ted: 22/2/	2018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	H.
IRH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
RH C10-C14	mg/kg	20	- 1		-	14
RH C15-C28	mg/kg	45				e e
RH C29-C36	mg/kg	45	-		-	
RH F Bands						
RH >C10-C16	mg/kg	25	- 1			
RH >C16-C34 (F3)	mg/kg	90	-		74	G.
RH >C34-C40 (F4)	mg/kg	120	4		2	14
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons	mg/kg	0.1			- 1	
oluene	mg/kg	0.1		2 0 1		
thylbenzene	mg/kg	0.1	2		12	4
vp-xylene	mg/kg	0.2				-
-xylene	mg/kg	0.1		-		
Polycyclic VOCs						
Vaphthalene	mg/kg	0.1				÷
Surrogates						
ibromofluoromethane (Surrogate)	%					14
4-1,2-dichloroethane (Surrogate)	%			-	-	19
8-toluene (Surrogate)	%	-		2 0	-	Ŷ
Bromofluorobenzene (Surrogate)	%	-	-	-	1.2	14 million 1

PE123413 R0

	S	ample Number Sample Matrix Sample Date Sample Name	PE123413,065 Soil 06 Feb 2018 W-0-D-5	PE123413.066 Soil 06 Feb 2018 W-0-D-200	PE123413.067 Soil 06 Feb 2018 W-10-F-5	PE123413.068 Soil 06 Feb 2018 W-10-F-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1				Pi,
2-methylnaphthalene	mg/kg	0.1	-			R -
1-methylnaphthalene	mg/kg	0.1	-			-
Acenaphthylene	mg/kg	0.1		-		8
Acenaphthene	mg/kg	0.1	-	+ C	2.0	-
Fluorene	mg/kg	0.1	14.1			
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1			2.5	
Fluoranthene	mg/kg	0.1	÷	46		14
Pyrene	mg/kg	0.1		2.0	÷	÷
Benzo(a)anthracene	mg/kg	0.1	Q		34	Q
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	-			
Benzo(k)fluoranthene	mg/kg	0.1				-
Benzo(a)pyrene	mg/kg	0.1	-	-	-	(e
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	+			
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	-	0-
Benzo(ghi)perylene	mg/kg	0.1	191		2.5	19
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td>2</td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4		2	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td></td><td></td><td></td><td>-</td></lor=lor>	TEQ (mg/kg) 0.2				-
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td></td></lor=lor*<>	TEQ (mg/kg	0.3	-			

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

	2	Sample Number Sample Matrix Sample Date Sample Name	PE123413,069 Soil 06 Feb 2018 W-0-C-5	PE123413.070 Soil 06 Feb 2018 W-0-C-200	PE123413.071 Soil 06 Feb 2018 W-10-E-5	PE123413.07 Soil 06 Feb 2018 W-10-E-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	7.0	7.7	6,9	7.8
Total Recoverable Elements in Soil by ICPOES Method: AN3	20 Tested	: 26/2/2018				
Arsenic, As	mg/kg	101	1	1	<1	2
Cadmium, Cd	mg/kg	0.3	0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	12	10	16
Copper, Cu	mg/kg	0.5	5.4	5.1	2.8	5.1
Lead, Pb	mg/kg	1	4	4	3	3
Nickel, Ni	mg/kg	0.5	4.9	4.7	2.6	6.3
Zinc, Zn	mg/kg	2	16	15	7	13
Mercury in Soil Method: AN312 Tested: 26/2/2018	1	- To 220 T				
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A	N318 Tes	ted: 8/3/2018				
Thorium, Th*	mg/kg	0.5	2.4	2.3	1.7	2.2
Jranium, U*	mg/kg	0.1	0.1	0.1	<0.1	0.1
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Ti	ested: 22/2/2	2018				
TRH C6-C9	mg/kg	20	-	-	-	- 8
Surrogates						
Dibromofluoromethane (Surrogate)	%	+	-			ja –

Dibromofluoromethane (Surrogate)	%	÷ .	-	1.00		
d4-1,2-dichloroethane (Surrogate)	%	-				1-1
d8-toluene (Surrogate)	%	1.4		······································		
Bromofluorobenzene (Surrogate)	%		-		1.0.0	

	5	Sample Number Sample Matrix Sample Date Sample Name	PE123413,069 Soil 06 Feb 2018 W-0-C-5	PE123413.070 Soil 06 Feb 2018 W-0-C-200	PE123413.071 Soil 06 Feb 2018 W-10-E-5	PE123413.072 Soil 06 Feb 2018 W-10-E-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes /PH F Bands	ted: 22/2/3	2018 (continu	ued)			
Benzene (F0)	mg/kg	0.1	-		-	н.
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested	: 1/3/2018				
RH C10-C14	mg/kg	20			-	14
RH C15-C28	mg/kg	45	-			- R
RH C29-C36	mg/kg	45				-
RH F Bands						
RH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		
RH >C16-C34 (F3)	mg/kg	90	~	* C 1	29	Q2
RH >C34-C40 (F4)	mg/kg	120	1	4	2	12
/OC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons		1 2 1				
lenzene	mg/kg	0.1	-	-		
oluene	mg/kg	0.1	-	-		
thylbenzene	mg/kg	0.1	-	-	-	-
v/p-xylene	mg/kg	0.2		-		-
-xylene	mg/kg	0.1	~	-	-	
Polycyclic VOCs						
laphthalene	mg/kg	0.1		+	2 ÷	Э.
Surrogates						
	%		-	4	1.2.	1
ibromofluoromethane (Surrogate)						
	%				-	
Nibromofluoromethane (Surrogate) 14-1,2-dichloroethane (Surrogate) 18-toluene (Surrogate)	%	-	-	2	-	

PE123413 R0

	1	mple Number Sample Matrix Sample Date Sample Name	PE123413,069 Soil 06 Feb 2018 W-0-C-5	PE123413.070 Soil 06 Feb 2018 W-0-C-200	PE123413,071 Soil 06 Feb 2018 W-10-E-5	PE123413.072 Soil 06 Feb 2018 W-10-E-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-	9.0		н
2-methylnaphthalene	mg/kg	0.1	-			
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-		÷
Acenaphthene	mg/kg	0.1	-		240	-
Fluorene	mg/kg	0.1				. e
Phenanthrene	mg/kg	0.1	-			
Anthracene	mg/kg	0.1	-	- C 1	2.5	
Fluoranthene	mg/kg	0.1	÷	4-m 1		'A.
Pyrene	mg/kg	0.1		19 million (19 million)		-
Benzo(a)anthracene	mg/kg	0.1		2.0	3.4	
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1	-			
Benzo(k)fluoranthene	mg/kg	0.1		-		÷
Benzo(a)pyrene	mg/kg	0.1	-	-		6
Indeno(1,2,3-cd)pyrene	mg/kg	0.1				
Dibenzo(ah)anthracene	mg/kg	0.1	-			G-,
Benzo(ghi)perylene	mg/kg	0.1	191		2.0	100
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4</td><td></td><td>1</td><td>4</td></lor=0*<>	TEQ (mg/kg)	0.2	4		1	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg)	0.2				
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td></td><td></td><td></td><td>- Q</td></lor=lor*<>	TEQ (mg/kg)	0.3				- Q

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-		-	19
d5-phenol (Surrogate)	%		-		2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4			1	
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%		-	-	-	

PE123413 R0

		Sample Number Sample Matrix Sample Date Sample Name	PE123413.073 Soïi 06 Feb 2018 W-0-B-5	PE123413.074 Soil 06 Feb 2018 W-0-B-200	PE123413,075 Soil 06 Feb 2018 N-30-A-5	PE123413.070 Soil 06 Feb 2018 N-30-A-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1 1	8.6	6,7	5.5	9.4
Total Recoverable Elements in Soil by ICPOES Method: AN3	20 Tested	1: 26/2/2018				
Arsenic, As	mg/kg	11.101	2	1	2	3
Cadmium, Cd	mg/kg	0.3	0.5	<0.3	<0.3	0.4
Chromium, Cr	mg/kg	0.5	13	10	10	14
Copper, Cu	mg/kg	0.5	5.7	3,5	3.5	7.2
Lead, Pb	mg/kg	1	4	3	3	4
Nickel, Ni	mg/kg	0.5	5.1	3.1	3,0	5.9
Zinc, Zn	mg/kg	2	16	10	9	17
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: AN041/A	N318 Tes	ited: 8/3/2018	<u>, </u>			
Thorium, Th*	mg/kg	0.5	2.6	1.8	1.6	2.8
Uranium, U*	mg/kg	0.1	0.1	<0.1	⊲0.1	0.2
Volatile Petroleum Hydrocarbons in Soil Method: AN433 T	ested: 22/2/	2018				
TRH C6-C9	mg/kg	20	-	-		- 8
Surrogates						
Dibromofluoromethane (Surrogate)	%	÷	-	÷	÷	9
	1					

Dibromofluoromethane (Surrogate)	%	÷		3.0	1.0	
d4-1,2-dichloroethane (Surrogate)	%	-	9	9 C	2.4	14
d8-toluene (Surrogate)	%	1.4		······································	-1	
Bromofluorobenzene (Surrogate)	%		-	÷	1.	-

PE123413 R0

		mple Number Sample Matrix Sample Date Sample Name	PE123413.073 Soil 06 Feb 2018 W-0-B-5	PE123413.074 Soil 06 Feb 2018 W-0-B-200	PE123413,075 Soil 06 Feb 2018 N-30-A-5	PE123413.076 Soil 06 Feb 2018 N-30-A-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Tes VPH F Bands	sted: 22/2/20)18 (continu	Jed)			
Benzene (F0)	mg/kg	0.1	-		-	14,
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested:	1/3/2018				
RH C10-C14	mg/kg	20	-		-	14
RH C15-C28	mg/kg	45		· · · · · · · · · · · · · · · · · · ·		- e -
RH C29-C36	mg/kg	45	-			
RH F Bands						
RH >C10-C16	mg/kg	25	-	· · · · · · · · · · · · · · · · · · ·		
RH >C16-C34 (F3)	mg/kg	90	-	200	26	Q.
RH >C34-C40 (F4)	mg/kg	120	1		2	12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Monocyclic Aromatic Hydrocarbons	mg/kg	0.1			.	
oluene	mg/kg	0.1				
ithylbenzene	mg/kg	0.1			2	4
v/p-xylene	mg/kg	0.2		1000		- 14
-xylene	mg/kg	0.1	-	-	-	
Polycyclic VOCs	mg/kg	0.1	-	<u> </u>	-	
	mg/kg mg/kg	0.1	•			
Polycyclic VOCs						
Polycyclic VOCs Iaphthalene						
Polycyclic VOCs Iaphthalene	mg/kg	0.1	•	•	· [
Polycyclic VOCs Iaphthalene Surrogates Surrogates	mg/kg %	0.1	•	-		9

PE123413 R0

	S	ample Number Sample Matrix Sample Date Sample Name	PE123413.073 Soil 06 Feb 2018 W-0-B-5	PE123413.074 Soil 06 Feb 2018 W-0-B-200	PE123413.075 Soil 06 Feb 2018 N-30-A-5	PE123413.076 Soil 06 Feb 2018 N-30-A-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-			н
2-methylnaphthalene	mg/kg	0.1	-			- R -
1-methylnaphthalene	mg/kg	0.1			-	÷
Acenaphthylene	mg/kg	0.1		-		8
Acenaphthene	mg/kg	0.1	-		- 34	e
Fluorene	mg/kg	0.1				-
Phenanthrene	mg/kg	0.1	-			-
Anthracene	mg/kg	0.1		- c 1		
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1	-	-		÷
Benzo(a)anthracene	mg/kg	0.1	-	2.0	3.4	Q
Chrysene	mg/kg	0.1	-			4
Benzo(b&j)fluoranthene	mg/kg	0.1				e .
Benzo(k)fluoranthene	mg/kg	0.1				- ÷
Benzo(a)pyrene	mg/kg	0.1	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1		40.00		
Dibenzo(ah)anthracene	mg/kg	0.1	-	· · · · · · · · · · · · · · · · · · ·	÷	G
Benzo(ghi)perylene	mg/kg	0.1	(+ I			10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td>and the second sec</td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4		and the second sec	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td>1.1</td><td></td><td></td></lor=lor>	TEQ (mg/kg) 0.2	-	1.1		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>0.3</td><td>-</td><td></td><td></td><td>G</td></lor=lor*<>	TEQ (mg/kg	0.3	-			G

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-		-	· · · ·
d5-phenol (Surrogate)	%		Υ	÷.c	2.4	
2,4,6-tribromophenol (Surrogate)	%	1.4	4	4.4	1 3.2	4
d14-p-terphenyl (Surrogate)	%				1. JA	-
d5-nitrobenzene (Surrogate)	%			-	-	

PE123413 R0

		mple Number Sample Matrix Sample Date Sample Name	PE123413.077 Soii 06 Feb 2018 N-30-B-5	PE123413.078 Soil 06 Feb 2018 N-30-B-200	PE123413.079 Soil 06 Feb 2018 N-30-C-5	PE123413.08 Soil 06 Feb 2018 N-30-C-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 26/2/2018						
% Moisture	%w/w	1	6,3	7.3	6.0	6.6
Total Recoverable Elements in Soil by ICPOES Metho	d: AN320 Tested:	26/2/2018				
Arsenic, As	mg/kg	11.11	2	2	1	2
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	⊲0.3	0.3
Chromium, Cr	mg/kg	0.5	11	11	11	11
Copper, Cu	mg/kg	0.5	4.6	4,5	4,3	3.7
lead, Pb	mg/kg	1	3	3	3	3
Nickel, Ni	mg/kg	0.5	3.7	3.8	3.9	3.2
Zinc, Zn	mg/kg	2	11	11	11	9
Mercury in Soil Method: AN312 Tested: 26/2/2018						
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05
Total Recoverable Metals in Soil by ICPMS Method: A	N041/AN318 Teste	d: 8/3/2018				
Thorium, Th*	mg/kg	0.5	1.9	2.1	2.0	1.8
Uranium, U*	mg/kg	0.1	0.1	0.1	0.1	<0.1
Volatile Petroleum Hydrocarbons in Soil Method: AN4	33 Tested: 22/2/20	18				
TRH C6-C9	mg/kg	20		-	-	- 8 -
Surrogates						
Dibromofluoromethane (Surrogate)	%	1.1.1		1.00	4	-

Dibromofluoromethane (Surrogate)	%	÷		1		
d4-1,2-dichloroethane (Surrogate)	%		9			1-1
d8-toluene (Surrogate)	%	1.4		······································	-1	
Bromofluorobenzene (Surrogate)	%		-		1.	-

PE123413 R0

	S	Sample Number Sample Matrix Sample Date Sample Name	PE123413.077 Soil 06 Feb 2018 N-30-B-5	PE123413.078 Soil 06 Feb 2018 N-30-B-200	PE123413.079 Soil 06 Feb 2018 N-30-C-5	PE123413.08 Soil 06 Feb 2018 N-30-C-200
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Te VPH F Bands	sted: 22/2/2	2018 (continu	ied)			
Benzene (F0)	mg/kg	0.1	-		-	R.
RH C6-C10 minus BTEX (F1)	mg/kg	25	-			
RH (Total Recoverable Hydrocarbons) in Soil Method: AN40	3 Tested	: 1/3/2018				
RH C10-C14	mg/kg	20	-		-	
RH C15-C28	mg/kg	45				A
RH C29-C36	mg/kg	45	-			-
RH F Bands	1					
RH >C10-C16	mg/kg	25	-			(
RH >C16-C34 (F3)	mg/kg	90	~	i	24	G2
RH >C34-C40 (F4)	mg/kg	120			1	12
VOC's in Soil Method: AN433 Tested: 22/2/2018 Nonocyclic Aromatic Hydrocarbons						
lenzene	mg/kg	0.1	-			
oluene	mg/kg	0.1	-	-		
thylbenzene vp-xylene	mg/kg	0.1	-			-
vp-xylene	mg/kg mg/kg	0.2		-		
Polycyclic VOCs	mgrkg	0.1	-			
laphthalene	mg/kg	0.1		i i contra		Э.
Surrogates						
ibromofluoromethane (Surrogate)	%		-	- 4.00		14
4-1,2-dichloroethane (Surrogate)	%					19.
8-toluene (Surrogate)	%	- 14 C	-	200		e.
Bromofluorobenzene (Surrogate)	%		2	4	1.2	4

PE123413 R0

	5	ample Number Sample Matrix Sample Date Sample Name	PE123413.077 Soil 06 Feb 2018 N-30-8-5	PE123413.078 Soil 06 Feb 2018 N-30-8-200	PE123413,079 Soil 06 Feb 2018 N-30-C-5	PE123413.080 Soil 06 Feb 2018 N-30-C-200
Parameter	Units	LOR				
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs						
Naphthalene	mg/kg	0.1	-	2.0		н,
2-methylnaphthalene	mg/kg	0.1	-			R
1-methylnaphthalene	mg/kg	0.1	-			÷
Acenaphthylene	mg/kg	0.1		-		8
Acenaphthene	mg/kg	0.1	-	- C		-
Fluorene	mg/kg	0.1	14.1			
Phenanthrene	mg/kg	0.1	-			-
Anthracene	mg/kg	0.1		- C 1	2.5	-
Fluoranthene	mg/kg	0.1	÷	4		14
Pyrene	mg/kg	0.1		÷		÷
Benzo(a)anthracene	mg/kg	0.1	Q		34	- Q
Chrysene	mg/kg	0.1	-			-
Benzo(b&j)fluoranthene	mg/kg	0.1	-			
Benzo(k)fluoranthene	mg/kg	0.1				
Benzo(a)pyrene	mg/kg	0.1	-	-		C-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-			14
Dibenzo(ah)anthracene	mg/kg	0.1	-	-	-	G.,
Benzo(ghi)perylene	mg/kg	0.1	(e.)		2.0	10
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>4</td><td></td><td></td><td>4</td></lor=0*<>	TEQ (mg/kg) 0.2	4			4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg</td><td>) 0.2</td><td>-</td><td>1.1</td><td></td><td></td></lor=lor>	TEQ (mg/kg) 0.2	-	1.1		
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg</td><td>) 0.3</td><td>-</td><td></td><td></td><td>Q</td></lor=lor*<>	TEQ (mg/kg) 0.3	-			Q

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%		-	.+	-	1.
d5-phenol (Surrogate)	%		-	2.0	24	
2,4,6-tribromophenol (Surrogate)	%	1.00		4.4		
d14-p-terphenyl (Surrogate)	%		-		1	÷ -
d5-nitrobenzene (Surrogate)	%		-	-	-	

Parameter			Sample Number Sample Matrix Sample Date Sample Name		PE123413.082 Soil 07 Feb 2018 W-10-A-5
		Units	LOR		
Moisture Content Method	: AN002 Tested	26/2/2018			
% Moisture	-	%w/w	1	19.8	4.3

Total Recoverable Elements in Soil by ICPOES Method: AN320 Tested: 26/2/2018

Arsenic, As	mg/kg	122.101	6	1
Cadmium, Cd	mg/kg	0.3	0.7	<0.3
Chromium, Cr	mg/kg	0.5	29	9,3
Copper, Cu	mg/kg	0.5	19	2.4
Lead, Pb	mg/kg	1	8	2
Nickel, Ni	mg/kg	0.5	16	2.4
Zinc, Zn	mg/kg	2	45	.6

Mercury in Soil Method: AN312 Tested: 26/2/2018

Mercury	mg/kg	0.05	<0.05	<0.05
---------	-------	------	-------	-------

Total Recoverable Metals in Soil by ICPMS Method: AN041/AN318 Tested: 8/3/2018

Volatile Petroleum Hydrocarbons in Soil Method: AN	433 Tested: 22/2/20	18		
Uranium, U*	mg/kg	0.1	0.5	<0.1
Thorium, Th*	mg/kg	0.5	6.4	1.5

TRH C6-C9	mg/kg	20	

Surrogates

Dibromofluoromethane (Surrogate)	%	+		14
d4-1,2-dichloroethane (Surrogate)	%	-		14 C
d8-toluene (Surrogate)	%	1.4		
Bromofluorobenzene (Surrogate)	%		-	

DE400449 000

	Sa	iple Number imple Matrix Sample Date ample Name	PE123413.081 Soil 06 Feb 2018 N-30-D-200	PE123413.08/ Soil 07 Feb 2018 W-10-A-5
Parameter	Units	LOR		
Volatile Petroleum Hydrocarbons in Soil Method: AN433 Test VPH F Bands	ted: 22/2/201	8 (contin	ued)	
Benzene (F0)	mg/kg	0.1	-	2
TRH C6-C10 minus BTEX (F1)	mg/kg	25		
TRH (Total Recoverable Hydrocarbons) in Soil Method: AN403	Tested: 1	/3/2018		
TRH C10-C14	mg/kg	20	-	
TRH C15-C28	mg/kg	45	-	÷
	mg/kg	45		

TRH F Bands

TRH >C10-C16	mg/kg	25		4
TRH >C16-C34 (F3)	mg/kg	90		
TRH >C34-C40 (F4)	mg/kg	120	2	1200 C

VOC's in Soil Method: AN433 Tested: 22/2/2018

Monocyclic Aromatic Hydrocarbons

Benzene	mg/kg	0.1	-	
Toluene	mg/kg	0.1	-	-
Ethylbenzene	mg/kg	0.1	÷	
m/p-xylene	mg/kg	0.2		
o-xylene	mg/kg	0.1	-	

Polycyclic VOCs

Naphthalene	mg/kg	0.1	
		0	

Surrogates

Dibromofluoromethane (Surrogate)	%			
d4-1,2-dichloroethane (Surrogate)	%	1.025		
d8-toluene (Surrogate)	%	1.00	-	
Bromofluorobenzene (Surrogate)	%	11.4	-	

	Sa S	ple Number mple Matrix sample Date ample Name	PE123413,081 Soii 06 Feb 2018 N-30-D-200	PE123413.082 Soil 07 Feb 2018 W-10-A-5
Parameter	Units	LOR		
SVOC in Soil Method: AN420 Tested: 1/3/2018 PAHs				
Naphthalene	mg/kg	0.1	-	2.0
2-methylnaphthalene	mg/kg	0.1	-	
1-methylnaphthalene	mg/kg	0.1	-	
Acenaphthylene	mg/kg	0.1		-
Acenaphthene	mg/kg	0.1	-	
Fluorene	mg/kg	0.1		÷
Phenanthrene	mg/kg	0.1	-	
Anthracene	mg/kg	0.1		- C 1
Fluoranthene	mg/kg	0.1	÷	4
Pyrene	mg/kg	0.1		-
Benzo(a)anthracene	mg/kg	0.1	-	
Chrysene	mg/kg	0.1	-	
Benzo(b&j)fluoranthene	mg/kg	0.1	-	
Benzo(k)fluoranthene	mg/kg	0.1		-
Benzo(a)pyrene	mg/kg	0.1	-	ite and the
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	-	
Dibenzo(ah)anthracene	mg/kg	0.1	-	A
Benzo(ghi)perylene	mg/kg	0.1		
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4</td><td>4</td></lor=0*<>	TEQ (mg/kg)	0.2	4	4
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	-	
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>-</td><td></td></lor=lor*<>	TEQ (mg/kg)	0.3	-	

SVOC Surrogates

2-fluorobiphenyl (Surrogate)	%			
d5-phenol (Surrogate)	%	20	-	
2,4,6-tribromophenol (Surrogate)	%	1.00	4	
d14-p-terphenyl (Surrogate)	%		-	
d5-nitrobenzene (Surrogate)	%			-

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method ME-(AU)-[ENV]AN312

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
Mercury	LB142699	mg/kg	0.05	<0.05	0%	100%	99%	NA
	LB142799	mg/kg	0.05	<0.05	0%	99%	102%	2%
	LB142800	mg/kg	0.05	<0.05	0%	103%	100%	0%
	LB142801	mg/kg	0.05	<0.05	0%	102%	100%	NA
	LB142803	mg/kg	0.05	<0.05	0%	97%	99%	2%

loisture Content Method ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture	LB142798	%w/w	1	9 - 12%

SVOC in Soil Method ME-(AU)-[ENV]AN420

	AH	Jr.	
1	m	12	

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Naphthalene	LB142557	mg/kg	0.1	<0.1	94%
2-methylnaphthalene	LB142557	mg/kg	0.1	<0.1	
1-methylnaphthalene	LB142557	mg/kg	0.1	⊲0.1	California
Acenaphthylene	LB142557	mg/kg	0.1	<0.1	- Constanting
Acenaphthene	LB142557	mg/kg	0.1	<0.1	All and the second
Fluorene	LB142557	mg/kg	0.1	<0.1	103%
Phenanthrene	LB142557	mg/kg	0.1	<0.1	97%
Anthracene	LB142557	mg/kg	0.1	<0.1	
Fluoranthene	LB142557	mg/kg	0.1	<0.1	
Pyrene	LB142557	mg/kg	0.1	<0.1	106%
Benzo(a)anthracene	LB142557	mg/kg	0.1	<0.1	117%
Chrysene	LB142557	mg/kg	0.1	<0.1	Charles States on the
Benzo(b&j)fluoranthene	LB142557	mg/kg	0.1	<0.1	
Benzo(k)fluoranthene	LB142557	mg/kg	0.1	<0.1	Concession in which the
Benzo(a)pyrene	LB142557	mg/kg	0.1	⊲0.1	93%
Indeno(1,2,3-cd)pyrene	LB142557	mg/kg	0.1	<0.1	
Dibenzo(ah)anthracene	LB142557	mg/kg	0.1	<0.1	
Benzo(ghi)perylene	LB142557	mg/kg	0.1	⊲0.1	
Carcinogenic PAHs (as BaP TEQ)- <lor=0*< td=""><td>LB142557</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td></td></lor=0*<>	LB142557	TEQ (mg/kg)	0.2	<0.2	
Carcinogenic PAHs (as BaP TEQ)- <lor=lor 2*<="" td=""><td>LB142557</td><td>TEQ (mg/kg)</td><td>0.2</td><td>⊲0.2</td><td></td></lor=lor>	LB142557	TEQ (mg/kg)	0.2	⊲0.2	
Carcinogenic PAHs (as BaP TEQ)- <lor=lor*< td=""><td>LB142557</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td></td></lor=lor*<>	LB142557	TEQ (mg/kg)	0.3	<0.3	

SVOC Surrogates

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
2-fluorobiphenyl (Surrogate)	LB142557	%	1.14	90%	90%
d14-p-terphenyl (Surrogate)	LB142557	%	-	124%	124%
d5-nitrobenzene (Surrogate)	LB142557	%	-	90%	94%

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage.* Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Total Recoverable Elements in Soil by ICPOES Method ME-(AU)-[ENV]AN320

Parameter	QC Reference	Units	LÖR	MB	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RP
Arsenic, As	LB142699	mg/kg	1	<1	26 - 34%	103%	89%	14%
	LB142799	mg/kg	1	<1	7 - 12%	96%	95%	7%
	LB142800	mg/kg	1	<1	4 - 27%	99%	94%	4%
	LB142801	mg/kg	1	<1	9 - 21%	110%	93%	11%
	LB142803	mg/kg	1	<1	5 - 13%	97%	98%	NA
Cadmium, Cd	LB142699	mg/kg	0.3	<0.3	0 - 16%	99%	92%	10%
	LB142799	mg/kg	0.3	<0.3	0 - 32%	95%	93%	5%
	LB142800	mg/kg	0.3	<0.3	12 - 24%	104%	98%	0%
	LB142801	mg/kg	0.3	<0.3	13%	107%	97%	3%
	LB142803	mg/kg	0.3	<0.3	0%	99%	97%	NA
Chromium, Cr	LB142699	mg/kg	0.5	<0.5	1 - 11%	99%	93%	16%
	LB142799	mg/kg	0.5	<0.5	1 - 3%	97%	104%	8%
	LB142800	mg/kg	0.5	<0.5	4 - 12%	100%	101%	2%
	LB142801	mg/kg	0.5	<0.5	2 - 4%	100%	85%	31%
	LB142803	mg/kg	0.5	<0.5	2 - 9%	99%	139%	NA
Copper, Cu	LB142699	mg/kg	0.5	<0.5	1 - 6%	98%	95%	14%
	LB142799	mg/kg	0.5	<0.5	0 - 2%	96%	88%	10%
	LB142800	mg/kg	0.5	<0.5	1 - 22%	101%	105%	2%
	LB142801	mg/kg	0.5	<0.5	0 - 5%	102%	90%	29%
	LB142803	mg/kg	0.5	<0.5	5 - 6%	99%	103%	NA
Lead, Pb	LB142699	mg/kg	1	<1	0 - 2%	98%	97%	12%
	LB142799	mg/kg	1	<1	3 - 14%	93%	97%	15%
	LB142800	mg/kg	1	<1	1 - 16%	101%	92%	2%
	LB142801	mg/kg	1	<1	1 - 9%	99%	89%	7%
	LB142803	mg/kg	1	<1	0 - 12%	99%	95%	NA
Nickel, Ni	LB142699	mg/kg	0.5	<0.5	0 - 10%	102%	98%	8%
	LB142799	mg/kg	0.5	<0.5	2%	102%	108%	11%
	LB142800	mg/kg	0.5	<0.5	3 - 18%	108%	104%	2%
	LB142801	mg/kg	0.5	<0.5	7%	114%	94%	17%
	LB142803	mg/kg	0.5	<0.5	0 - 13%	105%	123%	NA
Zinc, Zn	LB142699	mg/kg	2	<2	3 - 18%	95%	145%	31%
	LB142799	mg/kg	2	<2	1 - 2%	92%	96%	21%
	LB142800	mg/kg	2	<2	6 - 16%	97%	104%	3%
	LB142801	mg/kg	2	<2	2 - 6%	98%	77%	117%
	LB142803	mg/kg	2	2	6 - 7%	96%	99%	NA

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Soil Method ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
TRH C10-C14	LB142557	mg/kg	20	<20	112%
TRH C15-C28	LB142557	mg/kg	45	<45	100%
TRH C29-C36	LB142557	mg/kg	45	<45	100%

TRH F Bands

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
TRH >C10-C16	LB142557	mg/kg	25	<25	112%
TRH >C16-C34 (F3)	LB142557	mg/kg	90	<90	100%
TRH >C34-C40 (F4)	LB142557	mg/kg	120	<120	100%

VOC's in Soil Method ME-(AU)-[ENV]AN433 Colt in

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery	MS %Recovery	MSD %RPD
Benzene	LB142555	mg/kg	0.1	<0.1	99%	75%	2%
Toluene	LB142555	mg/kg	0.1	<0.1	98%	72%	1%
Ethylbenzene	LB142555	mg/kg	0.1	<0.1	101%	73%	2%
m/p-xylene	LB142555	mg/kg	0.2	<0.2	104%	74%	1%
o-xylene	LB142555	mg/kg	0.1	<0.1	102%	72%	0%

Polycyclic VOCs

Parameter	QC Reference	Units	LOR	MB
Naphthalene	LB142555	mg/kg	0.1	⊲0.1

Surrogates

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery	MS %Recovery	MSD %RPD
Dibromofluoromethane (Surrogate)	LB142555	%	1.040	104%	108%	79%	3%
d4-1,2-dichloroethane (Surrogate)	LB142555	%	1. T.	103%	110%	90%	2%
d8-toluene (Surrogate)	LB142555	%	17 (-C	95%	106%	82%	0%
Bromofluorobenzene (Surrogate)	LB142555	%		89%	105%	85%	0%

MSD %000

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method ME-(AU)-[ENV]AN433

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery	MS %Recovery	MSD %RPD
TRH C6-C9	LB142555	mg/kg	20	<20	100%	98%	19%

Surrogates	
Parameter	

Parameter	Reference	UIIIta	LUN	WILL I	%Recovery	%Recovery	mot and
Dibromofluoromethane (Surrogate)	LB142555	%	to the second	104%	108%	79%	3%
d4-1,2-dichloroethane (Surrogate)	LB142555	%	2.24	103%	110%	90%	2%
d8-toluene (Surrogate)	LB142555	%		95%	106%	82%	0%
Bromofluorobenzene (Surrogate)	LB142555	%	1.042	89%	105%	85%	0%

VPH F Bands

Parameter	QC	Units	LOR	MB	LCS	MS	MSD %RPD
	Reference				%Recovery	%Recovery	
Benzene (F0)	LB142555	mg/kg	0.1	<0.1	99%	75%	2%
TRH C6-C10 minus BTEX (F1)	LB142555	mg/kg	25	<25			-

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.	
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.	
AN041/AN318	Determination of elements at trace level in soil digest by ICP-MS technique, in accordance with USEPA 6020A.	
AN045	A portion of sample is digested with Nitric acid and Hydrogen Peroxide over time and then with Hydrochloric acid through several heating and cooling cycles. It provides a strong oxidising medium for bringing metal analytes into solution according to USEPA3050, after filtration the solution is presented for analysis on AAS or ICP.	
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500	
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.	
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference USEPA3050, USEPA6010C and APHA 3120 B.	
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the Draft NEPM 2011, >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.	
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.	
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.	
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).	
AN420	Carcinogenic PAHs may be expressed as Benzo(a)pyrene equivalents by applying the BaP toxicity equivalence factor (NEPM 1999, June 2013, B7). These can be reported as the individual PAHs and as a sum of carcinogenic PAHs. The sum is reported three ways, the first assuming all <lor <="" <lor="" all="" and="" are="" assuming="" half="" lor="" lor.<="" results="" second="" td="" the="" third="" zero,=""><td></td></lor>	
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.	
-March-2018		Page 69 of 70

- METHOD -

METHODOLOGY SUMMARY -

FOOTNOTES .

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received. * NATA accreditation does not cover the
- performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance - The sample was not analysed for this analyte
- NVL Not Validated
- Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

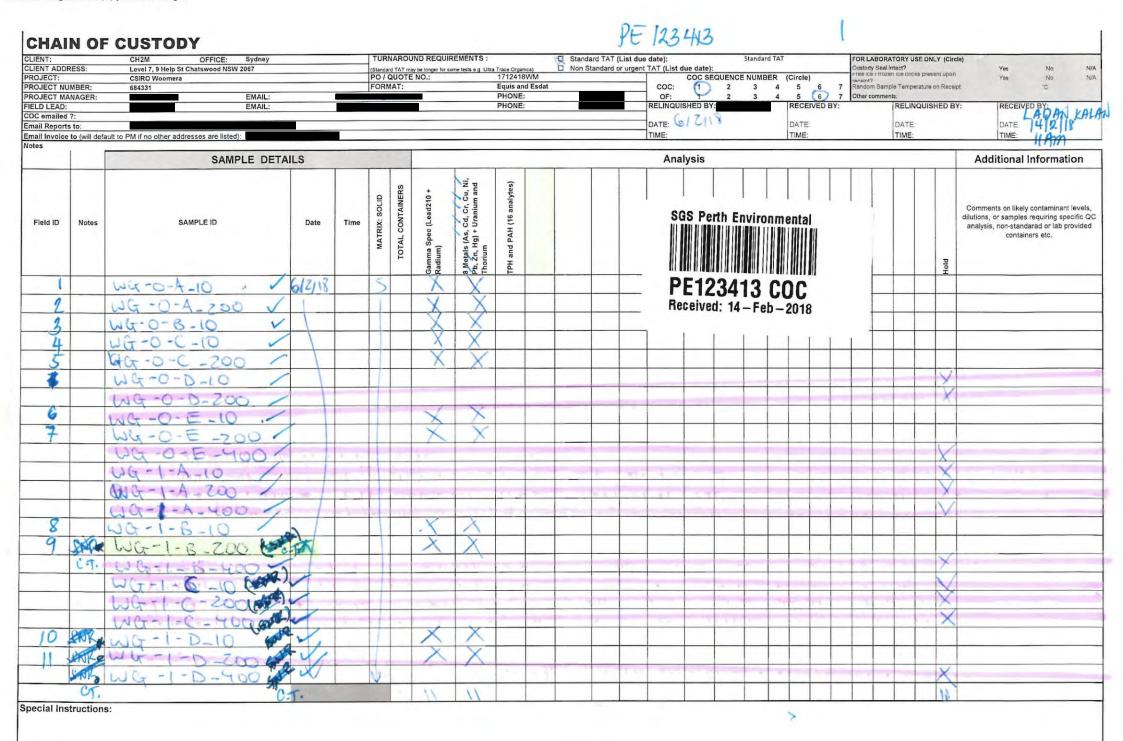
If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.


The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

source: HPMFPM630SR_20180215170721.pdf page: 1 SGS Ref: PE123413_COC

.

IENT:		CH2M OFFICE: Sydney					ND REQUIR				Standard TA					Standard TA	r		FOR LAB	ORATORY L	SE ONLY (Circle)	
ENT ADDE	RESS:	Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera			(Standar PO / C	UOTE	be longer for so NO.:	erne tests e g. Ultra	a Trace Orga 171241	nics) D BWM	Non Standar	d or urger	ht TAT (List			NUMBER	(Circle)	_	HIEE ICE / 1	eal Intact? rozen ice pric	Ks present u	pon	Yes No
OJECT NU		684331		_	FORM	IAT:			Equis ar	id Esdat			coc:	1	2	3 4	5	6 7	Random S	ample Temp	erature on R	eceipt	Yes No C
DJECT MA	NAGER:	EMAIL: EMAIL:		-					PHONE		-		OF: RELINQU	1	2	3 4	5 RECEIVE	6) 7	Other com	ments			Incomute av 11
C emailed						_								ISHED B				DBT:		RELIP	QUISHED	BY:	RECEIVED BY:
ail Reports		ault to PM if no other addresses are listed):											DATE: TIME:				DATE: TIME:			DATE			DATE:) 4 4 8
tes													1 11116.				TIME:			TIME:			TIME: 119
		SAMPLE DET	AILS	-					1				Ana	lysis								A	dditional Informatio
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	PH and PAH (16 analytes)												Ной	dilution analy	ments on likely contaminant le ns, or samples requiring speci ysis, non-standarad or lab prov containers etc.
100		WG-1-E -10 + BR	KGIZIN	2	5		OE	0 L F			-	-				-				-			
			1015M	-	T	-		-	-			-		-				-		-	/		
		MA-1-E-200 V				-					4-1-								-		1	1	
		WG-1-E-400		1														-	-	-		1	
12		WG - 2 - A - 10 .					X	X															
13		WG-Z-A-ZOO V					X	V				-	1					-				-	
P		- M - Marry	1				1	~				-	-	-				-			-	-	
		WG-2-1-400 0	6	-		-					+							-				C .	
		WG-2-B-10 "						1				-	1. 18	1115				100		-	>		
		WG-7-B-200-			1					-	-	-	-					-	1.000			<	
		WG-2=B-400 -											P.C. P.F.	-)	0	
111			1	1			V	X										-			-	-	
T			11	-		-	->-				-	-	-	-				-			-	-	
B		WG-2-C-2001		-		-	~	1	-									_			1		
		WG-2-C-400-						0	1 - 1		-		-					-			X		
		WG-2-D-10								-	-			-							1	1	
		W4-2-D-200					11													-	5	1	
	-		-							-								-				-	
11		WIF C D- WU				1. 1.1.1	21	N.	1	1	-	-		-		7		1		-	X		
16		W4-2-2-10					×	X				-	-									-	
17		WC+-Z-E-200	1				X	X															
		WG-Z-E-400	1	-			1-4		1.111		10.04							-			1	1	
	-		+	-									-								1		
-		W4-3-A-10						1.2	100 100 1		4 - 1							-			X	-	
		WG-3-A-200 -	1			14.		1	1.1.1.1	0.0	1	4	1	11.11		+	-		81	17-1			
		W4-3-A-400 -	1								1115	1.5	1000	1	-	8.1	5 14	1			X		
		WG-3-E-10 .	V		V			4		115				2.4		1612	1.1				7	4	
			1	-			6	6		1											14		

ENT: ENT ADDF OJECT: OJECT NU OJECT MA	MBER:	CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera 684331 EMAIL:		michael.le	(Standard PO / C FORM	AT:	be longer for se NO.:	REMENTS :	a Trace Organics) 1712418WI Equis and E PHONE:	Non	dard TAT (Lis Standard or u	t due date): rgent TAT (Li: COC OF:	coc s	EQUENCE NUMBE	R (C	ircle) 5 6 5 6	7 8	ustody Seal	ole Temperati	resent upon	Yes No N
LD LEAD:	2.	EMAIL:		Philippa S	cott@chi	2m.com	<u> </u>		PHONE:			RELING	UISHED B			ECEIVED B			RELINQU	ISHED B	Y: RECEIVED BY:
C emailed ail Reports												DATE:				ATE:			DATE		111210
ail Invoice		ault to PM if no other addresses are listed): michael.le	viton@ch2m.com	m			_					TIME:				IME:			DATE: TIME:		DATE:
05	1					-	_														(I I)//)
		SAMPLE DE	TAILS									Ar	nalysis								Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	PH and PAH (16 analytes)											U	Comments on likely contaminant levels dilutions, or samples requiring specific C analysis, non-standarad or lab provider containers etc.
_		- E		-	-	-	Ra	8 d t	đ.			_			_	_	_	_	-	Hold	
		W-10-0-5 V	712		5						-			- C		11-10			1.1	X	
		W-10-D-200 V		-									1							K	
18	1	12-0-4-5 V	-				X	X													
19	-	W-0-A-200 U	/	1			V	X		-		-						-			
20				-		-		2					-		-					-	
		W-10-B-5 M			11			1				_	-		_			_			
21		W-10-B-200 1	1	-				X													
22		10-A-200	~				X	X													
23		WG-3-B-10	1				X	X													
24		LIF-3-B-200					X	X									-				
-		111-3 0 400	1														-				
		14-3-B-10	1							-			-	-	-		-			X	
-		wig-5-0-00	-	1						-		-	1201		-		-	-		X	
		WG-3-C-200	-	-		- 1 - 2	1.25.13	1		-		-	-				-			X	
-		WG-3_C-400	-				1					-					-			X	
25		WG-3-D-10	-				X	X													
26		WG-3-D-200	-				X	×													
		WG-3-D-400	-							-										V	
27		5-0-A-5	1				V	V	1			-	-		1	1.1	-	11	11114	A	
28	-		1			-	$\widehat{}$	0		-	-	-	-		4	-				-	
		S-0-A-200	1				-	$\overline{\mathbf{x}}$		-		_			-		-		_	-	
29		5-10-14-5	4			-	X	X		-		_	-		_			_			
30		S-10-A-200	Va			-	X	X													
29 30 31		S-10-A-S S-10-A-ZOD S-10-B-S W						X		1											
32		S-10-B-200	-		V			X													
			1				11	15	-			-		32 8	1					7	
cial Ins	truction	s:								_	<u> </u>	_								6	

CLIENT: CLIENT ADDR PROJECT: PROJECT NUM		CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera 684331						REMENTS : some tests e.g. Ultri		indard TAT (List d n Standard or urge	ent TAT (List di		ABER (Circle)	Custody Ser	RATORY USE i al intact? izen ice pricks p mple Temperatu	reseat upor	Yes No N/A
PROJECT MAN		EMAIL: EMAIL:							PHONE:		OF:	1 2 3	4 5 6	7 Other comm	ients;		11.
FIELD LEAD: COC emailed ?	?:	EMAIL:							PHONE:		RELINQUIS	SHED BY:	RECEIVED BY		RELINQU	ISHED E	RECEIVED BY:
Email Reports											DATE:		DATE:		DATE:		DATE: 19 218
Votes	to (will defa	ault to PM if no other addresses are listed):		_		-					TIME:		TIME:		TIME:		TIME: 11Pm
		SAMPLE DETAI	LS						1		Anal	ysis					Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)							fold	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis, non-standarad or lab provided containers etc.
33		5-10-0-5 ,	712		5		X	X								- <u>-</u>	
34		5-10-C-200 V.	1		1		X	X								-	
35		51005	1	-			~	X						++-		-	
36		S-10-0-700 W	A		H			X							+ +-	-	
37		F.O.A. 5 V	812				X	V								-	
	-		812	-		-	8	1 x								-	
38 39			1-	-	-		A	-2-									
40		E.O.B.S		-				- Ŷ									
41		E-0-6-200 V		-			1			-	-					-	
42		E-0-C-5 V	-	-		-	\diamond	12		-	+ +					-	
43		E-0-C-200 XG N-0-A-5	PA	Came	11	-	-0-									-	
44				- conme	-90	-	$\widehat{}$				-					-	
		N-0-A-200		-			~									-	
45	-	N-0 R 206 V		-		_		Ŷ								-	
47		N-10-4-5	-	-										+		-	
48		ALLO A ZOO H	1-			-		$\mathbf{\hat{v}}$			-						
49		N-10-15-5					X	X						++		-	
50		N-10-B-700V					X	V									
5		N-10-C-5 V	1				1	X									
52			1					Ŷ	S							-	
53		N-10-C-7004	0				×	V								-	
54		N-10-D-200 4	1		1			X									
-			2 - 3				1	22								-	
Special Inst	ruction	2.	-				11				1						

CUJECT NUMBER: COJECT MANAGER ELD LEAD: C emailed ?: nail Reports to: nail Invoice to (will c tes Field ID Note:	R:	EMAIL: EMAIL: Isses are listed): SAMPLE DETAIL	Philip		on@ch2m.co tt@ch2m.co			PHONE: PHONE:		COC: OF: RELINQU	1 :	2 3 2 3	4 5 6	7	Random Sampl Other comment	51		ot C
DC emailed ?: nail Reports to: nail Invoice to (will o tes		sses are listed):		opa Scott	tt@ch2m.co	<u>2111</u>		PHONE:		RELINQU	ISHED BY							
nail Reports to: nail Invoice to (will d tes			S								UNED DT.		RECEIVED	BY:		RELINQUI	ISHED BY	Y: RECEIVED BY:
otes			S							DATE:			DATE:			DATE:		DATE: 14218
	as 50	SAMPLE DETAIL	S							TIME:			TIME;			TIME:		TIME:
Field ID Note:	as 50	SAMPLE DETAL								٨٠٠	lucio					-		10/1
Field ID Notes	es 50				-	-	1		1 1 1	Alla	lysis			1 1			_	Additional Information
		MPLE ID	Date Tir	me	MATRIX: SOLID TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)									Hold	Comments on likely contaminant levels dilutions, or samples requiring specific C analysis, non-standarad or lab provided containers etc.
	Wa-3-E	-200 /6	12/18	<	5	-	-			-		-					X	(
	11-2 0	400													-		X	
tr	WG-3-E Composit			-	1		V	V									1	
55	rowszi	103					-	2				_			_			
56	Composi	eOZ V		_			X	1										
57	Corrost	e03 V,					X	X										
58	compos	HE CH V.					X	X										(
59	W-10-1	1-5 V					X											1
60	W-10-	H-200 V					X											
61	W-0-1	5					X									-		
62		-200					X									-		
63	610-G					×	X									-	-	
						\mathbf{x}	X			-		+++		+				
64	W-10-(+- 000				~	\odot			-		_				_		
65	W-0-			-			-×			-				-		-		
66		D-200 -		_											_	-		
67	W-10-1			-			X			-					_			
68		F-200 -				-	X			-			-		_	-		
69	w-0-(->	-				X					-			_	_		
70	W-0-	220		-		\Diamond						_	_			-		
71	W-10-F		-	_		1	-									_	-	
72 73	W-10-F	-200 . V			_	X	X			_					_			
73	W-D-P	-5 V	-		-		X											
74	W-0-	B-200 -		U	E .		X											
						6	20										2	

CLIENT: CLIENT ADDF PROJECT: PROJECT NU PROJECT MA FIELD LEAD: COC emailed	RESS: MBER: NAGER:	CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera 684331 EMAIL: EMAIL:				T may be longer fr	JIREMENTS : r some lests e.g. Ult	a Trace Organics) 1712418WM Equis and E PHONE: PHONE:	A	TAT (List d dard or urge	Voteb aub tei II TAT to	andard TAT UMBER (Cirgle) 6 7 3 4 5 6 7 RECEIVED BY:	FOR LABORATORY USE ONLY (CL Custody Seal Intact?) The IC4 / ITOZEA Icc obcks present upo nowier? Random Sample Temperature on Rec Other comments. RELINQUISHED E	Yes No N/A Yes No N/A Hpt "C
Email Reports											DATE:	DATE:	DATE:	DATE: 1428
Email Invoice		fault to PM if no other addresses are listed):									TIME:	TIME:	TIME:	DATE: 14 Z X
Notes	1	P				-								Inn
	1	SAMPLE DETA	ILS								Analysis			Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)					Рон	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis, non-standarad or lab provided containers etc.
75		N-30-A-5 /					X							
H H		N-30-A-200 V					X							
77		N-30-8-5				V	1V		-					
	-	V	1			-0	1							
78		N-30_ B-200 V	-	_		X	X							
79		N-30-C-5 V					X							
80		N-30-C-2004	2				X							
	7	N-30-C-2004					X							
81		N-30-0-200-					X							
82		4-10-A-5 1/	7/2			X	X							
-		0-10-M-3 V					1							
				_										
	1					-								
1)														
						1								
						5	9							
Special Ins	truction	s:					l	1						1

AUSTRALIA-ENVIRONMENTAL-PERTH AIRPORT- PROFORMA -QU101

REGISTRATION DETAILS

Bottle Map	11	500ml	250ml	500ml	250ml	125ml	125mL UF/F	11	500mL	100mL	40mL	40m1	500mL	250mL	125mL	. 1L	250mL	125ml	Bottles	1	APPROVED BY: R. MA Job Number:
Sample Numbers:							Plastic		Amber		Vial	Vial					Glass Jar	Glass Jar	Supplie	Bag/ Other d	PE 123413
1-82	Green	Green	Purple	Green	Green	Green	Red	Green	Orange	Green	voc	HAA	Blue	Orange	Brown	Yellow			Ву		# of Eskies: 4
1-82																					Esky Numbers: IB/ICE/None Temp: 21 °C Tray Numbers: 0-006 fo 0-010
													-								
Samples Samples Sample Missing Received	N-0 N-0 W	30-1 8- A 6- 1									tan.	rit.	- Clie	Taken To 6 from not is roke	e k n k s Ok	tott tott to 6-B	d ir ing i proc	till till ceed	s WG	j 06 n DB. Hair San 5-1-B-	pon receipt of sub-su yole. 200 as per client.
												Re	egister	ed By:		C		15	2/18		

CLIENT DETAILS		LABORATORY DETAI	LS
Contact		Manager	Ros Ma
Client	CH2M HILL AUSTRALIA PTY LTD	Laboratory	SGS Perth Environmental
Address	PO BOX 5392 CHATSWOOD NSW 1515	Address	28 Reid Rd Perth Airport WA 6105
Telephone	61 2 99500200	Telephone	(08) 9373 3500
Facsimile	61 2 99500601	Facsimile	(08) 9373 3556
Email	ch2m.com	Email	au.environmental.perth@sgs.com
Project	CSIRO Woomera - Project # 684331	SGS Reference	PE123413A R0
Order Number	(Not specified)	Date Received	23 Feb 2018
Samples	1	Date Reported	09 Mar 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Thorium and Uranium subcontracted to SGS Perth Minerals, 28 Reid Rd Perth Airport WA, NATA Accreditation Number 1936, WM182643.

SIGNATORIES

Hue Thanh Ly Metals Team Leader

mchaynd

Michael McKay Inorganics and ARD Supervisor

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Perth Airport WA 6105 Welshpool WA 6983 28 Reid Rd PO Box 32

t +61 8 9373 3500 Australia Australia f +61 8 9373 3556

www.sgs com.au

				Sample Number Sample Matrix Sample Date Sample Name	PE123413A.083 Soil 07 Feb 2018 N-30-D-5
Parameter		-	Units	LOR	
Moisture Content	Method: AN002	Tested: 6/3/2018			
% Moisture			%w/w	1	2.7

Total Recoverable Elements in Soil by ICPOES Method: AN320 Tested: 26/2/2018

Arsenic, As	mg/kg	112.101	2
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.5	9.7
Copper, Cu	mg/kg	0.5	4.2
Lead, Pb	mg/kg	1	3
Nickel, Ni	mg/kg	0.5	3.5
Zinc, Zn	mg/kg	2	12

Mercury in Soil Method: AN312 Tested: 26/2/2018

Mercury	ma/ka	0.05	<0.05
	0.505		

Total Recoverable Metals in Soil by ICPMS Method: AN041/AN318 Tested: 8/3/2018

Thorium, Th*	mg/kg	0.5	1.9
Uranium, U*	mg/kg	0.1	0.1

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method ME-(AU)-[ENV]AN312

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
Mercury	LB142817	mg/kg	0.05	<0.05	0%	96%	97%	2%

Moisture Content Method ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture	LB143093	%w/w	1	1 - 12%

Total Recoverable Elements in Soil by ICPOES Method ME-(AU)-[ENV]AN320

Parameter	QC Reference	Units	LOR	Me	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
Arsenic, As	LB142817	mg/kg	1	<1	20%	95%	105%	7%
Cadmium, Cd	LB142817	mg/kg	0.3	<0.3	0%	96%	91%	4%
Chromium, Cr	LB142817	mg/kg	0.5	<0.5	3%	92%	93%	4%
Copper, Cu	LB142817	mg/kg	0.5	<0.5	1%	94%		
Lead, Pb	LB142817	mg/kg	1	<1	2%	96%	94%	8%
Nickel, Ni	LB142817	mg/kg	0.5	<0.5	1%	98%	103%	9%
Zinc, Zn	LB142817	mg/kg	2	~2	0%	92%		

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN041/AN318	Determination of elements at trace level in soil digest by ICP-MS technique, in accordance with USEPA 6020A.
AN045	A portion of sample is digested with Nitric acid and Hydrogen Peroxide over time and then with Hydrochloric acid through several heating and cooling cycles. It provides a strong oxidising medium for bringing metal analytes into solution according to USEPA3050, after filtration the solution is presented for analysis on AAS or ICP.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference USEPA3050, USEPA6010C and APHA 3120 B.

FOOTNOTES

SG:

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- NATA accreditation does not cover the performance of this service.
- Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

source: HPMFPM630SR_20180223133631.pdf page: 1 SGS Ref: PE123413A_COC

source H PMEPME30SR_20180215170721 pd page 1 SGS Ref PE123413_COC

IENT:		CH2M OFFICE: Sydney	-11					REMENTS :		T (List due date): Standa	d TAT	FOR LABORATORY	SE ONLY (Cire			
IENT ADDI	ESS	Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera					e longes les si IO.:	ome testa o g. Ultra	18WM	d or urgent TAT (List due date): COC SEQUENCE NUMI	ER (Circle)	Cristody Snal Intect?	es literati nici.	Yes No No Yes No No		
OJECT NU		584331 EMAIL:		-	FORM	MAT:			and Esdat	COC: 1 2 3 OF: 2 3	4 5 6 7					
D LEAD:		EMAIL:							E:	RELINQUISHED BY:	RECEIVED BY:		QUISHED B	Y: RECEIVED BY		
emailed										DATE:	DATE	DATE		DATE HADAN KAL		
Invoice		ault to PM if no other addresses are listed);							TIME.	TIME:	TIME		TIME (1 Am			
\$	1					1				Amelia				1(7)//		
-		SAMPLE DETA	LS	1	T			1		Analysis		1 1 1	<u> </u>	Additional Information		
ield 1D	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium		SGS Perth Envi	ronmental		tołd	Comments on likely contaminant levels, dilutions, or samples requiring specific OC analysis, non-standarad or lab provided containers etc.		
l		WX-6-4-10 - 1	6/2/13		15		X	a'a F					Ť	Strate, broken		
0		1	GH 67 3	+	1		V	1 V		— PE123413		-		ana an		
		and a second	1				2	12		Received: 23-	eb – 2018	1				
-2-		W4.0-8-10 V	1	-			X	10		<u> </u>		-				
4		wa-0-1-10 /														
<u> </u>		Wig-0-C-200 /					X	<u> </u>						and the second		
*		W-4-0-0-10 /			-								X	anna an anna ann an an ann an ann an ann an a		
0		MG-0-0-200					. /	1								
6		WG-0-E-10			+		1						-			
T		W4-0 = -2001					1	1								
		UG 0-E-400/			11								X			
		WG-1-A-10 /			1											
		1 005-A-1-DUD			11	_							- 1 × 1			
		(107-1-A.400 -)	- 1													
8		133-1-B-10	2				X	1								
9	PNQ.	WG-1-8-200 M	TA				X	X								
	CT.	1314-1 -1 - 14 - 4 - 50	1		+								X			
		WITHING IN MAR	1										N	an a		
		1 112001	/	1									X			
		1.VP-1-0 - 400 m	1	1									X	ann a mharann an far ann an 1993 ann an 1993 ann an 1993 ann an far ann an far an far an far an far an far an 1		
10	RAR		1	-	1		X	X						anne mana se annal og ann ann an og of hinne dirytige, e ¹⁹ - e e		
11			·V.	1			X	Y								
11	WAL.	WG-1-0-2004	t		1	-		12					X			
	Cr.	way i watur	×	-	14		4.7,	11					- 24	an a shi internetiti		
alal las	truction	<u>.</u>	17			1							136			

LIENT:	ECE.	CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067			-	URNAROUND REQUIREMENTS: URNAROUND REQUIREMENTS: Standard TAT Ust due date): Standard TAT Product TAT may be longer for summercus - go that Trans Organices Non Standard or urgent TAT (List due date):							TATE	FOR LABORATORY USE ONLY (Circle) Custody Semi Intert? Yes No. h						
ROJECT:		CSIRO Woomera			POI	QUOTE	NO.:	whelests eg. Uto	1712418W		ard or unger		COC SEQ	JENCE NUMB	ER (Circle)	File Coll top File Coll top	nlast/	resint upon	Yes No Ne Yas No Ne	
ROJECT NU ROJECT MA		684331 EMAIL:			FORM	AT:			Equis and E PHONE:	dat	-	COC: OF:		(2) 3	4 5 6	7 Rhridom Sam		re pri Riece	e c	
IELD LEAD:		EMAIL:							PHONE:				1 SHED BY:	2 3	4 5 6 RECEIVED B		RELINQU	ISHED B	Y: RECEIVED BY	
OC emailed							****					DATE							11/2/10	
mail Reports		auff to PM if no other addresses are listed):					and the second second					TIME.			DATE TIME		DATE: TIME.		DATE 44 4 8	
otes	1	SAMPLE DET				- 1											1.0 mm		1.00 11/10	
		SAMPLE DETA	AILS	1	1		Anna in anna in	1.		1	Ana	Analysis			1			Additional Information		
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Motals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorlum	TPH and PAH (16 analytes)									Id	Comments en likely contaminant levels, cilutions, or samples requiring specific OC analysis, non-standarad or lab provided containers etc.	
		WG 1-E -10 - X 80	27/14		1		Öž	en di F	-F									A. Hold		
	Y		0 4/1					-										X		
		WG1.E.200 V																X		
		1016-1-E-400 V						10-			_							M		
12		Wh-2 A-10 -	1			_	X	1												
13		Win 2 A Low Y	1-1-		-	_	X	X												
		hig-2-t-yuc V																X		
		WQ-2-B-10 V	CI															X		
		WG-7-B-200-		-						-	_							X		
		49.2 - B. 400 -	1			- 1					-						1	X		
14		100 4 - 1 - C - 10 - C					V	X										11	• • • • • • • • • • • • • • • • • • •	
K		1. 3 2-C-200 V	1				1	V									-			
-12-		WG-3-C-400-	1								-							1x1		
		104-3-0-10 -	1																	
		N 005-0-5-200															-	1×		
															······			18		
			1				~											1,8		
16		1. v J - 2 - B - 10 - 4	1				X	1									-			
17		WGE-2-8-200.	-				X	X		_							-	1 1		
		W1 400 4			 							1						14		
		134-3-A-10.5															1	X		
_		WG-3-4-200 V	1															Y.		
		WG -5-7-400 -	12								-							X		
		WG-3-5-10 V	14		31								l					X		
							6	6										16		
pecial Ins	tructions	5:												1				And In		

LIENT: LIENT ADDR	ECC.		an other and the date in the d								LABORATORY USE ONLY (Circle		ile)				
ROJECT:		CSIRO Woomera			POI	QUOTE	NO.:	ond lens e g Da			ent IAT (List	COC SEQUENCE MUM	BER (Circle)	Custody Ser	l Intact? zen ice pricks pr	esent upon	Yes No I Yes No I
ROJECT NU		664331 EMAIL:			FOR	MAT:			Equis and Es PHONE:		COC: OF:	1 2 (3)	4 5 6 7	Random fla	nois Temperatu	ip on Apony	c c
LD LEAD:		EMAIL:					1		PHONE:			1 2 3 VISHED BY:	4 5 6 7 RECEIVED BY:	Citive comm	RELINQU	SHED BY	T: RECEIVED BY
C emailed nail Reports											DATE		DATE				141715
nail Invoice		ault to PM if no other addresses are listed)									TIME		TIME		DATE.		DATE: 141213
otos		CAMPLE DET	All C														111311-
		SAMPLE DET	AILS	1	1			1.		1 1 1	Ana	alysis		1	1 1		Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamna Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	[PH and PAH {16 analytes}							loid	Comments on likely contaminant levels diutions, or samples requiring specific C analysis, non-standarad or lab provided containers etc
		W-10-0-5 V	717		5		0 22	ma r									
		and the second	116		13					1-1-						Y	
		W-10-0-700 V	_	<u> </u>											1	K	
18		W-0-4-5 V					X	X			1.1.1.1						
19		10-0. A. 700 V	1				X	X									
20		W-10-8-5 M	-				the second s	X			-					++	
21		W-10-15 200 V						1 V							<u> </u>	+-+	
22			/				V	N									
		10 W-10 A-200	1-				~	1-2-									
23		- wg-5-6-10-1	1/-				X	X									
24	_	WG-3-B-200	4				X	X									
		W4-3-B-400.	V		1			-								V	
	1	Wr3-C-10 .				1										12	
		WG-2 C-2001	1		1-11			1								N.	
		1.4(+ 2 C -4100 *														W	an ann an ann an an ann an an ann an an
25		Wit - 3-1-10	1			-	V	X			1					-	
26		and the second	1			-	X	1								-	
av.		_w4-3-D-200				-	1										
0-		WG-3-D-4001					~	0							1	X	
27		5-0-A-5	T				_X_	X									
28		5-G-A-200	1				X	X						+			
29		5-10-A-5 1	1				X	X									
30		S-10-A-700 .					X	X									
31		· 5 . 10 5 . 5 W	N.	1.00				X			1						
32		5-10-3-200			-			V									and the second se
		2		2-12			2.1	E			1					-7	
ecial Inst	ructions	5:						-21	1								

LIENT:		CH2M OFFICE: Sydney				URNAROUND REQUIREMENTS : Standard TAT (List due date): Standard TAT landard TAT may be longer for some lives ag Use Trace Organics; Non Standard or urgont TAT (List due date):									ATORY USE	ONLY (CIN	cie)
IENT ADDE	(ESS:	Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera			PO /	Mandard TAT may be longer for some tests og Ulles Trace Organics) O / QUOTE NO.: 1712418WM						COC SEQUENCE NU	IMBER (Circle)	Custody Seal	en ica phoks p	resent upor	Yes No t
ROJECT NU		684331			FORMAT: Equis and Esdat							1 2		Fangue Sam	ole Temperatu	re on Rece	Yes No I
ELD LEAD:	NAGER:	EMAIL: EMAIL:			-		PHONE										
C emailed	?:	C. OF OLD		-					THOME			SHED BT:	RECEIVED BY:		RELINGU	ISHED B	
all Reports				DATE DATE											DATE 14 218		
nail Invoice	to will defa	ault to PM if no other addresses are listed):									TIME		TIME		TIME		TME IPM
		SAMPLE DET	AILS			Analysis											Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd. Cr. Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)								Comments on likely contaminant levels ditutions, or samples requiring specific of analysis, non-standarad or lab provide containers etc.
			712		0		Rad	A D A	16 I							Hold	
33		S10-C.5	112		5		\rightarrow	1		_		-					
34		2-10-C-200 V	4-1				~	1-0-									
35		S-10-0-5 V	1A		-												
36		0005-9-01-2					~	+ -									
37		E.0.4. 2 V	218	-			->-	1.									
38		E-0 A-200 V	11-		-		A	10			_						
39		C.O.C.S.	1	<u> </u>				X									
40		E-0 6-200 1	4-	ļ				X									and the second
41		E-0-6-5 \	1_				X	X									
42		B-C-C-200	1 an				X	X			-						
43		XE N-C-A-ST	the Lid	Came	alk		X	X									
44		N-0-A-2004	XL		- Un		X	X									AL
45		N-a.R.S	1					X									
46		N-0 R 200 -	1					X									
47		N-10-A-5 -	-					X									
48		N-10 A-200	4					X									
49		V-10-6-5 .	-				X	X									
S		-N-10-8.700	X.				X	X									11-21-244
57		10-10-C-5 V	1.1					X		-							
52		N-10 C-700	V-I					X									
53		N-10 C-700					×	X								11	
54		N-10 D-200.	1 2		1			X									
					-		11	122									
ecial Ins	tructions	s:															

LIENT: LIENT ADDR	ESS	CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067						REMENTS :	Trace Organics)	Standard TAT (Lit Non Standard or t		Standard due date):	TAT	FOR LABOR	ATORY USE O	NLY (CIN	cle) Yes No
ROJECT:		CSIRO Woomera					NO.:		1712413WM			COC SEQUENCE NUMBE	R (Cirele)	hitse (de rifis)	Intact? Innice choks po	set un	Yes No. Yes No.
OJECT NU		684331 EMAIL:		-	FORM	MAT:			Equis and Esd PHONE:		COC:	1 2 3	4 5 6 7	Random San	ole Temperature	e do Race	
OJECT MA	NAGERC	EMAIL:		-					PHONE:		OF:	1 2 3 ISHED BY:	4 5 6 7	Other comme		0.150.0	71
C emailed	7:	Lines.							1110/10.		RCLINGO	ISHEU B1:	RECEIVED BY:		RELINQUI	SHED B	Y: RECEIVED BY:
nail Reports	to.										DATE		DATE		DATE:		DATE: 14/2/18
	to (will defin	ault to PM if no other addresses are listed)	_								TIME		TIME		TIME		TIME: ILA
tes	1					1											117/27)
		SAMPLE DETA		1		-			1		Ana	lysis		1		1	Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)							told	Comments on likely contaminant level dilutions, or samples requiring specific analysis, non-standarad or lab provide containers etc.
		Wa-3-E-200 /	01313		5									1	1	X	
			1-1-		1			1						1		10	ananana ana ana ana ana ana
		46-3-B400 V			-	-										1 4	
55		ionestern -						X	X								
56		LOM D'Site O? V						X.	X								
57		Converted V						X	X								and the second sec
58			f	1				X	V-							+ +	
			¢			-		\rightarrow	4								(.
59								X									
60		W-10-H-200 V	ļ			_		X								1	
61		W-0.65 V	2					X									
62		W-UE-200 V						X									
63		6104-5 -	1				X	X									
64	1	W-10 4-200 V	1				X	X									The many address
65		W-U-D-5 -						X									
66		W-0 N.700 -	/			1		X									and the second se
67		U-10-E-5 -	1					V									1999-94 (1999-1999-1999-1999-1999-1999-1999-199
68			1-					1									
69		Wall record	4		+ +		X	$\hat{\mathbf{C}}$									annone and a strength of the second strength
		<u> </u>				-+-		\leftrightarrow									
70		10-0-1-220	1-														
71_		10-10-65 . WH	1														1
72		W-10 E-200 . V	1-		1		X	X			_						
73		W-0-8-5 4	-					X									
夺4		W-0-B-700 -	14					X									
							(0	20	1							21	
oecial Ins	tructions	5:							Contraction of Stations - 100					1			

LIENT:	ESS:	CH2M OFFICE: Sydney Level 7, 9 Help SI Chatswood NSW 2067						REMENTS :		C Standard T Non Stand	AT (List due ard or urgent	e date): t TAT (List du	un data):	Standard TA	.1	FOR LA	BORATORY	USE ONL	Y (Circle	
ROJECT: ROJECT NU	MBER-	CSIRO Woomera 684331			PO/C	UOTE N	0.1		1712418WM Equis and Esdat			-	COC SEQUEN	CE NUMBER	(Circle) 5 (6)	The internet	Sea Intact?	iles treie	ere asser	Yes No Yes No
ROJECT MA		EMAIL:			1 Chief	12			PHONE:			OF:	1 2	3 4	6 6	7 Ratione	Sanble Ten Immente	persture o	in Receipt	ъ.
IELD LEAD:	2.	EMAIL:				6			PHONE:			RELINQUIS	HED BY:		RECEIVED B	Y;		NQUISH	ED BY:	RECEIVED BY: 1
mail Reports	to											DATE:			DATE		DAT	-		14/210
	to (will defai	all to PM if no other addresses are listed)										TIME:			TIME		TIME			DATE 14 12 18
lotes	I I	SAMPLE DET.	All C																	11771
		SAMPLE DEI		1	11				1		1	Analy	ysis	1 1				T 1	_	Additional Informatio
Field 1D	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As. Cd. Cr. Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (15 analytes)										1	Comments on likely contaminant lev bilutions, or samples requiring specifi analysis, non-standarad or lab provi containers etc
25		N-SUA-5 V	1.					X										i t	. <u> </u>	
76		N-30 A-2002	X					X												
77		1233.8.5	1				X	X											-+-	
78		N-30_ B-200 V	V	1	\mathbf{H}		X	V												
79					+		~1	2									-		_	
		N-3-1-5 V	1					- <u>C</u>												
30	0	N-30-C-2004	in	1				X												
	83×	12-30-05 Coto						X												
81		N-30-0-200+	1					X			-									
82		4-6-5 1/	7/2				X	X									_			
				1							1-1									
				1																
	-								-											
				1				-												
			-																	
																			and a	
																			1	
																		1		
																11				
											1									
			-1		-			6			+									
	tructions				-		>													

AUSTRALIA-ENVIRONMENTAL-PERTH AIRPORT- PROFORMA -QU101

REGISTRATION DETAILS

APPROVED BY: R. MA 1L 500mL250mL500mL250mL125mL 125mL 500mL 100mL 40mL 40mL 500mL 250mL 125mL 1L **Bottle Map** 1L 250mL 125ml Bottles Ziplock Job Number: UF/F Bag/ Other PE /23413A Plastic Plastic Plastic Plastic Plastic Plastic Amber Amber Amber Glass Glass Plastic Plastic Plastic Plastic Glass Glass Supplied IDank Sample # of Eskies: None (1600 Vial Vial Glas Jar Jar Numbers: Green Green Purple Green Green Green Red Green Orange Green VOC HAA Blue Orange Brown Yellow By 83 Esky Numbers: IB / ICE / None Temp: 20 °C Tray Numbers: Q-010 **Registration comments:** Action Taken: Registered By: Registered By: FG 23/2/18 Received 23/2/18 @ 9:00 and

Manifest ID: 3447349 Dispatch Date: 21-Feb-20		3447349 21-Feb-2018 05:00:00 pm	Sender:	SGS AUSTRALIAN RADIATION SERVICES 10 / 585 Blackburn Road NOTTING HILL VIC 3168		Sender Account: 603629	347349	
HIPMENT VO	PAYER ACCOUNT	SERVICE METHOD	CONNOTE ID	RECEIVER SUBURB	POST DANGEROUS GOODS CODE UNCODE CLASS SUB RISK GROUP	ODS TOTAL FOTAL SROUP WGT ITEMS CUBIC GROUP WGT (M3)	TOTAL PALLETS SHIP UNIT WEIGHT PALLETS SHIP UNIT (KG) CHEP LOSCAM OTHER	-
07139642 Special Instructions Sender Ref Receiver Ref Other Ref References	60%29 PRI ERN TCH SOIL SAMPLES SARA SHOYOOKHI DAVID BRENNAN ME305752	IGHT_SA EL	ASRX022861	SGS PERTH PERTH 6105 ARPORT 28 REID ROAD 6105000001 ASTX022861	6105	- 000	5 10 PRI AUS. KG_SATCH EL_SATCH ASRX022861	
		TOTALS				1 0.005	10	
CONSIGNMENT DOES N CONSIGNMENT DOES N SECTION 4 OF THE AU RAIL OF SEA. HARLOF SEA. HART HERENE ARAME HART PARAMENT Sender'S Name: Sender'S Signature: Date:	NT DOES I DF THE AI DF THE AI THE AI THE AIAT THE CARREN THE CARREN Signature	CONSIGNMENT DOES NOT CONTAIN DANGEROUS GOODS FF THE GOODS ARE DANGEROUS IN NATURE THE SENDER SECTION 4 OF THE AUSTRALIAN CODE FOR THE TRANS RAIL OR SEA. RAIL OR SEA. RAIL OR SEA. Frankers and a service the first section frame intersection that the construction of control provided control of the construction of the construction control of the construction construction control of the construction control of the construction control of the construction constructi	ANGEROUS GOC ANGEROUS GOC E FOR THE TRN DE FOR THE TRN ES PREASE ACCERT	CONSIGNMENT DOES NOT CONTAIN DANGEROUS GOODS FF THE GOODS ARE DANGEROUS IN MATURE THE SENDER MUST DECLARE THEM ACCORDING TO THE SECTION 4 OF THE AUSTRALIAN CODE FOR THE TRANSPORTATION OF DANGEROUS GOODS BY ROAD, RALL OR SEA. RALL OR SEA. RALL OR SEA. RALL OR SEA. RALL OR SEA. RALL OR SEA. RALL OR SEA. Date: Date: Date:	CONSIGNMENT DOES NOT CONTAIN DANGEROUS GOODS F THE GOODS ARE DANGEROUS IN NATURE THE SENDER MUST DECLARE THEM ACCORDING TO THE SECTION & OF THE AUSTRALIAN CODE FOR THE TRANSPORTATION OF DANGEROUS GOODS BY ROAD, AUL OR SEA. UNERTRE IN ALSO ANAMENT DANGEROUS COODS AND INT INSEE CONTRANT AND AUXITORISED EXAMENT FRAME OF THE CONTRANT AND ANAMENT RE CONSIDER THE CONTRANT OF THE CONTRANT CONTINUED FOR THE CONTRANT OF CONTRANT AND ANAMENT RE CONSIDER OF AND AND SENDER'S NAME. Sender'S Signature: Date:	PALLETS T Chep Loscam Loscam Other Loscam Other Loscam Other Encode and the state of t	LETS TO TOLL FROM TOLL am an	
							PAGE 1 of 1	

MANIFEST FOR PRIORITY

CLIENT DETAILS		LABORATORY DETAI	
Contact		Manager	Ros Ma
Client	CH2M HILL AUSTRALIA PTY LTD	Laboratory	SGS Perth Environmental
Address	PO BOX 632 NORTH SYDNEY NSW 2060	Address	28 Reid Rd Perth Airport WA 6105
Telephone	61 2 99500200	Telephone	(08) 9373 3500
acsimile	61 2 99500601	Facsimile	(08) 9373 3556
Email	jacobs.com	Email	au.environmental.perth@sgs.com
Project	CSIRO Woomera - Project# 684331	SGS Reference	PE126215 R0
Order Number	1712418WM	Date Received	07 Jun 2018
Samples	74	Date Reported	21 Jun 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(898/20210).

Total Recoverable Metals: Zn: Spike recovery and MSD RPD failed due to sample heterogeneity. U and Th subcontracted to SGS Perth Minerals, 28 Reid Rd Perth Airport WA, NATA Accreditation Number 1936, WM185672.

SIGNATORIES

Hue Thanh Ly Metals Team Leader

mchaynd

Michael McKay Inorganics and ARD Supervisor

Environment, Health and Safety

28 Reid Rd Perth Air PO Box 32 Welshpor

Perth Airport WA 6105 Australia Welshpool WA 6983 Australia

ia t +61 8 9373 3500 ia f +61 8 9373 3556

www.sgs com.au

PE126215 R0

3.7

0.7

	S	mple Number Sample Matrix Sample Date Sample Name	PE126215.001 Soil 29 May 2018 E-30-A-5	PE126215.002 Soil 29 May 2018 E-30-A-200	PE126215.003 Soil 29 May 2018 E-30-B-5	PE126215.004 Soil 29 May 2018 E-30-B-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 13/6/2018						
% Moisture	%w/w	1	9.3	12.5	7.4	10.4
(contraction of the second second		7/6/2018	6	6	5	6
Total Recoverable Elements in Soli by ICPDES Method. ANS20	o lested:	//6/2018				
Arsenic, As	mg/kg	1				
Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	<0.3	0.3	<0.3	<0.3
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.5	<0.3 20	0.3 21	⊲0.3 16	<0.3 16
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	1 0.3	<0.3 20 14	0.3 21 14	<0.3 16 20	<0.3 16 12
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	1 0.3 0.5	<0.3 20	0.3 21	⊲0.3 16	<0.3 16
Total Recoverable Elements in Soil by ICPOES Method: AN320 Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	<0.3 20 14	0.3 21 14	<0.3 16 20	<0.3 16 12
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	<0.3 20 14 12	0.3 21 14 11	<0.3 16 20 25	<0.3 16 12 10
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	<0.3 20 14 12 15	0.3 21 14 11 13	<0.3 16 20 25 10	<0.3 16 12 10 9.6

Thorium, Th* mg/kg 0.5 5.1 5.1 3.4 Uranium, U* mg/kg 0.1 0.5 0.8 0.4

PE126215 R0

2.4

0.2

Parameter	S	nple Number ample Matrix Sample Date ample Name LOR	PE126215,005 Soil 29 May 2018 E-30-C-5	PE126215.006 Soil 29 May 2018 E-30-C-200	PE126215.007 Soil 29 May 2018 S-30-A-5	PE126215.008 Soil 29 May 2018 S-30-A-200
Moisture Content Method: AN002 Tested: 13/6/2018	onito	Cont				
% Moisture	%w/w	1	25.8	24.3	3,6	7.5
	1			-		
	T	1 1				
	mg/kg mg/kg	1	4	5	1	2 <0.3
Cadmium, Cd	mg/kg mg/kg mg/kg				1	
Cadmium, Cd Chromium, Cr	mg/kg	0.3	0.3	0.6	<0.3	<0.3
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	0.3 20	0.6 27	<0.3 7.9	⊲0.3 11
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5	0.3 20 18	0.6 27 23	<0.3 7.9 3.2	<0.3 11 5.5
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	0.3 20 18 57	0.6 27 23 99	<0.3 7.9 3.2 3	<0.3 11 5.5 4
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	0.3 20 18 57 11	0.6 27 23 99 13	<0.3 7.9 32 3 3.0	<0.3 11 5.5 4 4.9

Thorium, Th* mg/kg 0.5 3.7 4.1 1.7 Uranium, U* mg/kg 0.1 0.4 0.4 0.1

	S	mple Number ample Matrix Sample Date Sample Name	PE126215.009 Soil 29 May 2018 S-30-B-5	PE126215.010 Soil 29 May 2018 S-30-B-200	PE126215.011 Soil 29 May 2018 S-30-C-5	PE126215.012 Soil 29 May 2018 S-30-C-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 13/6/2018	32.5	1		2.5		
% Moisture	%w/w	1	4.0	7.2	5.2	5.3
Total Recoverable Elements in Soil by ICPOES Method: AN320 Arsenic, As	0 Tested: mg/kg	1	3	4	2	3
Alabito, na	ingrig		5		-	3
	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd				-		
Cadmium, Cd Chromium, Cr	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	<0.3 11	<0.3 14	<0.3 7.1	<0.3 9.9
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5	<0.3 11 5.7	<0.3 14 11	<0.3 7.1 6.6	<0.3 9.9 7.5
Ausenia, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	<0.3 11 5.7 4	<0.3 14 11 9	<0.3 7.1 6.6 9	<0.3 9.9 7.5 11
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	<0.3 11 5.7 4 5.3	<0.3 14 11 9 8.3	<0.3 7.1 6.6 9 5.0	<0.3 9.9 7.5 11 6.0

Thorium, Th*	mg/kg	0.5	2.7	3.4	2.2	2.5
Uranium, U*	mg/kg	0.1	0.2	0.3	0.3	0.4

PE126215 R0

	S	nple Number ample Matrix Sample Date ample Name	PE126215.013 Soil 29 May 2018 S-30-D-5	PE126215.014 Soil 29 May 2018 S-30-D-200	PE126215,015 Soil 29 May 2018 S-30-E-5	PE126215.016 Soil 29 May 2018 S-30-E-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 13/6/2018						
% Moisture	%w/w	1	2.7	19.2	72	8.8
Amontio An	maller		-4			
Arsenic, As	mg/kg	1.1	<1	8	4	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd Chromium, Cr		0.3	<0.3 3.2	⊲0.3 21	⊲0.3 15	<0.3 17
Cadmium, Cd Chromium, Cr	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	<0.3 3.2	⊲0.3 21	⊲0.3 15	<0.3 17
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5	<0.3 32 2.9	<0.3 21 16	<0.3 15 15	<0.3 17 13
Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	<0.3 3.2 2.9 5	<0.3 21 16 8	<0.3 15 15 120	<0.3 17 13 220
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	<0.3 3.2 2.9 5 3.3	<0.3 21 16 8 14	<0.3 15 15 120 9.9	<0.3 17 13 220 11

Total Recoverable Metals in Soil by ICPMS Method: AN041/AN318 Tested: 21/6/2018

Thorium, Th*	mg/kg	0.5	1.0	6.3	3.9	4.6
Uranium, U*	mg/kg	0.1	<0.1	1.4	0,5	0.6

Parameter	S	nple Number ample Matrix Sample Date Sample Name LOR	PE126215.017 Soil 29 May 2018 S-R-A-5	PE126215.018 Soil 29 May 2018 S-R-A-200	PE126215.019 Soil 29 May 2018 S-R-B-5	PE126215.020 Soil 29 May 2018 S-R-B-200
Moisture Content Method: AN002 Tested: 13/6/2018	Units	LOK				
% Moisture	%w/w	1	6.2	7.2	5.6	6.7
Total Recoverable Elements in Soil by ICPOES Method: AN320	resteu.	7/6/2018				
Containing a service of the service of the service of the service serv						
Arsenic, As	mg/kg mg/kg	1 0.3	2 <0.3	2	4	3 1.0
Arsenic, As Cadmium, Cd	mg/kg	1				
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg	1 0.3	<0.3	0.8	1.0	1.0
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	1 0.3 0.5	<0.3 9.4	0.8 9.9	1.0 11	1.0 12
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	<0.3 9.4 7.4	0.8 9.9 5.9	1.0 11 12	1.0 12 10
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	<0.3 9.4 7.4 5	0.8 9.9 5.9 7	1.0 11 12 13	1.0 12 10 8
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	<0.3 9.4 7.4 5 5.5	0.8 9.9 5.9 7 4.8	1.0 11 12 13 8.1	1.0 12 10 8 8.1

Thorium, Th*	mg/kg	0.5	2.3	2.3	3.2	3.6
Uranium, U*	mg/kg	0.1	0.2	0.2	0.3	0.3

Parameter	S	nple Number ample Matrix Sample Date ample Name LOR	PE126215.021 Soil 29 May 2018 S-R-C-5	PE126215.022 Soil 29 May 2018 S-R-C-200	PE126215.023 Soil 29 May 2018 S-R-D-5	PE126215.024 Soil 29 May 2018 S-R-D-200
Moisture Content Method: AN002 Tested: 13/6/2018						
% Moisture	%w/w	1	8.2	9.1	7.6	10.2
Arsenic, As	mg/kg	1.1	3	3	5	4
	mg/kg mg/kg	1 0.3	3 1.3	3	5 1.3	4 1.2
Cadmium, Cd						
Cadmium, Cd Chromium, Cr	mg/kg	0.3	1.3	1.1	1.3	1.2
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	1.3 13	1.1 13	1.3 14	1.2 18
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5	1.3 13 12	1.1 13 13	1.3 14 14	1.2 18 17
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Vickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	1.3 13 12 16	1.1 13 13 29	1.3 14 14 16	1.2 18 17 10
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Mercury in Soil Method: AN312 Tested: 7/6/2018	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	1.3 13 12 16 9.8	1.1 13 13 29 9,9	1.3 14 14 16 10	1.2 18 17 10 12

Thorium, Th*	mg/kg	0.5	4.9	5.2	4.9	5.2
Uranium, U*	mg/kg	0.1	0.4	0.4	0,5	0.4

	S	nple Number ample Matrix Sample Date Sample Name	PE126215,025 Soil 29 May 2018 S-R-E-5	PE126215.026 Soil 29 May 2018 S-R-E-200	PE126215.027 Soil 29 May 2018 E-10-A-5	PE126215.028 Soil 29 May 2018 E-10-A-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 13/6/2018						
% Moisture	%w/w	1	6.7	8.7	12.7	20.8
Contraction of the standard set and			4	3	4	5
Contraction of Carality and Caraba	1					
Total Recoverable Elements in Soil by ICPOES Method: AN3: Arsenic, As Cadmium, Cd	20 Tested: mg/kg mg/kg	1 0.3	4	3 1.2	4 0.8	5 1.1
Arsenic, As Cadmium, Cd	mg/kg	1 0.3 0.5	0,9 11	1.2 16	0.8 5.4	1.1 15
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	1 0.3	0.9 11 11	1.2 16 13	0.8 5.4 11	1.1 15 14
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	1 0.3 0.5	0,9 11	1.2 16	0.8 5.4	1.1 15
Arsenic, As	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	0.9 11 11	1.2 16 13	0.8 5.4 11	1.1 15 14
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	0.9 11 11 14	1.2 16 13 12	0.8 5.4 11 5	1.1 15 14 6
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	0.9 11 11 14 8.1	1.2 16 13 12 10	0.8 5.4 11 5 7.6	1.1 15 14 6 11

Thorium, Th*	mg/kg	0.5	4.3	5.2	2.2	5,7
Uranium, U*	mg/kg	0.1	0.4	0.3	0.4	0,5

PE126215 R0

	s	nple Number ample Matrix Sample Date ample Name	PE126215.029 Soil 29 May 2018 E-10-B-5	PE126215.030 Soil 29 May 2018 E-10-B-200	PE126215.031 Soil 29 May 2018 E-10-C-5	PE126215.032 Soil 29 May 2018 E-10-C-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 13/6/2018						
% Moisture	%w/w	1	13.4	21.1	12.9	24.2
the former of the grants with a	mg/kg	1	4	7	3	<1
the product of the start of the start	mg/kg		4	7	3	<1
Arsenic, As Cadmium, Cd	mg/kg	1 0.3	0.5	1.3	0.5	<0.3
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg	1 0.3 0.5	0,5 3.1	1.3 17	0.5 2.1	<0.3 1.6
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg	1 0.3	0.5 3.1 9.8	1.3 17 15	0.5 2.1 10	<0.3 1.6 1.4
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	1 0.3 0.5	0,5 3.1	1.3 17	0.5 2.1	<0.3 1.6
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	0.5 3.1 9.8	1.3 17 15	0.5 2.1 10	<0.3 1.6 1.4
Total Recoverable Elements in Soil by ICPDES Method: / Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	0.5 3.1 9.8 3	1.3 17 15 7	0.5 2.1 10 4	<0.3 1.6 1.4 <1
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	0.5 3.1 9.8 3 7.4	1.3 17 15 7 12	0.5 2.1 10 4 6.8	<0.3 1.6 1.4 <1 1.1

Total Recoverable Metals in Soil by ICPMS Method: AN041/AN318 Tested: 21/6/2018

Thorium, Th*	mg/kg	0.5	1.5	5.6	1.0	0.5
Uranium, U*	mg/kg	0.1	0.4	0.7	0.4	<0.1

PE126215 R0

	S	mple Number ample Matrix Sample Date Sample Name	PE126215.033 Soil 29 May 2018 W-30-A-5	PE126215.034 Soil 29 May 2018 W-30-A-200	PE126215,035 Soil 29 May 2018 W-30-B-5	PE126215.036 Soil 29 May 2018 W-30-B-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 13/6/2018						
% Moisture	%w/w	1	1.9	15.1	6.0	19.1
Containing a source for a source of a source of	a strengt	7/6/2018	1			
Total Recoverable Elements in Soil by ICPOES Method: AN32	0 Tested:	7/6/2018				
Contraining a second for a large and the second for	0 Tested: mg/kg	1	2	3	2	3
Arsenic, As	a strengt	1	2 0.4	3 0.7	2 0.6	3 1.4
Arsenic, As Cadmium, Cd	mg/kg	1				
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg	1 0.3	0.4	0.7	0.6	1.4
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	1 0.3 0.5	0.4 <0.5	0.7 7.9	0.6 10	1.4 24
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	0.4 <0.5 2.0	0.7 7.9 6.6	0.6 10 3.6	1.4 24 15
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	0.4 <0.5 2.0 3	0.7 7.9 6.6 4	0.6 10 3.6 3	1.4 24 15 8
Total Recoverable Elements in Soil by ICPOES Method: AN32 Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Mercury in Soil Method: AN312 Tested: 7/6/2018	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	0.4 <0.5 2.0 3 4.1	0.7 7.9 6.6 4 5.4	0.6 10 3.6 3 3.3	1.4 24 15 8 12

Total Recoverable Metals in Soil by ICPMS Method: AN041/AN318 Tested: 21/6/2018

Thorium, Th*	mg/kg	0.5	1.9	3.0	1.6	6.0
Uranium, U*	mg/kg	0.1	1.4	0.3	<0.1	0.3

PE126215 R0

Parameter	S	mple Number Sample Matrix Sample Date Sample Name LOR	PE126215.037 Soil 29 May 2018 W-30-C-5	PE126215,038 Soil 29 May 2018 W-30-C-200	PE126215.039 Soil 29 May 2018 W-30-D-5	PE126215.040 Soil 29 May 2018 W-30-D-200
Moisture Content Method: AN002 Tested: 16/6/2018	Units	LOR				
% Moisture	%w/w	1	5,6	15.0	6,1	19.1
Total Recoverable Elements in Soil by ICPOES Method: AN32		7/6/2018				
Arsenic, As	mg/kg	1	2	5	<1	4
Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	0.5	1.0	0.5	1.1
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.5	0.5 9.5	1.0 17	0,5 9,3	1.1 19
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg	1 0.3	0.5	1.0	0.5	1.1
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	0.5 9.5 3.1	1.0 17 10	0.5 9.3 3.1	1.1 19 13
Total Recoverable Elements in Soil by ICPOES Method: AN32 Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	0.5 9.5 3.1 3	1.0 17 10 5	0.5 9.3 3.1 3	1.1 19 13 6
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	0.5 9.5 3.1 3 2.8	1.0 17 10 5 8.0	0.5 9.3 3.1 3 2.8	1.1 19 13 6 9.6

Thorium, Th* mg/kg 0.5 1.6 3.7 1.4 4.6 Uranium, U* mg/kg 0.1 0.1 0.4 0.1 0.4

	-	mple Number Sample Matrix Sample Date Sample Name	PE126215.041 Soil 29 May 2018 W-30-E-5	PE126215.042 Soil 29 May 2018 W-30-E-200	PE126215,043 Soil 29 May 2018 W-30-F-5	PE126215.044 Soil 29 May 2018 W-30-F-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 16/6/2018						
% Moisture	%w/w	1	5.8	11.5	5.7	11.6
Cadmium, Cd	mg/kg	0.3	0.6	0.7	0.6	0.8
Arsenic, As	mg/kg	12.1	2	3	1	2
	mg/kg	0.3	0.6	0.7	0.6	0.8
			10.0			
Chromium, Cr	mg/kg	0.5	9.8	13	9.3	14
Chromium, Cr	mg/kg mg/kg	0.5	9,8 3,3	13 6.7	9.3 3.1	
Chromium, Cr Copper, Cu						14
Chromium, Cr Copper, Cu Lead, Pb	mg/kg	0.5	3,3	6.7	3.1	14 7.5
Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg	0.5	3,3 2	6.7 4	3.1 3	14 7.5 4
Chromium, Co Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn Mercury in Soil Method: AN312 Tested: 7/6/2018	mg/kg mg/kg mg/kg	0.5 1 0.5	3.3 2 3.0	6.7 4 5.1	3.1 3 2.9	14 7.5 4 5.9

		1				
Thorium, Th*	mg/kg	0.5	1.6	2.7	1.5	2.9
Uranium, U*	mg/kg	0.1	<0.1	0.2	<0.1	0.2

PE126215 R0

2.8

0.1

	S	mple Number iample Matrix Sample Date Sample Name	PE126215.045 Soil 29 May 2018 W-D-B-5	PE126215.046 Soil 29 May 2018 W-D-B-200	PE126215.047 Soil 29 May 2018 W-D-A-5	PE126215.048 Soil 29 May 2018 W-D-A-200
Parameter Moisture Content Method: AN002 Tested: 16/6/2018	Units	LOR		_	_	_
% Moisture	%w/w	1	5.8	2.6	3.7	4.8
a strand at a state of a state of the state		7/6/2018				
A CALLER AND A CALLER A REAL AND A CALLER AND A C	a street	6 THE R. L.				
Arsenic, As	mg/kg	1	2	2	2	3
Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	12	0.8	1.0	1.0
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.5	1.2 17	0.8 13	1.0 14	1.0 15
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	1.2 17 10	0.8 13 6.0	1.0 14 8.7	1.0 15 8.6
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	12 17 10 8	0.8 13 6.0 4	1.0 14 8.7 17	1.0 15 8.6 11
Total Recoverable Elements in Soil by ICPOES Method: AN32 Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	1.2 17 10	0.8 13 6.0	1.0 14 8.7	1.0 15 8.6
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	12 17 10 8	0.8 13 6.0 4	1.0 14 8.7 17	1.0 15 8.6 11
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	12 17 10 8 7.8	0.8 13 6.0 4 4.9	1.0 14 8.7 17 6.4	1.0 15 8.6 11 6.5

Thorium, Th* mg/kg 0.5 4.0 2.3 2.6 Uranium, U* mg/kg 0.1 0.2 <0.1</td> 0.1

	S	mple Number ample Matrix Sample Date Sample Name	PE126215.049 Soil 30 May 2018 N-P-A-5	PE126215.050 Soil 30 May 2010 N-P-A-200	PE126215.051 Soil 30 May 2018 N-P-B-5	PE126215.052 Soil 30 May 2018 N-P-B-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 16/6/2018						
% Moisture	%w/w	1	10.5	12.9	7.6	14.8
Areenic As	ma/ka	1 1	2	5	5	10
Areenic As	ma/ka	1 1	2	5	5	10
	mg/kg mg/kg	1 0.3	2	5 1.4	5 1.6	10 <0.3
Cadmium, Cd Chromium, Cr		0.3 0.5	1.1 20	1.4 23	1.6 24	<0.3 32
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg	0.3	1.1 20 13	1.4 23 17	1.6 24 17	<0.3 32 23
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	1.1 20	1.4 23	1.6 24	<0.3 32
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	1.1 20 13	1.4 23 17	1.6 24 17	<0.3 32 23
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	1.1 20 13 8	1.4 23 17 8	1.6 24 17 20	<0.3 32 23 10
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	1.1 20 13 8 10	1.4 23 17 8 11	1.6 24 17 20 12	<0.3 32 23 10 18

Thorium, Th*	mg/kg	0.5	4.8	5.5	5.1	7.0
Uranium, U*	mg/kg	0.1	0.2	0.2	0.2	0.9

	S	mple Number iample Matrix Sample Date Sample Name	PE126215.053 Soil 30 May 2018 N-P-C-5	PE126215.054 Soil 30 May 2018 N-P-C-200	PE126215.055 Soil 30 May 2018 E-P-A-5	PE126215.056 Soil 30 May 2018 E-P-A-200
Paramèter	Units	LOR				
Moisture Content Method: AN002 Tested: 16/6/2018						
% Moisture	%w/w	1	8.1	12.6	7,7	9.5
Arsenic, As	mg/kg	1	5	7	7	9
	mg/kg mg/kg	0.3	5 <0.3	7 <0.3	7 <0.3	9 <0.3
Cadmium, Cd						
Cadmium, Cd Chromium, Cr	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	<0.3 26	⊲0.3 28	<0.3 28	<0.3 29
Cadmium, Cd Chronium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5	<0.3 26 20	<0.3 28 21	<0.3 28 20	<0.3 29 22
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	<0.3 26 20 10	<0.3 28 21 11	<0.3 28 20 10	<0.3 29 22 12
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	<0.3 26 20 10 14	<0.3 28 21 11 15	<0.3 28 20 10 15	<0.3 29 22 12 16

Thorium, Th*	mg/kg	0.5	5.8	5.7	6.1	5.9
Uranium, U*	mg/kg	0.1	0.2	0.4	0.4	0.4

	S	nple Number ample Matrix Sample Date sample Name	PE126215.057 Soil 30 May 2018 E-P-B-5	PE126215.058 Soil 30 May 2018 E-P-B-200	PE126215.059 Soil 30 May 2018 E-P-C-5	PE126215.060 Soil 30 May 2018 E-P-C-200
Parameter Moisture Content Method: AN002 Tested: 16/6/2018	Units	LOR		_	_	
% Moisture	%w/w	1	7.0	12.8	7,5	10.7
and the second						
	mg/kg	1.1	7	7	5	7
Cadmium, Cd	mg/kg mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd			-			5
Cadmium, Cd Chromium, Cr	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	<0.3 28	<0.3 29	⊲0.3 23	<0.3 27
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg	0.3 0.5 0.5	<0.3 28 21	<0.3 29 25	⊲0.3 23 22	<0.3 27 19
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	<0.3 28 21 8	<0.3 29 25 8	<0.3 23 22 23	<0.3 27 19 11
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	<0.3 28 21 8 15	<0.3 29 25 8 16	<0.3 23 22 23 13	<0.3 27 19 11 15

Thorium, Th*	mg/kg	0.5	5.6	5.7	5.3	6.0
Uranium, U*	mg/kg	0.1	0.5	0.3	0.4	0.4

Parameter	S	nple Number ample Matrix Sample Date Sample Name LOR	PE126215.061 Soil 30 May 2018 E-P-D-5	PE126215.062 Soil 30 May 2010 E-P-D-200	PE126215.063 Soil 30 May 2018 E-P-E-5	PE126215.064 Soil 30 May 2018 E.P.E.200
Moisture Content Method: AN002 Tested: 16/6/2018						
% Moisture	%w/w	1	3,9	3.4	8,1	7.3
Arsenic, As	mg/kg	1	4	4	5	6
					1212	1.212
	mg/kg	0.3	0.3	0.6	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	19	15	24	23
Chromium, Cr Copper, Cu	mg/kg mg/kg	0.5	19 16	15 12	24 18	23 17
Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.5 0.5 1	19 16 23	15 12 17	24 18 9	23 17 9
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg	0.5	19 16	15 12	24 18	23 17
Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.5 0.5 1 0.5	19 16 23 11	15 12 17 8.7	24 18 9 14	23 17 9 14

Thorium, Th*	mg/kg	0.5	3.9	2.9	5.5	5.2
Uranium, U*	mg/kg	0.1	0.3	0.3	0.3	0.3

Parameter	s	nple Number ample Matrix Sample Date ample Name LOR	PE126215.065 Soil 30 May 2018 W-P-A-5	PE126215.066 Soil 30 May 2018 W-P-A-200	PE126215.067 Soil 30 May 2018 W-P-B-5	PE126215.068 Soil 30 May 2018 W-P-B-200
Moisture Content Method: AN002 Tested: 16/6/2018	ointa	LOIN				
% Moisture	%w/w	1	6.5	9.9	3,9	13.1
August 42	-	1-4-1		-		
	1	1 1		1		
	mg/kg mg/kg	1 0.3	3 <0.3	5 <0.3	2 <0.3	4 <0.3
Cadmium, Cd					641	
Cadmium, Cd Chromium, Cr	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg	0.3 0.5	<0.3 20	<0.3 24	⊲0.3 15	<0.3 20
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg	0.3 0.5 0.5	<0.3 20 12	<0.3 24 17	⊲0.3 15 10	<0.3 20 13
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1	<0.3 20 12 10	<0.3 24 17 9	<0.3 15 10 28	<0.3 20 13 10
Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 0.5	<0.3 20 12 10 9.9	<0.3 24 17 9 13	<0.3 15 10 28 7.6	<0.3 20 13 10 11

Thorium, Th*	mg/kg	0.5	4.1	5.5	2.6	4.3
Uranium, U*	mg/kg	0.1	0.2	0,3	0.2	0.3

	S	mple Number iample Matrix Sample Date Sample Name	PE126215,069 Soil 30 May 2018 W-P-C-5	PE126215.070 Soil 30 May 2019 W-P-C-200	PE126215.071 Soil 30 May 2018 W-P-D-5	PE126215.072 Soil 30 May 2018 W-P-D-200
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 16/6/2018						
% Moisture	%w/w	1	7.7	9,5	7,6	10.6
Total Recoverable Elements in Soil by ICPOES Method: AN3	ize resteu.	13/6/2018		1		
	izu resteu.	10/0/2015				
Arsenic, As	mg/kg	1	1	2	19	5
Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	<0.3	<0.3	18	<0.3
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.5	<0.3 22	<0.3 26	18 45	<0.3 30
Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg	1 0.3	<0.3	<0.3	18	<0.3
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	1 0.3 0.5	<0.3 22	<0.3 26	18 45	<0.3 30
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	<0.3 22 14	<0.3 26 19	18 45 38	<0.3 30 22
Total Recoverable Elements in Soil by ICPOES Method: AN3 Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1	<0.3 22 14 14	<0.3 26 19 11	18 45 38 28	<0.3 30 22 11
Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Lead, Pb Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 0.5	<0.3 22 14 14 12	<0.3 26 19 11 14	18 45 38 28 33	<0.3 30 22 11 15

Thorium, Th*	mg/kg	0.5	4.7	5.5	5.0	6.2
Uranium, U*	mg/kg	0.1	0.1	0.2	0.2	0.2

		Sample Numbe Sample Matri Sample Date Sample Name	x Soîl e 30 May 2018	PE126215.074 Soil 30 May 2018 W-P-E-200
Parameter	Units	LOR		
Moisture Content Method: AN002 Tested: 16/6	018			
% Moisture	%w/w	1	8.3	13.3

13 Arsenic, As mg/kg 1 8 Cadmium, Cd mg/kg 0.3 <0.3 <0.3 Chromium, Cr mg/kg 0.5 29 31 Copper, Cu mg/kg 0.5 24 26 Lead, Pb 1 11 9 mg/kg Nickel, Ni 0.5 15 17 mg/kg 2 58 52 Zinc, Zn mg/kg

Mercury in Soil Method: AN312 Tested: 13/6/2018

		T		1
Mercury	mg/kg	0.05	<0.05	<0.05
2022020			517.5	

Total Recoverable Metals in Soil by ICPMS Method: AN041/AN318 Tested: 21/6/2018

Thorium, Th*	mg/kg	0.5	5.6	6.3
Uranium, U*	mg/kg	0.1	0.2	0.4

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage.* Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury in Soil Method ME-(AU)-[ENV]AN312

Parameter	QC Reference	Units	LÖR	MB	DUP %RPD	LCS %Recovery	MS %Recovery	MSD %RPD
Mercury	LB146619	mg/kg	0.05	<0.05	0%	93%	94%	1%
	LB146620	mg/kg	0.05	<0.05	0%	95%	91%	NA
	LB146621	mg/kg	0.05	<0.05	0%	95%	95%	NA
	LB146729	mg/kg	0.05	<0.05	0%	95%	92%	NA
	LB146835	mg/kg	0.05		0%	100%	103%	2%

Moisture Content Method ME-(AU)-[ENV]AN002

Parameter	QC Reference	Units	LOR	DUP %RPD
% Moisture	LB146833	%w/w	1	0 - 9%
	LB146976	%w/w	1	1 - 17%

Total Recoverable Elements in Soil by ICPOES Method ME-(AU)-(ENV)AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS	MSD %RP
Sector Se	Reference		-	-		%Recovery	%Recovery	
Arsenic, As	LB146619	mg/kg	1	<1	4 - 31%	95%	101%	1%
	LB146620	mg/kg	1	<1	19 - 28%	93%	95%	NA
	LB146621	mg/kg	1	<1	3 - 40%	89%	72%	NA
	LB146729	mg/kg	1	<1	11 - 14%	93%	89%	NA
	LB146835	mg/kg	1	<1	5%	103%	98%	2%
Cadmium, Cd	LB146619	mg/kg	0.3	<0.3	0%	92%	95%	1%
	LB146620	mg/kg	0.3	<0.3	17 - 18%	86%	85%	NA
	LB146621	mg/kg	0.3	<0.3	10 - 33%	94%	74%	NA
	LB146729	mg/kg	0.3	<0.3	0 - 38%	97%	97%	NA
	LB146835	mg/kg	0.3	<0.3	0%	108%	107%	3%
Chromium, Cr	LB146619	mg/kg	0.5	<0.5	3 - 11%	88%	105%	6%
	LB146620	mg/kg	0.5	<0.5	16 - 18%	126%	102%	NA
	LB146621	mg/kg	0.5	<0.5	9 - 10%	84%	82%	NA
	LB146729	mg/kg	0.5	<0.5	3 - 9%	98%	106%	NA
	LB146835	mg/kg	0.5	<0.5	4%	74%	116%	8%
Copper, Cu	LB146619	mg/kg	0.5	<0.5	1 - 7%	79%	97%	10%
	LB146620	mg/kg	0.5	<0.5	14%	91%	95%	NA
	LB146621	mg/kg	0.5	<0.5	11 - 17%	97%	77%	NA
	LB146729	mg/kg	0.5	<0.5	3 - 9%	94%	101%	NA
	LB146835	mg/kg	0.5	<0.5	3%	105%	114%	7%
Lead, Pb	LB146619	mg/kg	1	<1	3 - 29%	95%	99%	8%
	LB146620	mg/kg	1	<1	16 - 21%	94%	118%	NA
	LB146621	mg/kg	1	<1	7 - 17%	83%	82%	NA
	LB146729	mg/kg	1	<1	3 - 35%	98%	97%	NA
	LB146835	mg/kg	1	<1	16%	107%	104%	5%
Nickel, Ni	LB146619	mg/kg	0.5	<0.5	6 - 8%	96%	117%	2%
	LB146620	mg/kg	0.5	<0.5	5 - 9%	91%	85%	NA
	LB146621	mg/kg	0.5	<0.5	15 - 17%	82%	78%	NA
	LB146729	mg/kg	0.5	<0.5	2 - 12%	105%	107%	NA
	LB146835	mg/kg	0.5	<0.5	5%	110%	111%	6%
Zinc, Zn	LB146619	mg/kg	2	2	3 - 22%	86%	120%	8%
	LB146620	mg/kg	2	<2	12 - 13%	95%	142%	NA
	LB146621	mg/kg	2	2	10 - 17%	84%	94%	NA
	LB146729	mg/kg	2	2	4 - 11%	91%	85%	NA
	LB146835	mg/kg	2	2	8%	101%	119%	9%

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN041/AN318	Determination of elements at trace level in soil digest by ICP-MS technique, in accordance with USEPA 6020A.
AN045	A portion of sample is digested with Nitric acid and Hydrogen Peroxide over time and then with Hydrochloric acid through several heating and cooling cycles. It provides a strong oxidising medium for bringing metal analytes into solution according to USEPA3050, after filtration the solution is presented for analysis on AAS or ICP.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference USEPA3050, USEPA6010C and APHA 3120 B.

FOOTNOTES

- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- LOR Limit of Reporting
- ↑↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte
- NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

source: HPMFPM630SR_20180607144500.pdf page: 1 SGS Ref: PE126215_COC

CHAIN OF CUSTODY

CLIENT: CLIENT ADDR PROJECT: PROJECT NU		CH2M OFFICE: Sydn Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera 684331	ey		(Standari PO / C		be longer for so	REMENTS :	1712418	cs) 🗆 WM	Standard TA Non Standar		TAT (List	COC SE	QUENCE	Standard	R (Cin		0	Custody Se ree ice i in novint?	OZEN IDE DIICK	s presen	upon	Yes		No No
ROJECT MA		EMAI	L:	-	FORM		-		Equis and PHONE:	Esdat	-	-	COC: OF:	1	2		4 5			Candom Sa Other comm	ample Temper pents	ature on	Receip	e	C	c
IELD LEAD:		EMAI							PHONE:					ISHED BY	1			CEIVED			RELING	UISHE	ED BY	: RE	CEIVED BY	5
OC emailed		YES											1		-											
mail Reports								_				_	DATE: 01	/06/18			DA				DATE:			DA		
Intes	to (will defaul	It to PM if no other addresses are listed):	10		-								TIME:	-			TIN	IE:			TIME:			TIM	IE:	
		SAMPLE I	DETAILS		-								Ana	alysis										Additio	nal Info	rmation
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	amma Spec (Lead210 + Idium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zh, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)															Comments on dilutions, or sar analysis, non- c	nples requir	ring specific of or lab provide
						1.00	Gan Rad	Pb, BM	Hd	1.1			1.1		1.							- 13	Plot			
		E-30-A-5 -	29/5/18			2	• 4	X															-	NOTE AL	SAMPLE	BACSEOD
	2	E-30-A-200	29/5/18			2		x					1.											NOTE - AL	CLIDES HA	
-	3	E-30-B-5	29/5/18			2	x	x				-			-		+			-		+	-	FORWARDED		DURNE - SO
	-	E-30-B-200	29/5/18			2		x									+			+			x			
	4	E-30-C-5	29/5/18			2	x	x																		
	5	E-30-C-200	29/5/18			2	x	x																		
	6	S-30-A-5	29/5/18			2		x							1											
	1	S-30-A-200	29/5/18			2		x														-	x			
	7	S-30-B-5	29/5/18			2		x										1.20								
	8	S-30-B-200	29/5/18			2		x																		
	9	S-30-C-5	29/5/18			2	x	x		-																
	10	S-30-C-200	29/5/18			2	x	x															_			
	11	S-30-D-5	29/5/18			2		x			-				-	_			12							
	12	S-30-D-200	29/5/18			2		x				-	S Pert	h Env	ironm	Intel		1 1	_							
	13	S-30-E-5	29/5/18			2	x	x				56	5 Peru				1									
-	14	S-30-E-200	29/5/18			2		x																		
	15	S-R-A-5	29/5/18			2	x	x	_																	
	16	S-R-A-200	29/5/18			2	x	x				D	E12	621	5 0	nc										
	17	S-R-B-5	29/5/18			2	x	x			-	R	Ceived	021	Jun -	-2018			_							
	18	S-R-B-200	29/5/18	-		2	-	x				110							_				_			
	19	S-R-C-5	29/5/18			2	x	x												_		_				
	20	S-R-C-200	29/5/18	-		2		×									-		-				_			
	21	S-R-D-5	29/5/18			2	x	x					1		1.11				_	_		_	_			
		S-R-D-200	29/5/18			2		x							_		-		_	_		_	_			
	23	S-R-E-5	29/5/18			2	x	x			_		-		-	_	_		_			-				
_	25	S-R-E-200	29/5/18			2		x			_			-	_		-		-	-		_	_			
	20	E-10-A-5				2	x	x				1														

28	26	E-10-A-200	29/5/18	2	x	x								
29	27	E-10-B-5	29/5/18	2	x	x								
30	28	E-10-B-200	29/5/18	2		x								
31	29	E-10-C-5	29/5/18	2	x	x								
32	30	E-10-C-200	29/5/18	2		x								
33	31	W-30-A-5	29/5/18	2		x				+ +-		++		
34	32	W-30-A-200	29/5/18	2		x						++		
35			29/5/18	2	x	x								
36	33	W-30-B-5	29/5/18									++		
37	34	W-30-B-200	29/5/18	2	x	x	 					 ++		
38	35	W-30-C-5	29/5/18	2	×	x		-						
39	.36	W-30-C-200	29/5/18	2	×	x								
40	37	W-30-D-5	29/5/18	2		×							_	
<u></u>	38	W-30-D-200		2		x			_					
41	39	W-30-E-5	29/5/18	2		x								
42	40	W-30-E-200	29/5/18	2		x	 1		_		1.1	1		
43	41	W-30-F-5	29/5/18	2		x								
44	42	W-30-F-200	29/5/18	2		x								
45	43	W-D-B-5	29/5/18	2	x	x								
46	44	W-D-B-200	29/5/18	2	x	x								
47	45	W-D-A-5	29/5/18	2	x	x							-	
48	46	W-D-A-200	29/5/18	2	x	x								
53	+7	N-P-A-5	30/5/18			x								
54	48	N-P-A-200	30/5/18		1.1	x								
55	49	N-P-B-5	30/5/18		x	x								
56	50	N-P-B-200	30/5/18		x	x								
57	51	N-P-C-5	30/5/18			x								
58	52	N-P-C-200	30/5/18			x						++		
59	53	E-P-A-5	30/5/18			x								
60	54	E-P-A-200	30/5/18			x						++	-	
61	35	E-P-B-5	30/5/18		x	x						++		
62	56	E-P-B-200	30/5/18	+	x	x				+			-	
63			30/5/18							+				
64	57	E-P-C-5	30/5/18		-	x								
65	58	E-P-C-200	30/5/18			x						+	+	
66	SA	E-P-D-5	30/5/18			x	 			+ -		+	+	
67	60	E-P-D-200	30/5/18		-	x		_		+	-			
68	61	E-P-C-5	30/5/18		-	x	-							
69	62	E-P-C-200			1	x								
1	63	W-P-A-5	30/5/18			x								
70	64	W-P-A-200	30/5/18			x								
71	65	W-P-B-5	30/5/18		x	x								

 Instructions:		11-5-	0-10-1	96	32	74							2	
72	W-P-E-200	30/5/18				x								
Ħ	W-P-E-5	30/5/18			_	x								
70	W-P-D-200	30/5/18				x					- 11	-		
69	W-P-D-5	30/5/18				x								
68	W-P-C-200	30/5/18			x	x								
67	W-P-C-5	30/5/18			x	x								
66	W-P-B-200	30/5/18			x	x								

AUSTRALIA-ENVIRONMENTAL-PERTH AIRPORT- PROFORMA -QU101

REGISTRATION DETAILS

Bottle Map Sample Numbers:	Plastic	Plastic	Plastic	Amber	Plastic	Plastic	Amber	Amber	100mL Amber Green	Glass Vial	Glass Vial	Plastic	Plastic	125mL Plastic Brown	Plastic		1.122	Bottles Supplied By	Bag/ Other	Job Number: PE (262 (5 # of Eskies: 2
1-74		•														1				Esky Numbers:
							 													IB / ICE Non Temp:
											-			_						Temp:
																				Tray Numbers:
											+			_	-					Q-004 Q-005 Q-006 Q-007
Registration con	nment	52									A	ction	Taken:							

Reale, Antonino	(Perth)
From: Sent: To:	Thursday, 7 June 2018 11:49 AM
Cc: Subject: Attachments:	RE: 684331 - COC 684331 - Woomera Soil Sampling SGS COC May-June 2018.xlsx

Hello,

Please be advised;

- can confirm that no organics are required.
- For the samples that have hold and analysis ticked, the samples that are to be on hold are for radiological analysis could you please analyse for metals for all ticked samples.
- continue to book under and invoice CH2M for this analysis.

Kind Regards,

Environment, Health & Safety Key Account Manager

Phone: +61 (0)8 9373 3650

SGS HAS CAPABILITY TO TEST PLASTIC PARTICLES IN BOTTLED DRINKING WATER Send an inquiry to ehs@sgs.com

From:

Sent: Wednesday, 6 June 2018 8:25 PM

To: Cc:

Appendix E - Laboratory Results for Radiological Analysis

Document No. 706815_01_Rev01 - Revised Draft for Client Review

Contact		Manager	Adam Atkinson
Client	CH2M HILL AUSTRALIA PTY LTD	Laboratory	SGS Melbourne EH&S
Address	PO BOX 632 NORTH SYDNEY NSW 2060	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	61 2 99500200	Telephone	+61395743200
Facsimile	61 2 99500601	Facsimile	+61395743399
Email	ch2m.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	115 soil samples (48 for NORM analysis)	SGS Reference	ME305752 R0
Order Number	1712418WM	Date Received	14/2/2018
Samples	115	Date Reported	30/4/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(22793).

SIGNATORIES -

SShojookh.

Sara Shoyookhi Physicist

S. Ritthoustn

Stephen Rutkowski Senior Health Physicist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety Bldg

Bldg 10, 585 Blackburn Rd

Notting Hill VIC 3168

t +61 3 9574 3200 Australia f +61 3 9574 3399

www.sgs com.au

ANALYTICAL RESULTS

ME305752 R0

Radionuclides by Gamma Ray Spectrometry in solids [ARS-SOP-AS303/AS406] Tested: 17/4/2018

			WG-0-A-10	WG-0-A-200	WG-0-B-10	WG-0-C-10	WG-0-C-200
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 6/2/2018	- 6/2/2018	- 6/2/2018	- 6/2/2018	- 6/2/2018
PARAMETER	UOM	LOR	ME305752.001	ME305752.002	ME305752.003	ME305752.004	ME305752.005
Radium-226	Bq/kg		8.7 ±1.0	7.1 ±1.0	7.7 ±0.8	8.4 ±1.1	9.6 ±1.2
Lead-210	Bq/kg		13.0 ±5.6	13.2 ±3.7	10.5 ±2.7	12.4 ±2.5	17.9 ±4.3
Radium-228	Bq/kg		10.2 ±1.2	10.4 ±1.7	11.6 ±1.4	11.0 ±1.9	11.7 ±2.1
Thorium-228	Bq/kg		10.8 ±1.3	11.0 ±1.4	10.8 ±1.2	11.9 ±1.5	9.5 ±1.3

And the second second			WG-0-E-10	WG-0-E-200	WG-1-B-10	WG-1-B-200	WG-1-D-10
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 6/2/2018 ME305752.008	- 6/2/2018 ME305752.009	- E/2/2018 ME305752.014	- 6/2/2018 ME305752.015	- 6/2/2016 ME305752.020
Radium-226	Bq/kg	14.1	7.1 ±1.0	8.1 ±1.0	8.2 ±1.0	7.1 ±0.7	7.6 ±1.0
Lead-210	Bq/kg	-	8.8 ±3.3	9.2 ±7.0	7.5 ±4.4	7.7 ±2.4	19.8 ±4.4
Radium-228	Bq/kg		9.7 ±1.7	11.9 ±1.7	11.5 ±1.6	9.9 ±1.2	13.2 ±2.0
Thorium-228	Bq/kg	- 1 - E	10.7 ±1.4	11.0 ±1.4	12.6 ±1.4	10.2 ±1.2	11.6 ±1.5

			WG-1-D-200	WG-2-A-10	WG-2-A-200	WG-2-C-10	WG-2-C-200
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	NOM LOR		6/2/2018 ME305752.026	- 6/2/2018 ME305752.027	- 6/2/2018 ME305752.032	- 6/2/2018 ME305752.033
Radium-226	Bq/kg	-	5.9 ±0.9	8.5 ±1.0	7.4 ±1.0	7.8 ±0.9	6.1 ±0.8
Lead-210	Bq/kg	-4-2	15.3 ±3.6	9.5 ±3.0	9.7 ±3.2	<22.0	<18.0
Radium-228	Bq/kg	-	8.6 ±1.6	13.3 ±1.8	12.7 ±1.9	11.9 ±1.6	10.6 ±1.4
Thorium-228	Bq/kg	- e -	9.1 ±1.2	12.2 ±1.4	11.9 ±1.6	12.7 ±1.6	9.2 ±1.1

			WG-2-E-10	WG-2-E-200	W-0-A-5	W-0-A-200	W-10-A-200
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 6/2/2018 ME305752.038	- 6/2/2018 ME305752.039	- 7/2/2018 ME305752.047	- 7/2/2018 ME305752.048	- 7/2/2018 ME305752.051
Radium-226	Bq/kg	-	9.3 ±1.2	7.2 ±0.8	8.2 ±0.9	6.6 ±0.7	6.6 ±0.9
Lead-210	Bq/kg		7.4 ±3.4	7.9 ±2.6	7.9 ±2.6	4.6 ±2.2	<11.0
Radium-228	Bq/kg		11.1 ±2.0	10.4 ±1.2	13.1 ±1.5	9.3 ±1.2	10.9 ±1.7
Thorium-228	Bq/kg	9.1	12.2 ±1.6	10.4 ±1.1	11.6 ±1.3	9.8 ±1.1	10.5 ±1.4

			WG-3-B-10	WG-3-B-200	WG-3-D-10	WG-3-D-200	\$-0-A-5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 7/2/2018 ME305752.052	- 7/2/2018 ME305752.053	- 7/2/2018 ME305752.058	- 7/2/2018 ME305752.059	7/2/2018 ME305752.061
Radium-226	Bq/kg	1.	8.4 ±1.2	6.1 ±0.7	9.8 ±1.3	5.5 ±0.8	15.2 ±1.6
Lead-210	Bq/kg		10.4 ±3.9	10.8 ±2.6	12.0 ±3.7	<25.0	11.4 ±3.4
Radium-228	Bq/kg		10.5 ±2.0	8.3 ±1.1	9.9 ±1.9	8.6 ±1.4	12.4 ±1.9
Thorium-228	Bq/kg	9	12.7 ±1.7	8.6 ±1.0	11.2 ±1.5	8.4 ±1.1	10.8 ±1.3

			S-0-A-200	S-10-A-5	S-10-A-200	S-10-C-5	S-10-C-200
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 7/2/2018 ME305752.062	- 7/2/2018 ME305752.063	- 7/2/2018 ME305752.064	- 7/2/2018 ME305752.067	- 7/2/2018 ME305752.068
Radium-226	Bq/kg		20.5 ±1.9	17.7 ±2.0	17.5 ±1.7	14.9 ±1.5	21.2 ±1.8
Lead-210	Bq/kg		<28.0	32.3 ±5.8	21.9 ±9.2	14.9 ±5.5	20.6 ±4.4
Radium-228	Bq/kg	2.1	28.9 ±3.0	22.3 ±2.8	25.5 ±2.7	10.8 ±1.5	29.9 ±2.7
Thorium-228	Bq/kg	1.4	32.1 ±3.2	23.8 ±2.9	25.1 ±2.9	13.1 ±1.4	27.0 ±2.5

ANALYTICAL RESULTS

ME305752 R0

Radionuclides by Gamma Ray Spectrometry in solids [ARS-SOP-AS303/AS406] Tested: 17/4/2018 (continued)

			E-0-A-5	E-0-A-200	E-0-C-5	E-0-C-200	N-0-A-5
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 7/2/2018	- 7/2/2018	- 7/2/2018	- 7/2/2018	7/2/2018
PARAMETER	UOM	LOR	ME305752.071	ME305752.072	ME305752.075	ME305752.076	ME305752.077
Radium-226	Bq/kg		14.7 ±1.3	22.7 ±2.0	20.5 ±2.0	13.8 ±1.6	12.2 ±1.5
Lead-210	Bq/kg	-	11.3 ±2.9	11.8 ±4.0	32.1 ±10.5	26.6 ±5.3	13.0 ±3.9
Radium-228	Bq/kg	-	10.8 ±1.4	28.7 ±2.8	15.3 ±2.0	13.8 ±2.1	18.6 ±2.5
Thorium-228	Bq/kg		9.0 ±1.1	32.0 ±3.4	15.6 ±1.9	13.3 ±1.7	17.7 ±2.1

A Real Property lies and the second			N-0-A-200	N-10-B-5	N-10-B-200	N-10-D-5	W-10-G-5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 7/2/2018 ME305752.078	- 7/2/2018 ME305752.083	- 7/2/2018 ME305752.084	- 7/2/2018 ME305752.087	- 6/2/2018 ME305752.095
Radium-226	Bq/kg	14.15	12.9 ±1.5	7.0 ±0.9	9.5 ±1.1	9.2 ±1.1	7.4 ±1.0
Lead-210	Bq/kg	-	12.5 ±3.9	<22.0	12.7 ±5.8	7.7 ±2.9	7.9 ±3.3
Radium-228	Bq/kg		20.7 ±2.6	11.4 ±1.6	12.0 ±1.6	16.0 ±2.1	8.1 ±1.7
Thorium-228	Bq/kg	5.1.	19.4 ±2.3	12.2 ±1.5	14.0 ±1.5	13.5 ±1.5	10.2 ±1.3

			W-10-G-200	W-0-C-5	W-0-C-200	W-10-E-5	W-10-E-200
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	NOW	LOR	6/2/2018 ME305752.096	6/2/2018 ME305752.101	- 6/2/2018 ME305752.102	- 6/2/2018 ME305752.103	6/2/2018 ME305752.104
Radium-226	Bq/kg	-	5.7 ±0.9	8.2 ±1.1	8.2 ±1.1	6.8 ±0.7	7.2 ±1.0
Lead-210	Bq/kg		10.0 ±3.3	13.3 ±3.8	8.2 ±3.2	7.4 ±2.3	<8.7
Radium-228	Bq/kg		9.5 ±1.7	12.5 ±2.0	9.9 ±1.7	9.2 ±1.2	10.5 ±1.7
Thorium-228	Bq/kg	-	7.4 ±1.1	12.0 ±1.6	10.9 ±1.4	9.1 ±1.1	8.7 ±1.2

		N-30-B-5	N-30-B-200	W-10-A-5
UOM	LOR	SOIL 6/2/2018 ME305752.109	SOIL - 6/2/2018 ME305752.110	SOIL - 7/2/2018 ME305752.115
Bq/kg	-	8.0 ±0.8	6.9 ±1.0	6.6 ±1.0
Bq/kg	1	11.4 ±2.8	15.1 ±3.8	8.2 ±3.1
Bq/kg		10.7 ±1.3	9.1 ±1.7	10.0 ±1.8
Bq/kg		11.3 ±1.3	10.4 ±1.4	9.8 ±1.4
	Bq/kg Bq/kg Bq/kg	Bq/kg - Bq/kg - Bq/kg -	SOIL 6/2/2018 ME305752.109 Bq/kg - 8.0 ±0.8 Bq/kg - 11.4 ±2.8 Bq/kg - 10.7 ±1.3	SOIL SOIL SOIL 6/2/2018 6/2/2018 6/2/2018 WOM LOR ME305752.109 ME305752.110 Bg/kg - 8.0 ±0.8 6.9 ±1.0 Bg/kg - 11.4 ±2.8 15.1 ±3.8 Bg/kg - 10.7 ±1.3 9.1 ±1.7

ME305752 R0

METHOD ______ METHODOLOGY SUMMARY ____

ARS-SOP-AS303/AS406 Analysis of radionuclides in solid samples by high resolution gamma ray spectrometry after preparation to meet standard calibrated geometries. Preparation involves drying, crushing and sieving, and setting in an epoxy resin where necessary. In some cases, preparation may involve merely transferring the solid directly to a standard geometry container such as a Marinelli beaker.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	†↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

source: scan02162018163814.pdf page: 1 SGS Ref: ME305752_COC DE123413 Lev Ser This Job 16/02/18(J.) ME305752 FOR LABORATORY USE ONLY (Circle) Cuntody Seal Interty Van No No David Brenna the Job nomber CHAIN OF CUSTODY CLIENT: CH2M OFFICE: Sydney Standard TAT (List due date): CLIENT ADDRESS: Level 7, 9 Help St Chatswood NSW 2057 (Standard TAT may be longer for some tests e.g. Ultra Trace Organica) PO / QUOTE NO.: 1712418W/ Non Standard or urgent TAT (List due date): PROJECT: CSIRO Woomera NIA 1712418WM COC SEQUENCE NUMBER (Circle) Random Sample Temperature on Receipt No NA PROJECT NUMBER: 684331 FORMAT: Equis and Esdat 3 4 5 6 7 3 4 5 (6) 7 COC: 6 'C PROJECT MANAGER: EMAIL: PHONE: OF: Other comments. FIELD LEAD: EMAIL PHONE: RELINQUISHED BY RECEIVED BY: RELINQUISHED BY: RECEIVED BY: COC emailed 7: DATE: GIZINY Email Reports to: michael.leviton@ch2m.com, Philippa.Scotl@ch2m.com DATE DATE: DATE: Email Invoice to (will default to PM if no other addresses are listed): michael leviton@ch2m.com TIME: TIME: TIME: TIME: Notes SAMPLE DETAILS Analysis Additional Information Zy analytes) FOTAL CONTAINERS Cd, Cr, Cu, I Uranium an SOLID ead210 -Comments on likely contaminant levels, PAH (16 Field ID SAMPLE ID MATRIX: : Notes Date Time dilutions, or samples requiring specific QC 3 8 Metals (As, C Pb, Zn, Hg) + U Thorium analysis, non-standarad or lab provided Spec containers etc. pue adium) T. pioi 6/2/13 5 C. A.IO 1 1 20 -17 · A 7 535 34 3 5-10 V X 41 3 670 6 7 **SGS Melbourne EHS** 2 9 10 ME305752 COC 11 7 ct 12 X Received: 14-Feb-2018 4:4 13 1 ily 52 (4) X 16 64298 17 100 18 Sin 19 X *X*. 20 11 22 X 11 **Special Instructions:** Recired by Sarashoutaleh peeind 22 samples 14/102/18 (5-1,

source: scan02162018163814.pdf page: 2 SGS Ref: ME305752_COC

IENT: JENT ADD ROJECT: ROJECT NU	IMBER:	CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067 CSIRC Woomera 684331		TURNAROUND REQUIREMENTS: Istandard TAT (List due date): Standard TAT (Standard TAT may be longer for some tress og Uzra Trace Organice) In Non Standard or urgent TAT (List due date): Standard TAT PO / QUOTE NO.: 1712418WM COC SEQUENCE NUMBED (Circle) COC SEQUENCE NUMBED (Circle) FORMAT: Equis and Esdat COC: 1 2 3 4 5						(Circle)	FOR LABORATORY USE ONLY (Circle) Custody Seel Intect? Yes No research rozen de proces present upon Yes No Random Sampla Temperatura on Recept 'C									
ELD LEAD:		EMAIL: EMAIL:							PHONE: PHONE:			OF:	1	2 (3) 2 3	4 5 6	7 Other co	mmenta		1.	
C emailed		mighael in tan 2 ch2m com, Philippi Smith@ch2m					PHONE: RELINQUISHED BY: RECEIVED BY: RECEIVE							RELINQU	ISHED	BY:	RECEIVED BY:			
		It to PM if no other addresses are listed): michael.lev	riton@ch2m.co	n								DATE: TIME:			DATE:		DATE:			DATE:
tes												TTANC.			TIME;		TIME:			TIME:
		SAMPLE DET	AILS	-				-				Ana	alysis						Add	itional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, N), Pb, Zn, Hg) + Uranium and Thorium	PH and PAH (15 analytes)									P	dilutions, d analysis,	ts on likely contaminant lev r samples requiring specific non-standarad or lab provid containers etc.
5	V	KIOLOS" V	17.7	1	5		() ct	0 d F	F									Hold	and a second sec	
16		10-10-0-700 V	116		1	-												X		
17							7 X	12"		_									40	
(8	Y	W-U-A-D V	1		$\left \cdot \right $		2	X		_										
0		W-0. A. LOD V	-			-1	× X	1-2-											1	
9	N	W-10-0-2 M	1			_			49 50			-								
1		2-10-15-200 0	1/-				× 1	X												
51	- V	10 W-10 A. 200	Y_			5	X	1-3-												
2	- 4	Wit-5-6-10	1/-			and the second second	21	X		_			1 1	1 1						
3	Y	Juli - 5-15-200	-			\$	3X	X			SGS N	lelbour	ne EHS	5						
345678		X = 3 - B - 400	Y			-												x	154	
5_		Aug - 3-6-10.	-															X	55	
0		1-2-3 C-2001				_								NI I NI I I NI				X	56	and the second of the second
t.		wips C -4100'				_				-	ME	3057	52	COC				X	57	
3	1	01-0-E-July	1			58		X		1	Recei	ved: 14	-Feb	-2018						
9	1	W4-3-D-200	K			50	1X	\star										an a		and a second
0	-	1001-3-D-1001	1-															X	60	
31	V	3-6-A-51				61	X	X										1		
\$2	-	5.G.A.200	Y			62	X	X										1	1	
345	1	5-10. A-5 . 1	Y			63	X	X										1		
4		STOLATON .	VI	Sec. 1.		61	N	X_{-}		a								1		
5	V	Saug-S-W	NºC					X	15									1-		
6	1	5-16-3-200.	Y		1			X	66								_			
							+ L	12										-7		and a state of the
cial Ins	tructions:	reciped 22						in the second se										1		

source: scan02162018163814.pdf page: 3 SGS Ref: ME305752_COC

CLIENT: CLIENT ADDF PROJECT: PROJECT NU	MBER:	CH2M OFFICE: Sydney Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera 684331			[Standard TAT may be longer for some firsts e.g. Ultra Trace Organics) [I] PO / QUOTE NO.: 1712418WM FORMAT; Equils and Esdat					Slandard TAT (List i Non Standard or urg	Standard TAT (List due date): Standard TAT Non Standard or urgent TAT (List due date): COC SEQUENCE NUMBER COC: 1 2 3 4					RATORY USE O al Intact7 izen ice obcks pro mole Temperatur	Ment une	Yet No P
ROJECT MA		EMAIL: EMAIL:	and the antisometry and the	***		PHONE: COC: 1 2 3 4 5 6 7 PHONE: OF: 1 2 3 4 5 6 7 PHONE: OF: 1 2 3 4 5 6 7 PHONE: RELINQUISHED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY:								Other comm				
COC emailed mail Reports		micland level on @ ch2m cont, Philippe Scott@ 12m	nm			COMMUNICATION OF THE						oneb bi				RELINQUI	SHED B	Y: RECEIVED BY:
mail Invoice		ult to PM if no other addresses are listed): michael lev	iton@ch2m.co	m							DATE: TIME:			DATE: TIME:		DATE: TIME:		DATE: TIME:
lotes	1 [SAMPLE DET	AILS						1		٨٥٥	lysis				-		
			1	1	1			1.1	171-			19515		1 1 1	TT	1 1	I	Additional Information
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	PH and PAH (16 analytes)				*				G	Comments on likely contaminant levels dilutions, or samples requiring specific Q analysis, non-standarad or lab provideo containers etc.
29		1-3-E-700 V	1-1710		15		ΰœ	4 2 00	4		-						Hold	30
90		14-3-E-COU V	11	1	- pin												X	89
90	c	Landa Land	4		1			1V	Var		-						X	90
NOT		Lowreste 02 V						X	X		-							
Annia	d	LOUTONEO3 V	1					X	XB									
een	L	KUMDSTE CY V	1				-	X	Xa			-						
91	1	10-10-11-5 V						al X	99									
92.	V	W-10-H-200 V						92	48									
93	1	10.0.55 -	1					93×	Pro-		S	GS M	elbourne Et	IS				
au	4	W.UE. 200 V	1	1				94 X	1988		ŤĨ							
94	1	1010 G-5 -	-			9	15人	X										
96	-	W-10 4-200 V	1.		-	d		X										
97	V	10-0-5.			1			Xg	2			ME	305752	COC				
98	V	- 015- A 0- W.	-					X	92		F	Receiv	ed: 14-Fel	0-2018				
99		10-10-F-5 -	1					V	44									
100	1	- W-10 F-200 -	1					X	100									www.c.au
101	V	K-C-C-5 -	1.			101	X	X										
102	Y		1			10	v	X										and a second
103 1	R	10-10 ES : W	4		11	10	AX	X										
103 1	V	1. 005-3 01-W	1.		1	10	41	X										was and a second and a second s
105	V	Ju-10 8.5 "	1					X	07									
105	0	W-0.8-700 -	11		6			X	00								+	
		anna an		Lienynaminga			i.	12.0								1	2	
pecial Inst	tructions	• • • • • • • • • • • • • • • • • • •				L		Thur	18 (5	i				<u>+ </u>			- Simon	

source: scan02162018163914.pdf page: 1 SGS Ref: ME305752_COC David Brenna DE123413 v or thuis Job 16/02/18(U.) ME305752 por Laboratory Use ONLY (Circle) Curstody See Intact? Yes No d the Jobnomber CHAIN OF CUSTODY CLIENT: CH2M OFFICE: Sydney TURNARC CLIENT ADDRESS: Level 7, 9 Help St Chatswood NSW 2067 D Non Standard or urgent TAT (List due date): Standard TAT may be longer for some texts e.g. Ultra Trace Organica) O / QUOTE NO.: 1712418WM PROJECT: NA **CSIRO** Woomera COC SEQUENCE NUMBER (Circle) Random Sample Temperature on Receipt. NA PROJECT MUMBER: 684331 FORMAT: Yes No Equis and Esdat 3 4 5 6 7 3 4 5 6 7 COC: 11 10 PROJECT MANAGER: EMAIL: PHONE: OF: 2 Other comments FIELD LEAD: EMAIL: PHONE: RELINQUISHED BY RECEIVED BY: RELINQUISHED BY: RECEIVED BY: COC emailed ?: DATE: GIZINY Email Reports to: michael leviton@ch2m.com, Philippa Scott@ch2m.com DATE: DATE: DATE: Email Involce to (will default to PM if no other addresses are listed): michael leviton@ch2m.com TIME TIME: TIME: TIME: Notes SAMPLE DETAILS Analysis Additional Information . Cd, Cr, Cu, Ni, Uranium and analytes) TOTAL CONTAINERS (Lead210 9 SOL Comments on likely contaminant levels, PAH (16 : Field ID Notes SAMPLE ID Date MATRIX: dilutions, or samples requiring specific QC Time ,8 Metals (As, C Pb, Zn, Hg) + L Thorium analysis, non-standarad or lab provided Spec containers etc. pue Hd. (mnipi and a Hold 6/2/13 1 3-10 .1 . 2 2 A . Y . A 2 2361 3 3 V 5-10 4 1 V 3 1 V. 6 7 × **SGS Melbourne EHS** 8 an - Car 10 103 ME305752 COC 11 1d 12 V Received: 14-Feb-2018 14:22 13 1 iM 5) X Ni. 16 (water) 17 110 18 Sin 19 N. 20 11 22 Y 11 Special Instructions: Recired by Sarashoutaleh Recived 22 Samples 14/102/18 (5-1,

CLIENT: CLIENT ADDR PROJECT: PROJECT NU	IESS: MBER:	F CUSTODY CH2M OFFICE: Syd Level 7, 9 Help St Chatswood NSW 2067 CSERO Woomera 684331				(Nintaré	AROUND REQU Tol cuy be located JOTE ND.: VT:		a Tias <u>e Organics)</u> 17124 18WM Equis and Esdat	 Standard TAT (List Non Standard er urg 	due date): Starc ent TAT (List due date): COC SEQUENCE NU COC: 1 (2, 3)	1000 1A 106ER (Circle) 4 5 6 7	FOR LABORATORY USE ONLY (Dustody Seal splat? - ros av infozon ice onces precise un enoir? Randors Cample Temperature to Re	yes No No Ma Yes No No
PROJECT MA	NAGER:	EM,							PHONE: PHONE:		OF: 1 2 3 RELINGUISHED BY:	4 5 6 7 RECEIVED BY:		
COC emailed Email Reports		mitenticydarifedCarcova, Parista isedi	S. Him. math											
Email Involce		ault to PM if no other addresses are listed); mid									DATE: TIME	DATE: TIME	DATE: TIME	DATE: TIME:
Notes		SAMPLE	DETAIL	e		e differi i s					• • · · ·		······	
		OAMFLE	DEIAIL	<u>, 11, 1, 0,</u>	<u>tette e Cle</u>	1	1981. 	1	1	T	Analysis			Additional Information
Field ID	Notes	SAMPLE ID		Date	Timo	MATRIX: SOLID	TOTAL CONTAINERS Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	TPH and PAH (16 analytes)					Commonts on likely contaminant levels, dilutions, or samptes requiring specific OC analysis, non-standarad or tab provided containers etc.
23		Adda to the state of the	BOX	7 3.4		5								23
24			$\overline{\mathbf{v}}$		-	 			<u> </u>					24
25	/		$\overline{\mathbf{v}}$						1				· · · · ·	25
26	1	$\frac{1}{1} \frac{1}{1} \frac{1}$					16 ×							
27		<u>k strat</u>	- 	1			27	+		<u> </u>				
28											SGS Melbourne EHS		•	*
		the second se	- V 											28
29	*****					• • • • • •							2	
30		<u> La cara a c</u>	<u> </u>	· · · ·					<u> </u>					30
31								+ .			ME305752 CC			51
32		1 Statistic States					32	X			Received: 14 - Feb - 2	018 -		
33		Kast Land		-		÷.	33	<u>}</u>	L			_		
34		part	**************************************			-		<u> </u>					×	34
35	\sim	A Cart A - Straight	5 m m m m m m m m m m m m m m m m m m	*******		;								35
36	lor.	August and the state of the state of the	1											36
37	-	C		-										37
34 35 36 37 38		Algender - der 🔁 190	1				22 ×	X						
39	~	1 Adam 12 - 18 - 20	C				391	,						
40	Ø	and a second	1	Ser. Carrie			anterarrian (ren dorrer i abiani azanan) art							40
41		مریکسی میں میں میں میں میں میں میں میں میں می	• • • • •					1						
	<u> </u>			15										41 41
42 43	Ň		- Th	•				1						
44	Ś			- w	******									
•••••	••				D THE REAL	. 1		Ke						44
ipecial Inst		* \$;						· · · · · · · · · · · · · · · · · · ·	lł	<u> </u>			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
in the second se	· · ·	Feein	rd	12	\mathcal{V}		njNe	is 1	4/02/4	() .)				

source: scan02162018163914.pdf page: 3 SGS Ref: ME305752_COC

	N O	F CUSTODY										\mathcal{I}				3		
CLIENT: CLIENT ADDR	ESS:	CH2M OFFICE: Sydney Level 7, 5 Help St Chatswood NSW 2067					REMENTS :			d TAT (List d			Standard TA	/		ORATORY USE	ONLY (CI	șio)
PROJECT:	~	CSIRO Woometa		PO	QUOT	ENO.:	COLORISE OF LAT	1712418W?A		indard or urge		COC SEQUENCE		(Circle)	Custody S	eal Intact? Iozon ice Groas (អំបន់កំពុង ហេកូក	Yes No Nu Yes No Nu
PROJECT MA		684331 EMAIL:		150	RMAT:			Equis and Esda PHONE:			OF;	1 2	(3) 4 3 4	5 (6) 5 (6)	Random S	lample Temperat	ura on Rece	ept.
FIELD LEAD: COC emailed	····	EMAIL:						PHONE;				ISHED BY:	J .4	RECEIVED BY		RELING	JISHED E	IRECEIVED BY:
Email Reports	to:	metnetteeton@ch2m.com, Philippo Scoll2ch2m.com									DATE:			DATE:		DATE:		DĂTE:
Email Invoice Notes	to (vill de	fault to PM if no other addresses are listed): michael.levito	n@ch2m.com								TIME:	·····		TIME:		TIME:		TIME:
10015		SAMPLE DETA	LS .				<u> </u>				Ana	lysis	<u></u>					Additional Information
	·•.						3	-	T								. <u> </u>	, additional interination
Field ID	Notos	SAMPLE ID	Dalië T	ime ime	TOTAL CONTAINERS	Gอกาเกล Spec.(Lead210 + Radium)	8 Metais (As, Ce, Cr, Cu, Ni, Pb, Zn, Hg) + Uranium and Thorium	PH and PAH (16 analytes)									ld	Comments en likely contaminant levels, ditutions, or samples requiring specific QC añalysis, non-standarad or tab provided containers etc.
45	V	X-10.0.51 V	7(7	<u> </u>		ወደ	<u></u>	<u> </u>									Нон	
46		10-10-0700 V	 ;	- i					1								$\frac{1}{2}$	45 48
47-48		Va-OLA-S			4	7 🗙	λ										-	
48	. V	Chino. A. 700 /	:		ι	18 X	X				-							
49	N	W-10-R-5 -					X	49										
49 50 57 52 53 54 55 56 57 58 58 58 58 59		102-10-R 200 V					\sum	50										
57	V	100 W-10 - A - 200 V	<u></u>		5	$\mathbf{L} \mathbf{X}$	$ \lambda $											
52	L	140-3-9-10-V				2 ×	X											
6.2		1 10 - 200 ·			·	<u>sx</u>	$ \times $			SGS N	Aelbour	ne EHS						
54		Kit-3-0-400 V				· · · · · · · · · · · · · · · · · · ·								·			$ \chi $	54
55	·····	Jan - 3-6-16			÷		<u> </u>										X	55
50		1	~~						-				0				$\downarrow \downarrow$	56
ST		Luce & C -400 Y				$\overline{\mathbf{x}}$,.,		ME	3057	52 CO					$- \times$	57
50	V	1.4-3-D-10 1.4-3-D-200			5	in manufacture and the second s	$\overline{\mathbf{v}}$			Rece	ived: 14	- Feb - 201	18 V		-			
60		Nia-3 D NOC -			-2					· · · · · · · · · · · · · · · · · · ·			<u> </u>	·····				
61	 \				61	N	$\frac{1}{\lambda}$		-								X	60
62		5 0 A . 7.00			6	$\frac{\lambda}{\lambda}$	$\frac{1}{2}$				-							
63			/		6	1.	N I							<u> </u>				A
64		5-10-A-3-0			i	ч	X		-					<u> </u>				
65	v	95-0 8-55 W	port 1		~		$\overline{\mathbf{v}}$	15	<u> </u>						+ + -			
63 64 65 66	L.	5-1-6-2004						60			1		·					
			Sector 1945			2 L	15								++		-7	
Special Inst	truction												k	-t		<u>_</u>	<u> </u>	
		Recived 22	Sau	pl	is	1	41:2	118	(s_{i}))								

×*.

source: scan02162018163914.pdf page: 4 SGS Ref: ME305752_COC

CLIENT:		CH2M OFFICE: Sydney			-1	OUND REQUI			ard TAT (List du		r /	FOR LABORATO	DRY USE ONLY LCIN	ole}
CLIENT ADDE PROJECT:		Level 7, 9 Help St Chatswood NSW 2067 CSIRO Woomera			ipo i quo	may to larger for TE NO.:	tans lesses of the	1712418WM	andard or urger	TAT (List due date): COC SEQUENCE NUMBER	(Circle)	Sustarty Southers		fran Bro Bro
PROJECT NU PROJECT MA		684331 EMAIL:			FORMAT			Equis and Esdat PHONE:		COC: 1 2 3 4	5 6		Temperature on Recei	
FIELD LEAD:		EMAL			·····			PHONE:		OF: 1 2 3 4 RELINQUISHED BY:	5 6 RECEIVED BY:	7 Othe: comments	ELINQUISHED B	Y: RECEIVED BY:
COC emailed Email Reports		neurol warm gehilter view. Failpow Scoliff.col erw	101				·	······································		DATE.	DATE	I		
Email Invoice		ault to PM if no other addresses are listed): michael levit		1				······································	·		TIME:		ATE: ME:	DATE: TIME:
Notes		SAMPLE DETA	ILS			1	*****			Analysis				
			1	·		-		T						Additional Information
Field ID	Notes:	SAMPLE ID	Date.	Time	MATRIX: SOLID TOTAL CONTAINERS	Gamma Spec (Lead210 + Radium)	6 Metafs (As. Cd. Cr. Cu. Ni, Pb, Zn. Hg) + צרמונית מומ Thofium	1PH and PAH (16 analytes)					loid	Comments on likely contaminant levels, ditulions, or samples requiring specific QC analysis, non-standard on tab provided containers etc.
67		B. W.C. S .	3			17 X	χ							
68		Connect and V.				°×	X							
69	V	STORE Y	<u>A</u>		:		X	69						\$**
70	-		1				X	72						· · · · · · · · · · · · · · · · · · ·
71	V		572			71 >	5							
72	ų	A BACALLOV	Ì			728	X.							
73		3					X	73		SGS Melbourne EHS	;	·		
7-4					ł		*	74						
75	e e	12				4 X	X							
76						16 >	N.							
77		X Contraction A Loss V	0 4		·	7þ 🔀	X			ME305752 C				
78	V					78 📐	X			Received: 14–Feb-	-2018			
79								74			1	1 I		########\$5136
80		- Marine Marine and					, Y	50						
61 82	N	<u></u>						<u>&/</u>						د. این مرکز این
82		Proventing the second second			-		<u> </u>	82						
83						33 X	X							restebra
84		hand a sing the second	6		1	14 🔨	X							
85 86 87 87		Kaland - 12 V						85						
86		Addient of the stand of the					<u>``</u>	86						······································
37		Paris Charles V	I. Sand		t	1 ×								
83	/	A - 10 - 7 - 10			w.		1 1	83						
*:						1								a an
Special Ins													i, <u>J</u> , j.	
ë i s	Re	eechd 2 San	ple.	<u>َ</u>	4	1/02,	13 ((s.))		Č.				

source: scan02162018163914.pdf page: 5 SGS Ref: ME305752_COC

ENT: ENT ADOR OJECT: OJECT NUN DJECT MAN LD LEAD;	ABER:	CH2M OFFICE: Level 7, 9 Help St Chatswood Ni CSIRO Woomera 684331					ROUND REQU (AT may be langer for JOTE NO.; T;		17124 10Wi 17124 10Wi Eguls and E PHONE: PHONE:	I Non S	ard TAT (List di landard or urgar	COC: OF:	duu dato): COC-SE 1 1 ISHED BY	QUENCE NUMBER	R (Circle 4 52 4 5	6 7	Guitody St Fleence in receiver	ozor(ice po: sinclo Tomp nents;	eraturo or	r upon Receipt	Yai Nu Yii Nu Yii Nu C
C emailed 1 all Reports		66dardleviunZah2m.com, Pidu							Prione.		· · · · ·		ISHED BT			IVED BY;				ED AY:	RECEIVED BY:
ail Involce I		ult to PM if no other addresses are list		@ch2m.com	··········		•					DATE: TIME:			DATE TIME:			DATE TIME:			DATE: TIME:
05 	[SAN	MPLE DETAIL	is and								Ăna	Iysis								Additional Information
"jetd KD	Notes	SAMPLE ID		Date	Time	MATRIX: SOLID	TOTAL CONTAINERS Gamma Spec (Lead210 + Radium)	8 Metals (As, Cd, Cr, Cu, Nî, Pb, Zn, Hg) + Uranlum and Thorium	19H and PAH (15 analytes)											dili a	ommants on likely contaminant lev allons, or samplos requiring specific nalysis, non-standarad or inb provio containers etc.
70			کا قیس	1-11.5			20 C	N S A	E I		<u> </u>								· 	PioH	G
39		<u>Ya-3-6-60</u>	1	017/18		<u>}</u>			·										ļļ.	X	
10													-							<u> </u>	3
int-	}	10 steres	· · · · · · · · · · · · · · · · · · ·	1				$+ \frac{\lambda}{\lambda}$													
101								$+\frac{X}{S}$		·		+									
POIN	$e_{ +}$	CONCONCOS						$ \sim $				-									
I I	<u>`</u>	10 nore 2	4 6					1.57	12.6	·····								_			,
22		<u>KI-10-11-2</u>						$\frac{\eta I}{\chi}$	9												
93	-4	$\frac{1}{1} \frac{1}{1} \frac{1}$						93×	9	<u>.</u>		<u> </u>	- I								
- A		<u>A the second se</u>		<u></u>				44 X	40				SGSM	elbourne E	HS DDDDDDD) a k it					····
14		1		· .		÷	AF 5	$\frac{1}{X}$		<u> </u>		+									
24 25- 76		Jacob Contraction		×			95× 96×	$\frac{1}{X}$				-									
17		La La N 3				++++	70/		 Դ-				ME	805752	CO	C.		+			
78		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~										<u> -</u>	Receiv	red: 14 Fe	eb - 20	118				*****	·····
19		$\sqrt{10 + 0} = \frac{1}{2}$	<u> </u>	1				$\overline{}$	44			+ '									
no		$\frac{1}{1}$						\uparrow	101			<u> </u>	1								
61	1/	Vertil 5		<i>y</i>			101 X	$\frac{1}{\sqrt{2}}$									· · · ··				
27	/			1			VX X	\uparrow													
23 to		10-10 P-3	· walter	<u>t</u>			03	X													
DLI		1. 1. 6 7.	χ . • \mathcal{N}				104 X														
03 0 04 05 06	Ň	<u> </u>				;		X	vo5			1	· [
06		10.B-7	20 4			i		X	00												
	\ Zin					19969) - 138	1.	N.C.				1								1.5 miles	
cial Inst	ructions	feeired							., , I,	5.)/	i		·l		<u>l</u>	1	·		 h · · ·		%

LIENT:		CH2M OFFICE: Sydney			TURN	AROUND REC	UIREMENTS	Ö	Standard TAT (List du	e date):		Standard TA		FORIABOR	LATORY USE ON	W (Cleana)		
LIENT ADDR ROJECT:	ESS;	Level 7, 9 Help St Chatswood NSW 2007 CSIRO Woomera		Auto 2017 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	PO / C	UOTE NO.:	to: same trists = g_ ti		Non Standard or urger					Custody Seni	lintest?		Yeq.	Na h
ROJECT NUI		\$ 84331			FORM			Equis and Esdat PHONE:	······································	COC:	1	2 3 4	(Cirole) 6 6 7 5 6 7	reseioro Random Ser	opie Telocéfsture	co Receipt:	Yes	λλο Ν C
ELD LEAD;		EMAIL EMAIL						PHONE:		OF: RELINOU	1 ISHED BY:	2 3 4	5 6 7 RECEIVED BY:	Other commo	RELINQUIS	HEO BY:	RECEIVED BY	r:
OC emailed ' mail Reports		nichael beron Achieven, Philippa Scottich	289,4900							DATE:			DATE:		DATE:		DATE:	
		uit to PM if no other addresses are listed); michae		n						TIME:			TIME:		TIME:		TIME:	
utes	[SAMPLE D	ETAILS	с. 1917 д. т						Ала	Ilysis						Additional Info	rmation
Field ID	Notas	SAMPLE ID	Date	Time	MATRIX: SOLID	TOTAL CONTAINERS Gamma Spec (Lead210 + Redition)	8 Metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg) + Uraníum and Thodiam	IPH and PAH (16 analytes)									Comments en likely conta filutiona, or samples requi analysis, non-standanad containers et	iring specific Q or lab provided
107	\checkmark	N. STA T				<u> </u>		1.7								Hotd		
108		W-30 A 200			+		\pm	103										
109	V	No 30 - 53 - 52	1			X	X								+			
110			1 and			- ≯ ×	\mathbf{X}						<u></u>	<u> </u>				here had het de
ill		No Bridge 1	- Ar				2	141			SG I NIN	S Melbou	rne EHS	1.0.9	- <u></u>			
112	4	-N-30 - 700	- Jr				X	m l				i i konstanti k			: :			
13	$\sqrt{*}$	<u> 20-30-00</u>	NOT					\$3		<u> </u>								
114	\checkmark	<u>N-MO (SCOM</u>)						m -			l M	E3057	52 CO	C				
115		V-10 A-S-V	<u>~ 7/2</u>			$-\frac{\langle \times \rangle}{\langle \times \rangle}$				<u> </u>	Re	ceived: 14	-Feb-20	18	B illion and an			<u></u>
								<u> </u>				∔ I	ł i i				anna a fair a suideachaire dacht near a th à a thairde na ann an an	
		aan maa maa maa maa maa ka ka maa maa ka ka maa ma																
					\uparrow													······
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	+ +								+		+			·····
			· · · · · · · · · · · · · · · · · · ·	<u> </u>	++								<u> </u>			\square		
													┼──┼──┼──			<u> </u>		
								<u> </u>					<u> </u>					
]															
													· · · · · · ·					
		,			+	·		<u> </u>							+			
				ļ				·}					<u> </u>					
				ļ														
1-					alba il ar Alba ilar		1											
ecial ins	tructions	eved 9 samp				5110	() _	().1/		Ĺ		·····	· · · · · · · · · · · · · · · · · · ·	<u> </u>	. <u></u>	i		

····

-

ANALYTICAL REPORT

Contact		Manager	Adam Atkinson
Client	CH2M HILL AUSTRALIA PTY LTD	Laboratory	SGS Melbourne EH&S
Address	Level 7, Help Street Chatswood NSW 2067	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	0406 383 090	Telephone	+61395743200
Facsimile	61 2 99500601	Facsimile	+61395743399
Email	ch2m.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	684331 (CSIRO Womera)	SGS Reference	ME306928 R0
Order Number	1712418WM	Date Received	5/6/2018
Samples	74	Date Reported	26/7/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(22793).

SIGNATORIES -

SShobokh.

Sara Shoyookhi Physicist

> SGS Australia Pty Ltd ABN 44 000 964 278

Bldg 10, 585 Blackburn Rd Not

t +61 3 9574 3200 Australia f +61 3 9574 3399

ANALYTICAL RESULTS

ME306928 R0

Radionuclides by Gamma Ray Spectrometry in solids [ARS-SOP-AS303/AS406] Tested: 11/7/2018

			E-30-B-5	E-30-C-5	E-30-C-200	S-30-C-5	S-30-C-200
			SOIL - 29/5/2018	SOIL - 29/5/2018	SOIL - 29/5/2018	SOIL - 29/5/2018	SOIL - 29/5/2018
PARAMETER	UOM	LOR	ME306928.003	ME306928.005	ME306928.006	ME306928.011	ME306928.012
Radium-226	Bq/kg		17.9 ±1.9	46.5 ±3.9	17.2 ±1.9	16.5 ±1.6	16.2 ±1.8
Lead-210	Bq/kg	-	25.9 ±5.2	167 ±20	54.5 ±8.6	24.8 ±4.7	26.0 ±5.0
Radium-228	Bq/kg	-	20.9 ±2.6	30.8 ±3.5	22.9 ±3.1	21.9 ±2.5	21.5 ±2.8
Thorium-228	Bq/kg		17.3 ±2.1	31.6 ±3.1	24.5 ±2.9	20.6 ±2.2	20.8 ±2.5

			S-30-E-5	S-R-A-5	S-R-A-200	S-R-B-5	S-R-C-5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UON	LOR	- 29/5/2018 ME306928.015	- 29/5/2018 ME306928.017	- 29/5/2018 ME306928.018	- 29/5/2018 ME306928.019	- 29/5/2016 ME306928.021
Radium-226	Bq/kg	64	21.4 ±2.0	13.1 ±1.6	10.3 ±1.1	16.2 ±1.6	18.3 ±1.6
Lead-210	Bq/kg		37.8 ±9.8	30.8 ±5.7	<20.0	32.5 ±7.5	36.2 ±5.9
Radium-228	Bq/kg	4.1	27.5 ±2.8	20.0 ±2.6	13.5 ±1.7	21.6 ±2.2	29.5 ±2.7
Thorium-228	Bq/kg	19.74	26.6 ±3.1	17.4 ±2.2	15.0 ±1.8	22.9 ±2.3	27.0 ±2.6

			S-R-D-5	S-R-E-5	E-10-A-5	E-10-A-200	E-10-B-5
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 29/5/2018 ME306928.023	29/5/2018 ME306928.025	- 29/5/2018 ME306928.027	- 29/5/2018 ME306928.028	- 29/5/2018 ME306928.029
Radium-226	Bq/kg	-	21.4 ±1.8	20.6 ±1.8	18.2 ±1.8	21.7 ±2.4	13.2 ±1.2
Lead-210	Bq/kg		29.9 ±5.2	54.8 ±8.1	17.1 ±4.2	22.8 ±5.6	12.2 ±2.9
Radium-228	Bq/kg	-	29.9 ±2.8	28.5 ±2.7	22.0 ±2.6	27.8 ±3.6	13.0 ±1.5
Thorium-228	Bq/kg		29.0 ±3.1	29.6 ±3.1	22.4 ±2.3	30.0 ±3.6	11.2 ±1.3

			E-10-C-5	W-30-B-5	W-30-B-200	W-30-C-5	W-30-C-200
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 29/5/2018 ME306928.031	- 29/5/18 8:46 ME306928.035	- 29/5/2018 ME306928.036	- 29/5/2018 ME306928.037	- 29/5/2018 ME306928.038
Radium-226	Bq/kg		13.5 ±1.6	8.0 ±1.0	23.4 ±2.1	7.9 ±1.1	8.0 ±0.8
Lead-210	Bq/kg		12.8 ±4.2	8.2 ±2.8	21.9 ±7.3	11.2 ±3.2	8.6 ±2.5
Radium-228	Bq/kg		9.0 ±2.0	9.9 ±1.6	34.9 ±3.2	10.9 ±1.8	13.3 ±1.5
Thorium-228	Bq/kg	- Q	10.2 ±1.4	10.6 ±1.2	35.3 ±3.5	10.7 ±1.4	10.4 ±1.2

			W-D-B-5	W-D-B-200	W-D-A-5	W-D-A-200	N-P-B-5
PARAMETER	UOM	LOR	SOIL - 29/5/2018 ME306928.045	SOIL 	SOIL 	SOIL - 29/5/2018 ME306928.048	SOIL
Radium-226	Bq/kg		14.0 ±1.2	8.1 ±0.8	11.3 ±1.2	11.1 ±1.0	18.9 ±2.0
Lead-210	Bq/kg	(÷)	29.9 ±4.8	14.2 ±3.0	20.7 ±8.3	10.1 ±2.7	44.5 ±7.4
Radium-228	Bq/kg	- 4 -	23.2 ±2.2	11.6 ±1.4	15.7 ±1.9	17.0 ±1.8	27.9 ±3.3
Thorium-228	Bq/kg	9	22.9 ±2.2	11.1 ±1.3	16.7 ±2.0	15.4 ±1.7	28.0 ±3.3

			N-P-B-200	E-P-8-5	E-P-B-200	W-P-B-5	W-P-8-200
PARAMETER	UOM	LOR	SOIL - 30/5/2018 ME306928.052	SOIL + 30/5/2018 ME306928.057	SOIL - 30/5/2018 ME306928.058	SOIL - 30/5/2018 ME306928.067	SOIL - 30/5/2018 ME306928.068
Radium-226	Bq/kg	-	22.0 ±2.4	19.5 ±2.1	19.0 ±2.1	15.8 ±1.6	17.0 ±1.8
Lead-210	Bq/kg	-	40.2 ±7.0	19.2 ±5.3	17.8 ±4.9	49.1 ±7.3	31.1 ±6.0
Radium-228	Bq/kg	2.2	35.1 ±4.0	27.6 ±3.4	29.6 ±3.5	20.2 ±2.5	22.4 ±2.9
Thorium-228	Bq/kg	1.e	36.1 ±4.3	26.7 ±3.2	28.7 ±3.4	21.7 ±2.3	25.9 ±3.0

ANALYTICAL RESULTS

Radionuclides by Gamma Ray Spectrometry in solids [ARS-SOP-AS303/AS406] Tested: 11/7/2018 (continued)

			W-P-C-5	W-P-C-200
PARAMETER	UOM	LOR	SOIL - 30/5/2018 ME306928.069	SOIL - 30/5/2018 ME306928.070
Radium-226	Bq/kg		19.8 ±1.9	19.0 ±1.9
Lead-210	Bq/kg	-	31.0 ±5.7	24.3 ±5.1
Radium-228	Bq/kg		34.2 ±3.6	32.3 ±3.4
Thorium-228	Bq/kg		33.1 ±3.3	31.8 ±3.2

ME306928 R0

METHOD ______ METHODOLOGY SUMMARY ____

ARS-SOP-AS303/AS406

Analysis of radionuclides in solid samples by high resolution gamma ray spectrometry after preparation to meet standard calibrated geometries. Prepara ion involves drying, crushing and sieving, and setting in an epoxy resin where necessary. In some cases, preparation may involve merely transferring the solid directly to a standard geometry container such as a Marinelli beaker.

FOOTNOTES .

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	†↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

CHAIN OF CUSTODY

ROJECT:		CH2M OFFICE: Sydne Level 7, 9 Kelp St Chatswood NSW 2067 CSIRO Weemera			PO /			REMENTS : some lests e.g. U		gent TAT (Lis	COC	SEQUEN	Standard	ER (Cin	cle)	-	Durdddy Si Pree Ice / I	nni irvinsti? Inniteen keni Let	scha pres		Vas tār Ves Jār
ROJECT NUI ROJECT MAI	MBER: NAGER:	684331 EMAI EMAI	L:		FOR	MAT:	_		Equis a PHONE PHONE	COC OF:	1 1 UISHED I	2	3	4 1	5 6 6 6 CEIVED	7 4	Random S Other com	ample Temp series RELI		HED B	х 'с
OC emailed ' mail Reports	to	YES michael.leviton@ch2m.com. Philippa Scott@c	12m.com.compbell.y	ouna@ch2m.	com, the	omas fra	nk@toh2m.co	m		DATE: 0	51/06/18			DA	TE			DATE	E:		DATE
otes	to (will defau	It to PM if no other addresses are listed): michael			_		_			 TIME				TIM	VE	-	-	TIME		_	TIME
		SAMPLE D	ETAILS		-	· ·	-	-		Ar	alysis	1	-	T	-	TT	-	_	-	-	Additional Information
						ERS	:	N, Ni,	analytes)												
Field ID	Notes	SAMPLE ID	Date	Time	MATRIX: SOLID	CONTAINERS	ima Spec (Lead210 + lum)	, Cd, Cr, Cu, NI, Uranium and	6 anal												Comments on likely contaminant le dilutions, or samples requiring speci
			Usie		MTRIX	AL CO	Spec ((As. C	and PAH (16												analysis, non-standarad or lab pro- containers etc.
					2	TOTAL	uniba	3 Metals (As. Pb, Zn, Hg) + (Thorium	PH and											pld	
		E-30-A-5	29/5/18	-	-	2	62	X	F	-	-	-		-	+		-		-	Ť	NOTE - ALL SAMPLE BAGS FO
		E-30-A-200 E-30-B-5	29/5/18	-		2	x	x	-		+	-		-		++	-	-	-	\square	RADIONUCLIDES HAVE BEE FORWARDED TO MELBOURNE - JARS TO PERTH
1		E-30-B-200	29/5/18	1		2		x				1		-	1		+	-	-	x	
		E-30-C-6	29/5/18			2	x	x								-					
		E-30-C-200	29/5/18	-		2	x	x			-								_		
		5-30-A-5 5-30-A-200	29/5/18	-	-	2		×	-	 	+	-		-	+	+	-	-	-	x	
-		S-30-8-5	29/5/18	-	-	2		x		 -	-	-		-	-		-	-	-	Ê	
0		5-30-8-200	29/5/18			2		x													
1		S-30-C-5	29/5/18			2	x	x				-									
2		S-30-C-200	29/5/18	-		2	x	×	-	 -	-	-	-	-	+		-	-	-		
4		\$-30-D-5 \$-30-D-200	29/5/18	-		2		x	-		+	-	+	+	+	$\left \right $	+	+	-	\vdash	
5		5-30-E-5	29/5/18		-	2	x	x	-	+	-	-		-	+			+	1	\square	
6		\$-30-E-200	29/5/18			2		x													
7		S-R-A-5	29/5/18			2	x	x													
9	-	S-R-A-200	29/5/18	-	-	2	×	x	-	 	-			-	-		-	-	-		
0		S-R-B-5 S-R-B-200	29/5/18	-	-	2	X	x	-	-	+	-	+	-	+			+	-	\vdash	
1		S-R-C-5	29/5/16	1	1	2	x	x	1	1	1			+	+			1	1		
2		S-R-C-200	29/5/18			2		x													
3		S-R-D-5	29/5/18		-	2	x	x			-										2
5	-	S-R-D-200	29/5/18	-	-	2		x	-	 -	-	-		-	+		-+-	-	-		
5		S-R-E-5 S-R-E-200	29/5/18	-	-	2	X	x		 -	-	-		-	+			+	-		
7	-	E-10-A-5	29/5/18	-	-	2	x	x			+			+	+				-		
		E-10-A-200	29/5/18			2	x	x				1									
9		E-10-8-6	29/5/18			2	x	x													
0	_	E-10-B-200	29/5/18 29/5/18	-		2		x		 		-		-	-		_	-			
2		E-10-C-5 E-10-C-200	29/5/18	-	-	2	x	x	-	 -	_	1		-	-	-		+-	-		
3	-	W-30-A-5	29/5/18	-	1	2		x	-	 -	SGS	M	elbo	urn	e F	HS	. '	1	- 1	_	
•		W-30-A-200	29/5/18		1	2		x								111					
5	-	W-30-B-6	29/5/18	1		2	x	x													
3		W-30-8-200	29/5/18	-	-	2	x	×		 +											
3	-	W-30-C-5 W-30-C-200	29/5/18	-	-	2	x	x	-	 "											
,		W-30-D-5	29/5/18	-	1	2	-	x	-	+1	VIE	-31	06	92	2	C	0	2			
,	11	W-30-D-200	29/5/18			2		x		F	ece	ive	1: 0	5	U	6	U				
2	1	W-30-E-5	29/5/18			2		x		-		1000	1. 0	0-,	Jur	1-2	201	8			
1	-	W-30-E-200 W-30-F-5	29/5/18	-	-	2		x	-	-											
	-	W-30-F-200	29/5/18	-	+	2		×	-	+	1	Ĩ.									
		W-D-8-5	29/5/18	-		2	x	x										T		1	
5		W-D-8-200	29/5/18	1		2	×	x				_									
		W-D-A-5	29/5/18	-	-	2	×	x			-	-		-	+			-	-		
	-	W-D-A-200 N-P-A-5	30/5/18	-	-	2	x	x		-	-	-	-	-	-			-	-	-	
		N-P-A-200	30/5/18	-				x			1			+	1			+			
		N-P-B-5	30/5/18				x	x													
		N-P-B-200	30/5/18				x	×			-	-	\square	-	-		-	+			
		N-P-C-5	30/5/16	-	-			x	-		-	+	$\left \right $	-	-			+			
		N-P-C-200 E-P-A-6	30/5/18	-		$\left \right $		x		-	1	-	$\left \right $	-	-		-	+	\vdash		
		E-P-A-200	30/5/16					×						-							
		E-P-8-6	30/5/18	1			x	x										-			
		E-P-B-200	30/5/18	-			x	×			-	1			-		-				
		E-P-C-5 E-P-C-200	30/5/18	-	-	-		x	-		-	-	$\left \right $	-	-		+	+	-	\mid	
		E-P-D-6	30/5/18					x			1	1			1		+	1			
		E-P-D-200	30/5/16					×													
		E-P-C-6	30/5/18					×			-			-			_				
	-	E-P-C-200 W-P-A-5	30/5/18					×		-	-	-		_	+	-		-			
-	-	W-P-A-5	30/5/18	-				x	-	-	+	+-	+-+	-	+		+	+	-		
		W-P-B-5	30/5/18	1			x	x			1	1									
		W-P-8-200	30/5/18				x	x		-											
		W-P-C-5	30/5/18				x	x													
		W-P-C-200	30/5/18	-			x	x	-	_	-	-		-	-	\vdash		-			
	-	W-P-D-5 W-P-D-200	30/5/18		-		-	x	-		-	-	$\left \right $	-	-		-	-	-		
		W-P-E-6	30/5/18	1				x		1	-	-		+	1		+	1	-		
		W-P-E-200	30/5/18					x													
1.1						96	32	74		-	1	1						1	_	2	

NSTLI-Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-1

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	W_O_E_5_DUP
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	16/03/2018 10:18:31 AM
Methodology:	ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁴ Th	8.5	16
^{234m} Pa	< 47	
²³⁰ Th	< 32	
²¹⁴ Pb (²²⁶ Ra)	8.3	10
²¹⁴ Bi (²²⁶ Ra)	9.6	10
²¹⁰ Pb	17	15
²²⁸ Ac (²²⁸ Ra)	14	12
²²⁴ Ra	16	13
²¹² Pb (²²⁸ Th)	14	10
²¹² Bi	< 29	
²⁰⁸ TI	4.7	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁵ U	< 4.7	
²³¹ Pa	< 12	
²²⁷ Th	< 2.2	
²²³ Ra	< 4.5	
²¹⁹ Rn	< 3.7	
⁴⁰ K	120	11
²⁴¹ Am	< 0.44	
¹³⁷ Cs	< 0.42	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 7.8 %.

Lida Mokhber Shahin

Results Calculated By:

Results Checked By:

Rvand Riley Van De Voorde Date: 29/03/2018

Date: 06/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-2

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	W_O_A_5_DUP
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	19/03/2018 11:28:55 AM
Methodology:	ANSTO method VP-2747
Analysis required: Analyst: Sample collected at: Sample measurement started at:	Gamma-ray spectrometry Lida Mokhber Shahin NA 19/03/2018 11:28:55 AM

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	12	19
^{234m} Pa	< 68	
²³⁰ Th	< 36	
²¹⁴ Pb (²²⁶ Ra)	7.5	11
²¹⁴ Bi (²²⁶ Ra)	7.8	13
²¹⁰ Pb	12	20
²²⁸ Ac (²²⁸ Ra)	15	13
²²⁴ Ra	15	17
²¹² Pb (²²⁸ Th)	13	10
²¹² Bi	< 9.8	
²⁰⁸ TI	4.5	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁵ U	< 5.3	
²³¹ Pa	< 12	
²²⁷ Th	< 2.5	
²²³ Ra	< 2.6	
²¹⁹ Rn	< 5.4	
⁴⁰ K	97	10
²⁴¹ Am	< 0.40	
¹³⁷ Cs	< 0.53	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 8.3 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-3

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	S_10_C_5_DUP
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	16/03/2018 11:08:49 AM
Methodology:	ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁴ Th	11	19
^{234m} Pa	< 70	
²³⁰ Th	< 43	
²¹⁴ Pb (²²⁶ Ra)	13	10
²¹⁴ Bi (²²⁶ Ra)	13	10
²¹⁰ Pb	21	12
²²⁸ Ac (²²⁸ Ra)	15	12
²²⁴ Ra	15	20
²¹² Pb (²²⁸ Th)	15	10
²¹² Bi	18	16
²⁰⁸ TI	5.0	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁵ U	< 4.8	
²³¹ Pa	< 12	
²²⁷ Th	< 2.2	
²²³ Ra	< 4.3	
²¹⁹ Rn	< 6.1	
⁴⁰ K	140	10
²⁴¹ Am	< 0.23	
¹³⁷ Cs	< 0.63	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 11.4 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-4

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	E_O_C_5_DUP
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	19/03/2018 11:32:30 AM
Methodology:	ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	14	18
^{234m} Pa	< 29	
²³⁰ Th	< 40	
²¹⁴ Pb (²²⁶ Ra)	12	10
²¹⁴ Bi (²²⁶ Ra)	14	10
²¹⁰ Pb	42	10
²²⁸ Ac (²²⁸ Ra)	18	15
²²⁴ Ra	14	25
²¹² Pb (²²⁸ Th)	16	10
²¹² Bi	35	18
²⁰⁸ TI	5.8	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁵ U	< 5.3	
²³¹ Pa	< 16	
²²⁷ Th	< 3.2	
²²³ Ra	< 3.1	
²¹⁹ Rn	< 6.6	
⁴⁰ K	170	10
²⁴¹ Am	< 0.49	
¹³⁷ Cs	< 0.74	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 8.1 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-5

Page 1 of 2

David Boardman /
ANSTO / CSIRO
N_O_A_5_DUP
Gamma-ray spectrometry
Lida Mokhber Shahin
NA
16/03/2018 11:13:12 AM
ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	15	14
^{234m} Pa	< 64	
²³⁰ Th	< 41	
²¹⁴ Pb (²²⁶ Ra)	12	10
²¹⁴ Bi (²²⁶ Ra)	11	10
²¹⁰ Pb	20	10
		40
²²⁸ Ac (²²⁸ Ra)	16	10
²²⁴ Ra	19	10
²¹² Pb (²²⁸ Th)	18	10
²¹² Bi	23	17
²⁰⁸ TI	6.4	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁵ U	< 4.4	
²³¹ Pa	< 14	
²²⁷ Th	< 2.3	
²²³ Ra	< 2.4	
²¹⁹ Rn	< 5.6	
⁴⁰ K	170	10
²⁴¹ Am	< 0.28	
¹³⁷ Cs	< 0.47	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 3.7 %.

Results Calculated By:

Lida Mokhber Shahin

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-6

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	N_10_B_5_DUP
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	19/03/2018 11:41:48 AM
Methodology:	ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁴ Th	11	20
^{234m} Pa	< 74	
²³⁰ Th	< 29	
²¹⁴ Pb (²²⁶ Ra)	8.2	10
²¹⁴ Bi (²²⁶ Ra)	8.5	10
²¹⁰ Pb	10	20
²²⁸ Ac (²²⁸ Ra)	15	11
²²⁴ Ra	17	15
²¹² Pb (²²⁸ Th)	13	10
²¹² Bi	20	20
²⁰⁸ TI	4.9	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁵ U	< 3.1	
²³¹ Pa	< 16	
²²⁷ Th	< 2.0	
²²³ Ra	< 2.6	
²¹⁹ Rn	< 5.0	
⁴⁰ K	92	10
²⁴¹ Am	< 0.32	
¹³⁷ Cs	< 0.57	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 8.0 %.

Results Calculated By:

Results Checked By:

Lida Mokhber Shahin Kvan d

Date: 3/04/2018

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-7

Page 1 of 2

David Boardman /
ANSTO / CSIRO
N_30_B_5_DUP
Gamma-ray spectrometry
Lida Mokhber Shahin
NA
21/03/2018 2:24:29 PM
ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	< 5.7	
^{234m} Pa	< 74	
²³⁰ Th	< 29	
²¹⁴ Pb (²²⁶ Ra)	7.4	10
²¹⁴ Bi (²²⁶ Ra)	7.5	11
²¹⁰ Pb	10	17
²²⁸ Ac (²²⁸ Ra)	12	13
²²⁴ Ra	< 9.0	
²¹² Pb (²²⁸ Th)	12	10
²¹² Bi	15	17
²⁰⁸ TI	4.4	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁵ U	< 4.6	
²³¹ Pa	< 16	
²²⁷ Th	< 2.5	
²²³ Ra	< 2.9	
²¹⁹ Rn	< 5.3	
⁴⁰ K	80	10
²⁴¹ Am	< 0.53	
¹³⁷ Cs	< 0.64	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 5.5 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-8

Page 1 of 2

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	< 6.3	
^{234m} Pa	< 89	
²³⁰ Th	< 47	
²¹⁴ Pb (²²⁶ Ra)	8.1	11
²¹⁴ Bi (²²⁶ Ra)	8.2	11
²¹⁰ Pb	15	16
220		
²²⁸ Ac (²²⁸ Ra)	18	14
²²⁴ Ra	< 11	
²¹² Pb (²²⁸ Th)	13	10
²¹² Bi	< 11	
²⁰⁸ TI	4.0	12

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁵ U	< 4.9	
²³¹ Pa	< 18	
²²⁷ Th	< 3.0	
²²³ Ra	< 3.3	
²¹⁹ Rn	< 6.1	
⁴⁰ K	110	10
²⁴¹ Am	< 0.61	
¹³⁷ Cs	< 0.67	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 6.7 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

NSTLI- Nuclear Stewardship Platform

Ph: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/0041-9

Page 1 of 2

David Boardman /
ANSTO / CSIRO
WG_O_B_10_DUP
Gamma-ray spectrometry
Lida Mokhber Shahin
NA
19/03/2018 2:33:54 PM
ANSTO method VP-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	< 5.8	
^{234m} Pa	< 59	
²³⁰ Th	< 41	
²¹⁴ Pb (²²⁶ Ra)	8.7	10
²¹⁴ Bi (²²⁶ Ra)	9.2	11
²¹⁰ Pb	31	10
²²⁸ Ac (²²⁸ Ra)	12	10
²²⁴ Ra	13	20
²¹² Pb (²²⁸ Th)	13	10
²¹² Bi	20	17
²⁰⁸ TI	4.0	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁵ U	< 5.1	
²³¹ Pa	< 12	
²²⁷ Th	< 2.9	
²²³ Ra	< 2.4	
²¹⁹ Rn	< 4.2	
⁴⁰ K	130	10
²⁴¹ Am	< 0.69	
¹³⁷ Cs	< 0.46	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 4.5 %.

Results Calculated By:

Lida Mokhber Shahin and

Date: 3/04/2018

Results Checked By:

Riley Van De Voorde

Date: 6/04/2018

AUSTRALIAN NUCLEAR SCIENCE AND TECHNOLOGY ORGANISATION

ANSTO-Nuclear Science and Technology and Landmark Infrastructure Nuclear Stewardship Platform

Tel: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/00182-4

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	DUP04
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	27/07/2018 1:00:23 PM
Methodology:	ANSTO method P-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁴ Th	14	16
^{234m} Pa	< 44	
²³⁰ Th	< 31	
²¹⁴ Pb (²²⁶ Ra)	14	10
²¹⁴ Bi (²²⁶ Ra)	14	10
²¹⁰ Pb	31	10
²²⁸ Ac (²²⁸ Ra)	20	10
²²⁴ Ra	21	13
²¹² Pb (²²⁸ Th)	22	10
²¹² Bi	38	10
²⁰⁸ TI	7.4	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁵ U	< 4.8	
²³¹ Pa	< 12	
²²⁷ Th	< 2.2	
²²³ Ra	< 2.4	
²¹⁹ Rn	< 3.7	
⁴⁰ K	160	10
²⁴¹ Am	< 0.57	
¹³⁷ Cs	< 1.1	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 3.2 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 14/08/2018

Date: 17/08/2018

Results Checked By:

Riley Van De Voorde

New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC 2232) ABN 47 956 969 590 T +61 2 9717 3111 www.ansto.gov.au

ANSTO-Nuclear Science and Technology and Landmark Infrastructure Nuclear Stewardship Platform

Tel: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/00182-5

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	DUP05
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	27/07/2018 1:00:10 PM
Methodology:	ANSTO method P-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	16	19
^{234m} Pa	< 76	
²³⁰ Th	< 39	
²¹⁴ Pb (²²⁶ Ra)	17	10
²¹⁴ Bi (²²⁶ Ra)	18	10
²¹⁰ Pb	33	10
²²⁸ Ac (²²⁸ Ra)	33	10
²²⁴ Ra	32	13
²¹² Pb (²²⁸ Th)	32	10
²¹² Bi	49	10
²⁰⁸ TI	11	10

Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
< 6.1	
< 16	
< 3.0	
11	16
< 7.5	
370	10
< 0.49	
< 0.62	
	Activity (Bq.kg ⁻¹) < 6.1 < 16 < 3.0 11 < 7.5 370 < 0.49

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 5.0 %.

Results Calculated By:

Lida Mokhber Shahin Kvan d

Date: 14/08/2018

Date: 17/08/2018

Results Checked By:

Riley Van De Voorde

New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC 2232) ABN 47 956 969 590 T +61 2 9717 3111 www.ansto.gov.au

ANSTO-Nuclear Science and Technology and Landmark Infrastructure Nuclear Stewardship Platform

Tel: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/00182-7

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	DUP07
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	27/07/2018 12:59:50 PM
Methodology:	ANSTO method P-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	17	19
^{234m} Pa	< 98	
²³⁰ Th	< 55	
²¹⁴ Pb (²²⁶ Ra)	19	10
²¹⁴ Bi (²²⁶ Ra)	20	10
²¹⁰ Pb	25	11
²²⁸ Ac (²²⁸ Ra)	35	10
²²⁴ Ra	30	14
²¹² Pb (²²⁸ Th)	32	10
²¹² Bi	50	15
²⁰⁸ TI	11	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1 σ)
²³⁵ U	< 5.7	
²³¹ Pa	< 17	
²²⁷ Th	< 2.8	
²²³ Ra	< 3.8	
²¹⁹ Rn	< 8.3	
⁴⁰ K	340	10
²⁴¹ Am	< 0.56	
¹³⁷ Cs	< 0.59	

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 6.6 %.

Results Calculated By:

Lida Mokhber Shahin

Date: 14/08/2018

Rvand-

Results Checked By:

Riley Van De Voorde

Date: 17/08/2018

New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC 2232) ABN 47 956 969 590 T +61 2 9717 3111 www.ansto.gov.au

ANSTO-Nuclear Science and Technology and Landmark Infrastructure Nuclear Stewardship Platform

Tel: (02) 9717 3419

Email: Ims@ansto.gov.au

Certificate Number: 2018/00182-8

Page 1 of 2

Client:	David Boardman /
Company / Organisation:	ANSTO / CSIRO
Sample Identification:	DUP08
Analysis required:	Gamma-ray spectrometry
Analyst:	Lida Mokhber Shahin
Sample collected at:	NA
Sample measurement started at:	27/07/2018 12:59:34 PM
Methodology:	ANSTO method P-2747

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁴ Th	21	14
^{234m} Pa	< 97	
²³⁰ Th	< 61	
²¹⁴ Pb (²²⁶ Ra)	18	10
²¹⁴ Bi (²²⁶ Ra)	20	10
²¹⁰ Pb	42	11
²²⁸ Ac (²²⁸ Ra)	34	10
²²⁴ Ra	40	10
²¹² Pb (²²⁸ Th)	38	10
²¹² Bi	50	10
²⁰⁸ TI	13	10

Radionuclide	Time of count Activity (Bq.kg ⁻¹)	%Uncertainty (1σ)
²³⁵ U	< 6.6	
²³¹ Pa	< 23	
²²⁷ Th	< 3.6	
²²³ Ra	< 3.8	
²¹⁹ Rn	< 7.4	
⁴⁰ K	400	10
²⁴¹ Am	< 0.42	
¹³⁷ Cs	1.4	22

Note: ²¹⁴Pb/²¹⁴Bi, ²²⁸Ac, ²¹²Pb are indicative of ²²⁶Ra, ²²⁸Ra and ²²⁸Th activities. Secular equilibrium between respective parent/daughter couples has been assumed. Reported activities are in dried and ground sample. Moisture content in the received sample is 5.8 %.

Results Calculated By:

Results Checked By:

Lida Mokhber Shahin

Date: 14/08/2018

Date: 17/08/2018

New Illawarra Road, Lucas Heights (Locked Bag 2001, Kirrawee DC 2232) ABN 47 956 969 590 T +61 2 9717 3111 www.ansto.gov.au

Appendix F – Comparison of Composite Samples vs. Chemical Screening Criteria

<u>Appendix F</u> <u>Composite Soil Sample Comparison - Chemistry</u>

Composite Soil Sample Comparison - Chemistry Composite Samples - Comparison of Heavy Metals and PAH against Screening Criteria

					Field ID	Composite 01	Composite 02	Composite 03	Composite 04
					Date	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013				
			Table 1A(1) HIL	Table 1A(1)	Table 1A(1) HIL				
	Unit	LOR	A Soil	HIL B Soil	D Soil				
			Low Density	High Density	Commercial	i			
Classification			Residential	Residential	Industrial				
NA									
% Moisture	%w/w	1				4.3	6.1	6.2	6.1
Metals	Ì i								
Arsenic	mg/kg	1	100	500	3,000	2	1	2	2
Cadmium	mg/kg	0.3	20	150	900	0.8	0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				8.6	9.9	10	10
Copper	mg/kg	0.5	6,000	30,000	240,000	7.2	4.1	4.4	4.3
Lead	mg/kg	1	300	1,200	1,500	13	4	6	3
Mercury	mg/kg	0.05	40	120	730	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	mg/kg	0.5	400	1,200	6,000	5.0	3.8	4.4	4.0
Uranium	mg/kg	0.1		· · · ·		0.1	<0.1	0.1	0.1
Zinc	mg/kg	2	7,400	60,000	400,000	240	16	34	11
norganics									
Thorium	mg/kg	0.5				1.5	1.9	1.8	2.0
PAHs	0, 0	0.0				1.0	210	2.0	2.0
Benzo(a)pyrene Total	TEQ								
Potency Equivalent	(mg/kg					<0.2	<0.2	<0.2	<0.2
	mg/kg	0.1				<0.2	<0.2	<0.2	<0.2
1-Methylnaphthalene		0.1				-		-	<0.1
2-methylnaphthalene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1				<0.1 <0.1	<0.1 <0.1	<0.1	<0.1
Acenaphthylene	mg/kg	-				-	-	-	-
Anthracene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Benz(a)anthracene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Benzo(a) pyrene	mg/kg	0.1	-			<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs (as	TEQ								
B(a)P TPE)	(mg/kg		-			<0.2	<0.2	<0.2	<0.2
D (1)(1									
Benzo(b)fluoranthene	mg/kg	0.1	-			<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
D (1)(1									
Benzo(k)fluoranthene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
						- ·			
Dibenz(a,h)anthracene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs (as	TEQ								
B(a)P TPE, PEFx3)	(mg/kg		3	4	40	<0.3	<0.3	<0.3	<0.3
Fluoranthene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1				<0.1	<0.1	<0.1	<0.1

<u>Appendix F</u> mposite Soil Sample Comparison - Chemistry

Composite Soil Sample Comparison - Chemistry Composite Samples - FOR INFORMATION ONLY - Comparison of Volatiles against Screening Criteria

					Field ID	Composite 01	Composite 02	Composite 03	Composite 04
					Date	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013				
			Table 1A(1) HIL	Table 1A(1)	Table 1A(1) HIL				
	Unit	EQL	A Soil	HIL B Soil	D Soil				
	•		Low Density	High Density	Commercial				
Classification			Residential	Residential	Industrial				
TRH - NEPM 2013 Fractions									
TRH >C10 - C16	mg/kg	25				96	94	57	39
TRH >C16 - C34	mg/kg	90				1,400	670	670	360
TRH >C34 - C40	mg/kg	120				2,700	1,200	1,400	530
TRH >C6 - C10 less BTEX									
(F1)	mg/kg	25				<25	<25	<25	<25
TPH - NEPM 1999 Fractions									
TPH C6 - C9	mg/kg	20				<20	<20	<20	<20
TPH C10 - C14	mg/kg	20				48	52	29	21
TPH C15 - C28	mg/kg	45				520	320	260	170
TPH C29-C36	mg/kg	45				1,900	810	920	400
			HSLA &	HSL B	HSL D				
			For Informa	ation Only	Commercial				
			Low - High Dens	ity Residential	Industrial				
			for vapour Int	rusion - Sand					
BTEXN			0 m to	<1 m					
Benzene	mg/kg		0.	5	3	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	55	5	Non limiting	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	16	0	Non limiting	<0.1	<0.1	<0.1	<0.1
Xylene (m & p)	mg/kg	0.2	40		230	<0.2	<0.2	<0.2	<0.2
Xylene (o)	mg/kg	0.1	40		250	<0.1	<0.1	<0.1	<0.1
TRH >C6 - C10 less BTEX			45						
(F1)	mg/kg	25	4	,	260	<25	<25	<25	<25
Naphthalene	mg/kg	0.1	3		Non limiting	<0.1	<0.1	<0.1	<0.1
>C10-C16 less			11	0	No. United				
naphthalene	mg/kg		11	0	Non limiting	48	52	29	21

Appendix G - Comparison of Gridded Samples vs. Chemical Screening Criteria

<u>Appendix G</u>

Gridded Soil Samples - Comparison of Chemistry Results against Screening Criteria

					Field ID	Composite 01	Composite 02	Composite 03	Composite 04	E-0-A-5	E-0-A-200	E-0-B-5	E-0-B-200	E-0-C-5	E-0-C-200
					Date	6/02/2018	6/02/2018	6/02/2018	6/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential		Commercial										
			A	В	Industrial D										
% Moisture	%w/w	1				4.3	6.1	6.2	6.1	22.5	22.3	16.6	7	9.6	6.7
Metals															
Arsenic	mg/kg	1	100	500	3,000	2	1	2	2	7	7	2	2	4	4
Cadmium	mg/kg	0.3	20	150	900	0.8	0.3	<0.3	<0.3	0.6	0.5	<0.3	<0.3	1.5	1.5
	mg/kg	0.5				8.6	9.9	10	10	27	27	11	10	30	28
Copper	mg/kg	0.5	6,000	30,000	240,000	7.2	4.1	4.4	4.3	19	19	8.7	6	17	38
Lead	mg/kg	1	300	1,200	1,500	13	4	6	3	11	12	4	4	170	1,200
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Nickel	mg/kg	0.5	400	1,200	6,000	5	3.8	4.4	4	16	16	6.3	4.4	8.2	7.6
Thorium	mg/kg	0.5				1.5	1.9	1.8	2	7	6.8	2.2	1.8	2.8	2.2
Uranium	mg/kg	0.1				0.1	<0.1	0.1	0.1	0.6	0.6	0.2	0.2	0.4	0.4
Zinc	mg/kg	2	7,400	60,000	400,000	240	16	34	11	57	55	22	45	510	670

Laboratory Analytical Results above Screening Criteria are in Bolt Font and High-lighted

					Field ID	E-10-A-5	E-10-A-200	E-10-B-5	E-10-B-200	E-10-C-5	E-10-C-200	E-30-A-5	E-30-A-200	E-30-B-5	E-30-B-200
						29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				12.7	20.8	13.4	21.1	12.9	24.2	9.3	12.5	7.4	10.4
Vietals															
Arsenic	mg/kg	1	100	500	3,000	4	5	4	7	3	<1	6	6	5	6
Cadmium	mg/kg	0.3	20	150	900	0.8	1.1	0.5	1.3	0.5	<0.3	<0.3	0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				5.4	15	3.1	17	2.1	1.6	20	21	16	16
Copper	mg/kg	0.5	6,000	30,000	240,000	11	14	9.8	15	10	1.4	14	14	20	12
Lead	mg/kg	1	300	1,200	1,500	5	6	3	7	4	<1	12	11	25	10
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	7.6	11	7.4	12	6.8	1.1	15	13	10	9.6
Thorium	mg/kg	0.5				2.2	5.7	1.5	5.6	1	0.5	5.1	5.1	3.4	3.7
Uranium	mg/kg	0.1				0.4	0.5	0.4	0.7	0.4	<0.1	0.5	0.8	0.4	0.7
Zinc	mg/kg	2	7,400	60,000	400,000	26	34	11	35	13	3	42	44	54	34

					Field ID	E-30-C-5	E-30-C-200	E-P-A-5	E-P-A-200	E-P-B-5	E-P-B-200	E-P-C-5	E-P-C-200	E-P-D-5	E-P-D-200
					Date	29/05/2018	29/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			А	В	Industrial D										
% Moisture	%w/w	1				25.8	24.3	7.7	9.5	7	12.8	7.5	10.7	3.9	3.4
Metals															
Arsenic	mg/kg	1	100	500	3,000	4	5	7	9	7	7	5	7	4	4
Cadmium	mg/kg	0.3	20	150	900	0.3	0.6	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.3	0.6
Chromium (III+VI)	mg/kg	0.5				20	27	28	29	28	29	23	27	19	15
Copper	mg/kg	0.5	6,000	30,000	240,000	18	23	20	22	21	25	22	19	16	12
Lead	mg/kg	1	300	1,200	1,500	57	99	10	12	8	8	23	11	23	17
Mercury	mg/kg	0.05	40	120	730	0.11	0.13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	11	13	15	16	15	16	13	15	11	8.7
Thorium	mg/kg	0.5				3.7	4.1	6.1	5.9	5.6	5.7	5.3	6	3.9	2.9
Uranium	mg/kg	0.1				0.4	0.4	0.4	0.4	0.5	0.3	0.4	0.4	0.3	0.3
Zinc	mg/kg	2	7,400	60,000	400,000	1800	1800	48	46	48	45	61	48	59	42

					Field ID	E-P-E-5	E-P-E-200	N-0-A-5	N-0-A-200	N-0-B-5	N-0-B-200	N-10-A-5	N-10-A-200	N-10-B-5	N-10-B-200
					Date	30/05/2018	30/05/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1		-		8.1	7.3	3.4	7.1	3.9	3.9	7.3	9.1	7.9	19.2
Metals															
Arsenic	mg/kg	1	100	500	3,000	5	6	4	4	3	3	2	2	2	6
Cadmium	mg/kg	0.3	20	150	900	<0.3	<0.3	0.3	<0.3	<0.3	0.3	<0.3	<0.3	<0.3	0.6
Chromium (III+VI)	mg/kg	0.5				24	23	14	15	12	12	11	12	11	25
Copper	mg/kg	0.5	6,000	30,000	240,000	18	17	10	9.6	7.3	7.4	4.4	5.8	4.5	18
Lead	mg/kg	1	300	1,200	1,500	9	9	12	7	14	15	3	3	3	8
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	14	14	7.3	7.5	5.4	5.2	3.7	4.8	3.8	15
Thorium	mg/kg	0.5				5.5	5.2	3.2	3.2	2.4	2.2	2	2.3	2	6.5
Uranium	mg/kg	0.1				0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.2	<0.1	0.6
Zinc	mg/kg	2	7,400	60,000	400,000	45	41	69	38	76	70	10	13	10	40

					Field ID	N-10-C-5	N-10-C-200	N-10-D-5	N-10-D-200	N-30-A-5	N-30-A-200	N-30-B-5	N-30-B-200	N-30-C-5	N-30-C-200
					Date	8/02/2018	8/02/2018	8/02/2018	8/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				12.2	20	16.9	17.6	5.5	9.4	6.3	7.3	6	6.6
Metals															
Arsenic	mg/kg	1	100	500	3,000	3	9	7	7	2	3	2	2	1	2
Cadmium	mg/kg	0.3	20	150	900	0.4	0.5	0.5	0.4	<0.3	0.4	<0.3	<0.3	<0.3	0.3
Chromium (III+VI)	mg/kg	0.5				14	25	24	25	10	14	11	11	11	11
Copper	mg/kg	0.5	6,000	30,000	240,000	7.3	18	17	18	3.5	7.2	4.6	4.5	4.3	3.7
Lead	mg/kg	1	300	1,200	1,500	5	9	8	8	3	4	3	3	3	3
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	6.2	14	13	14	3	5.9	3.7	3.8	3.9	3.2
Thorium	mg/kg	0.5				3	6.3	6.2	6.1	1.6	2.8	1.9	2.1	2	1.8
Uranium	mg/kg	0.1				0.1	0.3	0.4	0.4	<0.1	0.2	0.1	0.1	0.1	<0.1
Zinc	mg/kg	2	7,400	60,000	400,000	16	37	36	38	9	17	11	11	11	9

					Field ID	N-30-D-5	N-30-D-200	N-P-A-5	N-P-A-200	N-P-B-5	N-P-B-200	N-P-C-5	N-P-C-200	S-0-A-5	S-0-A-200
					Date	7/02/2018	6/02/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	7/02/2018	7/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				2.7	19.8	10.5	12.9	7.6	14.8	8.1	12.6	13.9	20
Metals															
Arsenic	mg/kg	1	100	500	3,000	2	6	2	5	5	10	5	7	4	6
Cadmium	mg/kg	0.3	20	150	900	<0.3	0.7	1.1	1.4	1.6	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				9.7	29	20	23	24	32	26	28	7.8	28
Copper	mg/kg	0.5	6,000	30,000	240,000	4.2	19	13	17	17	23	20	21	10	19
Lead	mg/kg	1	300	1,200	1,500	3	8	8	8	20	10	10	11	3	9
Mercury	mg/kg	0.05	40	120	730	<0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	3.5	16	10	11	12	18	14	15	7.6	16
Thorium	mg/kg	0.5				1.9	6.4	4.8	5.5	5.1	7	5.8	5.7	1.4	7.5
Uranium	mg/kg	0.1				0.1	0.5	0.2	0.2	0.2	0.9	0.2	0.4	0.4	0.6
Zinc	mg/kg	2	7,400	60,000	400,000	12	45	43	50	130	55	60	59	11	46

					Field ID	S-10-A-5	S-10-A-200	S-10-B-5	S-10-B-200	S-10-C-5	S-10-C-200	S-10-D-5	S-10-D-200	S-30-A-5	S-30-A-200
					Date	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	29/05/2018	29/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			А	В	Industrial D										
% Moisture	%w/w	1				13.3	9.2	13.9	18.3	12.7	13.5	13.7	20.5	3.6	7.5
Metals															
Arsenic	mg/kg	1	100	500	3,000	4	4	5	6	4	4	6	6	1	2
Cadmium	mg/kg	0.3	20	150	900	0.6	0.5	<0.3	<0.3	<0.3	<0.3	0.5	0.5	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				17	14	13	21	9.1	9.3	17	28	7.9	11
Copper	mg/kg	0.5	6,000	30,000	240,000	14	11	13	19	10	11	13	20	3.2	5.5
Lead	mg/kg	1	300	1,200	1,500	16	11	5	11	3	3	12	9	3	4
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	9.8	7.9	11	12	9.3	9.4	11	16	3	4.9
Thorium	mg/kg	0.5				3.6	3.1	2.8	5.2	1.7	1.9	3.6	6.7	1.7	2.4
Uranium	mg/kg	0.1				0.3	0.2	0.6	0.5	0.5	0.6	0.5	0.5	0.1	0.2
Zinc	mg/kg	2	7,400	60,000	400,000	160	110	23	47	12	12	34	45	9	13

					Field ID	S-30-B-5	S-30-B-200	S-30-C-5	S-30-C-200	S-30-D-5	S-30-D-200	S-30-E-5	S-30-E-200	S-R-A-5	S-R-A-200
					Date	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential A	Residential B	Commercial Industrial D										
% Moisture	%w/w	1				4	7.2	5.2	5.3	2.7	19.2	7.2	8.8	6.2	7.2
Metals															
Arsenic	mg/kg	1	100	500	3,000	3	4	2	3	<1	8	4	4	2	2
Cadmium	mg/kg	0.3	20	150	900	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.8
Chromium (III+VI)	mg/kg	0.5				11	14	7.1	9.9	3.2	21	15	17	9.4	9.9
Copper	mg/kg	0.5	6,000	30,000	240,000	5.7	11	6.6	7.5	2.9	16	15	13	7.4	5.9
Lead	mg/kg	1	300	1,200	1,500	4	9	9	11	5	8	120	220	5	7
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	5.3	8.3	5	6	3.3	14	9.9	11	5.5	4.8
Thorium	mg/kg	0.5				2.7	3.4	2.2	2.5	1	6.3	3.9	4.6	2.3	2.3
Uranium	mg/kg	0.1				0.2	0.3	0.3	0.4	<0.1	1.4	0.5	0.6	0.2	0.2
Zinc	mg/kg	2	7,400	60,000	400,000	15	90	71	92	12	37	100	61	22	18

					Field ID	S-R-B-5	S-R-B-200	S-R-C-5	S-R-C-200	S-R-D-5	S-R-D-200	S-R-E-5	S-R-E-200	W-0-A-5	W-0-A-200
						29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	7/02/2018	7/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
			Low Density	High	Commercial										
			Residential	Density	Industrial										
Classification				Residential											
			Residential	Residential	Commercial										
			А	В	Industrial D										
% Moisture	%w/w	1				5.6	6.7	8.2	9.1	7.6	10.2	6.7	8.7	7	5.8
Metals															
Arsenic	mg/kg	1	100	500	3,000	4	3	3	3	5	4	4	3	2	1
Cadmium	mg/kg	0.3	20	150	900	1	1	1.3	1.1	1.3	1.2	0.9	1.2	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				11	12	13	13	14	18	11	16	11	9.4
Copper	mg/kg	0.5	6,000	30,000	240,000	12	10	12	13	14	17	11	13	5	6.9
Lead	mg/kg	1	300	1,200	1,500	13	8	16	29	16	10	14	12	4	3
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	8.1	8.1	9.8	9.9	10	12	8.1	10	4.4	3
Thorium	mg/kg	0.5				3.2	3.6	4.9	5.2	4.9	5.2	4.3	5.2	2.3	1.7
Uranium	mg/kg	0.1				0.3	0.3	0.4	0.4	0.5	0.4	0.4	0.3	<0.1	<0.1
Zinc	mg/kg	2	7,400	60,000	400,000	96	50	40	46	37	40	36	42	15	11

					Field ID	W-0-B-5	W-0-B-200	W-0-C-5	W-0-C-200	W-0-D-5	W-0-D-200	W-0-E-5	W-0-E-200	W-10-A-5	W-10-A-200
					Date	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	7/02/2018	7/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				8.6	6.7	7	7.7	8.1	7.6	8.1	11.8	4.3	5.2
Metals															
Arsenic	mg/kg	1	100	500	3,000	2	1	1	1	2	1	2	3	1	2
Cadmium	mg/kg	0.3	20	150	900	0.5	<0.3	0.3	<0.3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				13	10	13	12	12	11	12	15	9.3	10
Copper	mg/kg	0.5	6,000	30,000	240,000	5.7	3.5	5.4	5.1	5.6	4.4	5.8	8.6	2.4	4.5
Lead	mg/kg	1	300	1,200	1,500	4	3	4	4	4	4	9	15	2	3
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	5.1	3.1	4.9	4.7	5.2	4.1	5.4	7.4	2.4	3.5
Thorium	mg/kg	0.5				2.6	1.8	2.4	2.3	2.5	2.3	2.5	3.1	1.5	2
Uranium	mg/kg	0.1				0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.4	<0.1	<0.1
Zinc	mg/kg	2	7,400	60,000	400,000	16	10	16	15	14	12	31	29	6	10

					Field ID	W-10-B-5	W-10-B-200	W-10-E-5	W-10-E-200	W-10-F-5	W-10-F-200	W-10-G-5	W-10-G-200	W-10-H-5	W-10-H-200
						7/02/2018	7/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				6.4	13.3	6.9	7.8	6.2	7	8.4	6.7	2	15.6
Metals															
Arsenic	mg/kg	1	100	500	3,000	2	5	<1	2	1	1	2	<1	2	4
Cadmium	mg/kg	0.3	20	150	900	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.3	0.4
Chromium (III+VI)	mg/kg	0.5				9.5	19	10	16	8.5	9.6	10	8.8	5.4	17
Copper	mg/kg	0.5	6,000	30,000	240,000	3.7	13	2.8	5.1	2.3	3.2	3.8	2.6	8.4	10
Lead	mg/kg	1	300	1,200	1,500	2	6	3	3	2	3	3	3	7	6
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	3	9.9	2.6	6.3	2.4	2.9	3.2	4.4	5.5	8.3
Thorium	mg/kg	0.5				1.8	4.8	1.7	2.2	1.4	1.7	1.9	1.5	1.6	3.8
Uranium	mg/kg	0.1				<0.1	0.3	<0.1	0.1	<0.1	<0.1	<0.1	0.1	1.1	0.3
Zinc	mg/kg	2	7,400	60,000	400,000	8	28	7	13	6	8	9	7	63	24

<u>Appendix G</u>

Gridded Soil Samples - Comparison of Chemistry Results against Screening Criteria

					Field ID	W-30-A-5	W-30-A-200	W-30-B-5	W-30-B-200	W-30-C-5	W-30-C-200	W-30-D-5	W-30-D-200	W-30-E-5	W-30-E-200
					Date	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential A	Residential B	Commercial Industrial D										
% Moisture	%w/w	1				1.9	15.1	6	19.1	5.6	15	6.1	19.1	5.8	11.5
Metals															
Arsenic	mg/kg	1	100	500	3,000	2	3	2	3	2	5	<1	4	2	3
Cadmium	mg/kg	0.3	20	150	900	0.4	0.7	0.6	1.4	0.5	1	0.5	1.1	0.6	0.7
Chromium (III+VI)	mg/kg	0.5				<0.5	7.9	10	24	9.5	17	9.3	19	9.8	13
Copper	mg/kg	0.5	6,000	30,000	240,000	2	6.6	3.6	15	3.1	10	3.1	13	3.3	6.7
Lead	mg/kg	1	300	1,200	1,500	3	4	3	8	3	5	3	6	2	4
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	4.1	5.4	3.3	12	2.8	8	2.8	9.6	3	5.1
Thorium	mg/kg	0.5				1.9	3	1.6	6	1.6	3.7	1.4	4.6	1.6	2.7
Uranium	mg/kg	0.1				1.4	0.3	<0.1	0.3	0.1	0.4	0.1	0.4	<0.1	0.2
Zinc	mg/kg	2	7,400	60,000	400,000	21	16	9	39	9	23	8	28	8	15

Laboratory Analytical Results above Screening Criteria are in Bolt Font and High-lighted

					Field ID	W-30-F-5	W-30-F-200	WG-0-A-10	WG-0-A-200	WG-0-B-10	WG-0-C-10	WG-0-C-200	WG-0-E-10	WG-0-E-200	WG-1-B-10
						29/05/2018	29/05/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				5.7	11.6	8	8.4	10.1	9	8	8.4	23.8	9.3
A etals															
Arsenic	mg/kg	1	100	500	3,000	1	2	<1	2	2	1	2	1	6	2
Cadmium	mg/kg	0.3	20	150	900	0.6	0.8	0.4	0.4	0.9	<0.3	0.6	0.3	0.6	<0.3
Chromium (III+VI)	mg/kg	0.5				9.3	14	13	12	13	11	10	11	27	11
Copper	mg/kg	0.5	6,000	30,000	240,000	3.1	7.5	5.3	5	7.6	4.8	5.3	5.1	18	5.4
Lead	mg/kg	1	300	1,200	1,500	3	4	5	5	15	4	16	4	9	4
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	2.9	5.9	4.7	4.3	5.6	3.9	4.6	4.2	14	4.4
Thorium	mg/kg	0.5				1.5	2.9	2.1	2.9	3	2.8	2.7	3.5	3.3	2.6
Uranium	mg/kg	0.1				<0.1	0.2	<0.1	1.5	1.5	1.3	1.3	1.4	1.7	1.3
Zinc	mg/kg	2	7,400	60,000	400,000	8	18	66	68	380	24	170	40	49	20

Appendix G

					Field ID	WG-1-B-200	WG-1-D-10	WG-1-D-200	WG-2-A-10	WG-2-A-200	WG-2-C-10	WG-2-C-200	WG-2-E-10	WG-2-E-200	WG-3-B-10
					Date	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	7/02/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	l Density	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				10	8.4	9.2	6.2	7.5	6.3	10.2	8.5	7.4	7
Metals															
Arsenic	mg/kg	1	100	500	3,000	2	3	1	2	1	4	2	2	1	1
Cadmium	mg/kg	0.3	20	150	900	<0.3	0.6	<0.3	<0.3	<0.3	0.4	<0.3	0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				11	11	9.3	9.9	9	17	11	12	9.4	10
Copper	mg/kg	0.5	6,000	30,000	240,000	4.9	6.1	3	5	2.6	11	4.3	5.2	2.9	3.6
Lead	mg/kg	1	300	1,200	1,500	4	8	3	4	3	9	3	4	3	3
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	4	5	2.4	4.3	2.3	8.5	3.2	4.5	2.4	3.1
Thorium	mg/kg	0.5				2.6	2.4	2.9	2.7	2.5	2.8	2.7	2.9	2.8	1.8
Uranium	mg/kg	0.1				1.5	1.2	1.5	1.4	1.4	1.4	1.5	1.3	1.4	<0.1
Zinc	mg/kg	2	7,400	60,000	400,000	14	97	12	19	6	29	10	13	7	9

<u>Appendix G</u>

Gridded Soil Samples - Comparison of Chemistry Results against Screening Criteria

					Field ID	WG-3-B-200	WG-3-D-10	WG-3-D-200	W-D-B-5	W-D-B-200	W-D-A-5	W-D-A-200	W-P-A-5	W-P-A-200	W-P-B-5
					Date	7/02/2018	7/02/2018	7/02/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	30/05/2018	30/05/2018	30/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013										
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)										
			HIL A Soil	HIL B Soil	HIL D Soil										
Classification			Low Density Residential	High Density Residential	Commercial Industrial										
			Residential	Residential	Commercial										
			Α	В	Industrial D										
% Moisture	%w/w	1				6.5	4	7.2	5.8	2.6	3.7	4.8	6.5	9.9	3.9
Metals															
Arsenic	mg/kg	1	100	500	3,000	3	<1	1	2	2	2	3	3	5	2
Cadmium	mg/kg	0.3	20	150	900	<0.3	<0.3	<0.3	1.2	0.8	1	1	<0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				13	9	10	17	13	14	15	20	24	15
Copper	mg/kg	0.5	6,000	30,000	240,000	7	2.7	4.1	10	6	8.7	8.6	12	17	10
Lead	mg/kg	1	300	1,200	1,500	4	2	2	8	4	17	11	10	9	28
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	5.7	2.3	3.3	7.8	4.9	6.4	6.5	9.9	13	7.6
Thorium	mg/kg	0.5				3	1.6	1.9	4	2.3	2.6	2.8	4.1	5.5	2.6
Uranium	mg/kg	0.1				0.2	<0.1	<0.1	0.2	<0.1	0.1	0.1	0.2	0.3	0.2
Zinc	mg/kg	2	7,400	60,000	400,000	16	6	9	34	17	120	69	44	38	81

Laboratory Analytical Results above Screening Criteria are in Bolt Font and High-lighted

<u>Appendix G</u>

				[Field ID	W-P-B-200	W-P-C-5	W-P-C-200	W-P-D-5	W-P-D-200	W-P-E-5	W-P-E-200
					Date	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018
			NEPM 2013	NEPM 2013	NEPM 2013							
	Unit	LOR	Table 1A(1)	Table 1A(1)	Table 1A(1)							
			HIL A Soil	HIL B Soil	HIL D Soil							
Classification			Low Density Residential	High Density Residential	Commercial Industrial							
			Residential	Residential	Commercial							
			Α	В	Industrial D							
% Moisture	%w/w	1				13.1	7.7	9.5	7.6	10.6	8.3	13.3
Aetals												
Arsenic	mg/kg	1	100	500	3,000	4	1	2	19	5	8	13
Cadmium	mg/kg	0.3	20	150	900	<0.3	<0.3	<0.3	18	<0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5				20	22	26	45	30	29	31
Copper	mg/kg	0.5	6,000	30,000	240,000	13	14	19	38	22	24	26
Lead	mg/kg	1	300	1,200	1,500	10	14	11	28	11	11	9
Mercury	mg/kg	0.05	40	120	730	<0.05	<0.05	<0.05	0.36	< 0.05	<0.05	<0.05
Nickel	mg/kg	0.5	400	1,200	6,000	11	12	14	33	15	15	17
Thorium	mg/kg	0.5				4.3	4.7	5.5	5	6.2	5.6	6.3
Uranium	mg/kg	0.1				0.3	0.1	0.2	0.2	0.2	0.2	0.4
Zinc	mg/kg	2	7,400	60,000	400,000	44	55	48	67	64	58	52

19
18
45
38
1200
0.36
33
7.5
1.7
1800

Appendix H – Comparison of Gridded Samples vs. Natural Radiological Criteria

<u>Appendix H</u> <u>Gridded Soil Samples - Table of Radiological Analysis</u>

		E-0-A-5	E-0-A-200	E-0-C-5	E-0-C-5-DUP	E-0-C-200	E-10-A-5	E-10-A-200	E-10-B-5	E-10-C-5	E-30-B-5	E-30-C-5	E-30-C-200
		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL-	SOIL-	SOIL-
		7/2/2018	7/2/2018	7/2/2018		7/2/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018
	Sample Number	ME305752.071	ME305752.072	ME305752.075		ME305752.076	ME306928.027	ME306928.028	ME306928.029	ME306928.031	ME306928.003	ME306928.005	ME306928.006
Radium-226	Bq/kg	14.7 ±1.3	22.7 ±2.0	20.5 ±2.0	12 ±10% ⁽¹⁾	13.8 ±1.6	18.2 ±1.8	21.7 ±2.4	13.2 ±1.2	13.5 ±1.6	17.9 ±1.9	46.5 ±3.9	17.2 ±1.9
					14 ±10% ⁽²⁾								
Lead-210	Bq/kg	11.3 ±2.9	11.8 ±4.0	32.1 ±10.5	42 ±10%	26.6 ±5.3	17.1 ±4.2	22.8 ±5.6	12.2 ±2.9	12.8 ±4.2	25.9 ±5.2	167 ±20	54.5 ±8.6
Radium-228	Bq/kg	10.8 ±1.4	28.7 ±2.8	15.3 ±2.0	18 ±15% ⁽³⁾	13.8 ±2.1	22.0 ±2.6	27.8 ±3.6	13.0 ±1.5	9.0 ±2.0	20.9 ±2.6	30.8 ±3.5	22.9 ±3.1
Thorium-228	Bq/kg	9.0 ±1.1	32.0 ±3.4	15.6 ±1.9	16 ±10% ⁽⁴⁾	13.3 ±1.7	22.4 ±2.3	30.0 ±3.6	11.2 ±1.3	10.2 ±1.4	17.3 ±2.1	31.6 ±3.1	24.5 ±2.9

		E-P-B-5	E-P-B-5-DUP	E-P-B-200	N-0-A-5	N-0-A-5-DUP	N-0-A-200	N-10-B-5	N-10-B-5-DUP	N-10-B-200	N-10-D-5	N-30-B-5	N-30-B-5-DUP
		SOIL	(DUP07)	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		30/5/2018	SOIL	30/5/2018	7/2/2018		7/2/2018	7/2/2018		7/2/2018	7/2/2018	6/2/2018	
	Sample Number	ME306928.057		ME306928.058	ME305752.077		ME305752.078	ME305752.083		ME305752.084	ME305752.087	ME305752.109	
Radium-226	Bq/kg	19.5 ±2.1	19 ±10% ⁽¹⁾	19.0 ±2.1	12.2 ±1.5	12 ±10% ⁽¹⁾	12.9 ±1.5	7.0 ±0.9	8.2 ±10% ⁽¹⁾	9.5 ±1.1	9.2 ±1.1	8.0 ±0.8	7.4 ±10% ⁽¹⁾
			20 ±10% ⁽²⁾			11 ±10% ⁽²⁾			8.5 ±10% ⁽²⁾				7.5 ±11% ⁽²⁾
Lead-210	Bq/kg	19.2 ±5.3	25 ±11%	17.8 ±4.9	13.0 ±3.9	20 ±10%	12.5 ±3.9	<22.0	10 ±20%	12.7 ±5.8	7.7 ±2.9	11.4 ±2.8	10 ±17%
Radium-228	Bq/kg	27.6 ±3.4	35 ±10% ⁽³⁾	29.6 ±3.5	18.6 ±2.5	16 ±10% ⁽³⁾	20.7 ±2.6	11.4 ±1.6	15 ±10% ⁽³⁾	12.0 ±1.6	16.0 ±2.1	10.7 ±1.3	12 ±13% ⁽³⁾
Thorium-228	Bq/kg	26.7 ±3.2	32 ±10% ⁽⁴⁾	28.7 ±3.4	17.7 ±2.1	18 ±10% ⁽⁴⁾	19.4 ±2.3	12.2 ±1.5	13 ±10% ⁽⁴⁾	14.0 ±1.5	13.5 ±1.5	11.3 ±1.3	12 ±10% ⁽⁴⁾

		N-30-B-200	N-P-B-5	N-P-B-5-DUP	N-P-B-200	S-0-A-5	S-0-A-200	S-10-A-5	S-10-A-200	S-10-C-5	S-10-C-5-DUP	S-10-C-200	S-30-C-5
		SOIL	SOIL	(DUP08)	SOIL	SOIL	SOIL						
		6/2/2018	30/5/2018	SOIL	30/5/2018	7/2/2018	7/2/2018	7/2/2018	7/2/2018	7/2/2018		7/2/2018	29/5/2018
	Sample Number	ME305752.110	ME306928.051		ME306928.052	ME305752.061	ME305752.062	ME305752.063	ME305752.064	ME305752.067		ME305752.068	ME306928.011
Radium-226	Bq/kg	6.9 ±1.0	18.9 ±2.0	18 ±10% ⁽¹⁾	22.0 ±2.4	15.2 ±1.6	20.5 ±1.9	17.7 ±2.0	17.5 ±1.7	14.9 ±1.5	13 ±10% ⁽¹⁾	21.2 ±1.8	16.5 ±1.6
				20 ±10% ⁽²⁾							13 ±10% ⁽²⁾		
Lead-210	Bq/kg	15.1 ±3.8	44.5 ±7.4	42 ±10%	40.2 ±7.0	11.4 ±3.4	<28.0	32.3 ±5.8	21.9 ±9.2	14.9 ±5.5	21 ±12%	20.6 ±4.4	24.8 ±4.7
Radium-228	Bq/kg	9.1 ±1.7	27.9 ±3.3	34 ±10% ⁽³⁾	35.1 ±4.0	12.4 ±1.9	28.9 ±3.0	22.3 ±2.8	25.5 ±2.7	10.8 ±1.5	15 ±12% ⁽³⁾	29.9 ±2.7	21.9 ±2.5
Thorium-228	Bq/kg	10.4 ±1.4	28.0 ±3.3	38 ±10% ⁽⁴⁾	36.1 ±4.3	10.8 ±1.3	32.1 ±3.2	23.8 ±2.9	25.1 ±2.9	13.1 ±1.4	15 ±10% ⁽⁴⁾	27.0 ±2.5	20.6 ±2.2

		S-30-C-200	S-30-E-5	S-R-A-5	S-R-A-200	S-R-B-5	S-R-C-5	S-R-D-5	S-R-E-5	W-0-A-5	W-0-A-5-DUP	W-0-A-200
		SOIL	SOIL									
		29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	7/2/2018		7/2/2018
	Sample Number	ME306928.012	ME306928.015	ME306928.017	ME306928.018	ME306928.019	ME306928.021	ME306928.023	ME306928.025	ME305752.047		ME305752.048
Radium-226	Bq/kg	16.2 ±1.8	21.4 ±2.0	13.1 ±1.6	10.3 ±1.1	16.2 ±1.6	18.3 ±1.6	21.4 ±1.8	20.6 ±1.8	8.2 ±0.9	7.5 ±11% ⁽¹⁾	6.6 ±0.7
											7.8 ±13% ⁽²⁾	
Lead-210	Bq/kg	26.0 ±5.0	37.8 ±9.8	30.8 ±5.7	<20.0	32.5 ±7.5	36.2 ±5.9	29.9 ±5.2	54.8 ±8.1	7.9 ±2.6	12 ±20%	4.6 ±2.2
Radium-228	Bq/kg	21.5 ±2.8	27.5 ±2.8	20.0 ±2.6	13.5 ±1.7	21.6 ±2.2	29.5 ±2.7	29.9 ±2.8	28.5 ±2.7	13.1 ±1.5	15 ±13% ⁽³⁾	9.3 ±1.2
Thorium-228	Bq/kg	20.8 ±2.5	26.6 ±3.1	17.4 ±2.2	15.0 ±1.8	22.9 ±2.3	27.0 ±2.6	29.0 ±3.1	29.6 ±3.1	11.6 ±1.3	13 ±10% ⁽⁴⁾	9.8 ±1.1

		W-0-C-5	W-0-C-5-DUP	W-0-C-200	W-10-A-5	W-10-A-200	W-10-E-5	W-10-E-200	W-10-G-5	W-10-G-200	W-30-B-5	W-30-B-200	W-30-C-5
		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		6/2/2018		6/2/2018	7/2/2018	7/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	29/5/18 8:46	29/5/2018	29/5/2018
	Sample Number	ME305752.101		ME305752.102	ME305752.115	ME305752.051	ME305752.103	ME305752.104	ME305752.095	ME305752.096	ME306928.035	ME306928.036	ME306928.037
Radium-226	Bq/kg	8.2 ±1.1	8.1 ±11% ⁽¹⁾	8.2 ±1.1	6.6 ±1.0	6.6 ±0.9	6.8 ±0.7	7.2 ±1.0	7.4 ±1.0	5.7 ±0.9	8.0 ±1.0	23.4 ±2.1	7.9 ±1.1
			8.2 ±11% ⁽²⁾										
Lead-210	Bq/kg	13.3 ±3.8	15 ±16%	8.2 ±3.2	8.2 ±3.1	<11.0	7.4 ±2.3	<8.7	7.9 ±3.3	10.0 ±3.3	8.2 ±2.8	21.9 ±7.3	11.2 ±3.2
Radium-228	Bq/kg	12.5 ±2.0	18 ±14% ⁽³⁾	9.9 ±1.7	10.0 ±1.8	10.9 ±1.7	9.2 ±1.2	10.5 ±1.7	8.1 ±1.7	9.5 ±1.7	9.9 ±1.6	34.9 ±3.2	10.9 ±1.8
Thorium-228	Bq/kg	12.0 ±1.6	13 ±10% ⁽⁴⁾	10.9 ±1.4	9.8 ±1.4	10.5 ±1.4	9.1 ±1.1	8.7 ±1.2	10.2 ±1.3	7.4 ±1.1	10.6 ±1.2	35.3 ±3.5	10.7 ±1.4

WG-0-B-10-DUP SOIL

ANSTO Duplicate Radiological Analysis

Indictaive measurement of: [1] Lead-214 for Radium-226; [2] Bismuth-214 for Radium-226 [3] Actinium-228 for radium-228; [4] Lead-212 for thorium-228

<u>Appendix H</u> <u>Gridded Soil Samples - Table of Radiological Analysis</u>

		W-30-C-200	W-D-B-5	W-D-B-200	W-D-A-5	W-D-A-200	WG-0-A-10	WG-0-A-200	WG-0-B-10	WG-0-B-10-DUP	WG-0-C-10	WG-0-C-200	WG-0-E-10
		SOIL	SOIL	SOIL	SOIL								
		29/5/2018	29/5/2018	29/5/2018	29/5/2018	29/5/2018	6/2/2018	6/2/2018	6/2/2018		6/2/2018	6/2/2018	6/2/2018
	Sample Number	ME306928.038	ME306928.045	ME306928.046	ME306928.047	ME306928.048	ME305752.001	ME305752.002	ME305752.003		ME305752.004	ME305752.005	ME305752.008
Radium-226	Bq/kg	8.0 ±0.8	14.0 ±1.2	8.1 ±0.8	11.3 ±1.2	11.1 ±1.0	8.7 ±1.0	7.1 ±1.0	7.7 ±0.8	8.7 ±10% ⁽¹⁾	8.4 ±1.1	9.6 ±1.2	7.1 ±1.0
										9.2 ±11% ⁽²⁾			
Lead-210	Bq/kg	8.6 ±2.5	29.9 ±4.8	14.2 ±3.0	20.7 ±8.3	10.1 ±2.7	13.0 ±5.6	13.2 ±3.7	10.5 ±2.7	31 ±10%	12.4 ±2.5	17.9 ±4.3	8.8 ±3.3
Radium-228	Bq/kg	13.3 ±1.5	23.2 ±2.2	11.6 ±1.4	15.7 ±1.9	17.0 ±1.8	10.2 ±1.2	10.4 ±1.7	11.6 ±1.4	12 ±10% ⁽³⁾	11.0 ±1.9	11.7 ±2.1	9.7 ±1.7
Thorium-228	Bq/kg	10.4 ±1.2	22.9 ±2.2	11.1 ±1.3	16.7 ±2.0	15.4 ±1.7	10.8 ±1.3	11.0 ±1.4	10.8 ±1.2	13 ±10% ⁽⁴⁾	11.9 ±1.5	9.5 ±1.3	10.7 ±1.4

		WG-0-E-200	WG-1-B-10	WG-1-B-200	WG-1-D-10	WG-1-D-200	WG-2-A-10	WG-2-A-200	WG-2-C-10	WG-2-C-200	WG-2-E-10	WG-2-E-200	WG-3-B-10
		SOIL											
		6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	6/2/2018	7/2/2018
	Sample Number	ME305752.009	ME305752.014	ME305752.015	ME305752.020	ME305752.021	ME305752.026	ME305752.027	ME305752.032	ME305752.033	ME305752.038	ME305752.039	ME305752.052
Radium-226	Bq/kg	8.1 ±1.0	8.2 ±1.0	7.1 ±0.7	7.6 ±1.0	5.9 ±0.9	8.5 ±1.0	7.4 ±1.0	7.8 ±0.9	6.1 ±0.8	9.3 ±1.2	7.2 ±0.8	8.4 ±1.2
Lead-210	Bq/kg	9.2 ±7.0	7.5 ±4.4	7.7 ±2.4	19.8 ±4.4	15.3 ±3.6	9.5 ±3.0	9.7 ±3.2	<22.0	<18.0	7.4 ±3.4	7.9 ±2.6	10.4 ±3.9
Radium-228	Bq/kg	11.9 ±1.7	11.5 ±1.6	9.9 ±1.2	13.2 ±2.0	8.6 ±1.6	13.3 ±1.8	12.7 ±1.9	11.9 ±1.6	10.6 ±1.4	11.1 ±2.0	10.4 ±1.2	10.5 ±2.0
Thorium-228	Bq/kg	11.0 ±1.4	12.6 ±1.4	10.2 ±1.2	11.6 ±1.5	9.1 ±1.2	12.2 ±1.4	11.9 ±1.6	12.7 ±1.6	9.2 ±1.1	12.2 ±1.6	10.4 ±1.1	12.7 ±1.7

		WG-3-B-200	WG-3-D-10	WG-3-D-200	W-P-B-5	W-P-B-5-DUP	W-P-B-200	W-P-C-5	W-P-C-5-DUP	W-P-C-200
		SOIL	SOIL	SOIL	SOIL	(DUP04)	SOIL	SOIL	(DUP05)	SOIL
		7/2/2018	7/2/2018	7/2/2018	30/5/2018	SOIL	30/5/2018	30/5/2018	SOIL	30/5/2018
	Sample Number	ME305752.053	ME305752.058	ME305752.059	ME306928.067		ME306928.068	ME306928.069		ME306928.070
Radium-226	Bq/kg	6.1 ±0.7	9.8 ±1.3	5.5 ±0.8	15.8 ±1.6	14 ±10% ⁽¹⁾	17.0 ±1.8	19.8 ±1.9	17 ±10% ⁽¹⁾	19.0 ±1.9
						14 ±10% ⁽²⁾			18 ±11% ⁽²⁾	
Lead-210	Bq/kg	10.8 ±2.6	12.0 ±3.7	<25.0	49.1 ±7.3	31 ±10%	31.1 ±6.0	31.0 ±5.7	33 ±10%	24.3 ±5.1
Radium-228	Bq/kg	8.3 ±1.1	9.9 ±1.9	8.6 ±1.4	20.2 ±2.5	20 ±10% ⁽³⁾	22.4 ±2.9	34.2 ±3.6	33 ±10% ⁽³⁾	32.3 ±3.4
Thorium-228	Bq/kg	8.6 ±1.0	11.2 ±1.5	8.4 ±1.1	21.7 ±2.3	22 ±10% ⁽⁴⁾	25.9 ±3.0	33.1 ±3.3	32 ±10% ⁽⁴⁾	31.8 ±3.2

		Mean Dis	tribution (UN	CEAR 2000)										
	Field ID	Range	Range		Composite 01	Composite 02	Composite 03	Composite 04	E-0-A-5	E-0-A-200	E-0-B-5	Е-0-В-200	E-0-C-5	E-0-C-200
	Date	Minumum	Maximum	Mean	6/02/2018	6/02/2018	6/02/2018	6/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.1	0.1	0.1	0.1	0.6	0.6	0.2	0.2	0.4	0.4
Thorium	mg/kg	2.7	15.7	7.4	1.5	1.9	1.8	2	7	6.8	2.2	1.8	2.8	2.2
Uranium	Bq/kg	16	110	35	1.2	1.2	1.2	1.2	2 7.4	7.4	2.5	2.5	4.9	4.9
Thorium	Bq/kg	11	64	30	6.1	7.7	7.3	8.2	1 28.5	27.6	8.9	7.3	11.4	8.9

		Mean Di	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		E-10-A-5	E-10-A-200	E-10-B-5	E-10-B-200	E-10-C-5	E-10-C-200	E-30-A-5	E-30-A-200	E-30-B-5	E-30-B-200
	Date	Minumum	Maximum	Mean	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.4	0.5	0.4	0.7	0.4	0.1	0.5	0.8	0.4	0.7
Thorium	mg/kg	2.7	15.7	7.4	2.2	5.7	1.5	5.6	1	0.5	5.1	5.1	3.4	3.7
Uranium	Bq/kg	16	110	35	4.9	6.2	4.9	8.6	4.9	1.2	6.2	9.9	4.9	8.6
Thorium	Bq/kg	11	64	30	8.9	23.2	6.1	22.8	4.1	2.0	20.7	20.7	13.8	3 15.0

		Mean Dis	stribution (UN	CEAR 2000)]									
	Field ID	Range	Range		E-30-C-5	E-30-C-200	E-P-A-5	E-P-A-200	Е-Р-В-5	E-P-B-200	E-P-C-5	E-P-C-200	E-P-D-5	E-P-D-200
	Date	Minumum	Maximum	Mean	29/05/2018	29/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.4	0.4	0.4	0.4	0.5	0.3	0.4	0.4	0.3	0.3
Thorium	mg/kg	2.7	15.7	7.4	3.7	4.1	6.1	5.9	5.6	5.7	5.3	6	3.9	2.9
Uranium	Bq/kg	16	110	35	4.9	4.9	4.9	4.9	6.2	3.7	4.9	4.9	3.7	3.7
Thorium	Bq/kg	11	64	30	15.0	16.7	24.8	24.0	22.8	23.2	21.5	24.4	15.9	11.8

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		E-P-E-5	E-P-E-200	N-0-A-200	N-0-B-5	N-0-B-200	N-10-A-5	N-10-A-200	N-10-B-5	N-10-B-200	N-10-C-5
	Date	Minumum	Maximum	Mean	30/05/2018	30/05/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.3	0.3	0.3	0.3	0.2	0.1	0.2	0.1	0.6	0.1
Thorium	mg/kg	2.7	15.7	7.4	5.5	5.2	3.2	2.4	2.2	2	2.3	2	6.5	3
Uranium	Bq/kg	16	110	35	3.7	3.7	3.7	3.7	2.5	1.2	2.5	1.2	7.4	1.2
Thorium	Bq/kg	11	64	30	22.4	21.1	13.0	9.8	8.9	8.1	9.3	8.1	26.4	. 12.2

	LEGE	ND		
Uranium	Bq/kg	1.2	1.2	
Thorium	Bq/kg	6.1	7.7	Converted r

Converted results from mg/kg to Bq/kg

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		N-10-C-200	N-10-D-5	N-10-D-200	N-30-A-5	N-30-A-200	N-30-B-5	N-30-B-200	N-30-C-5	N-30-C-200	N-30-D-200
	Date	Minumum	Maximum	Mean	8/02/2018	8/02/2018	8/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.3	0.4	0.4	0.1	0.2	0.1	0.1	0.1	0.1	0.5
Thorium	mg/kg	2.7	15.7	7.4	6.3	6.2	6.1	1.6	2.8	1.9	2.1	2	1.8	6.4
Uranium	Bq/kg	16	110	35	3.7	4.9	4.9	1.2	2.5	1.2	1.2	1.2	1.2	6.2
Thorium	Bq/kg	11	64	30	25.6	25.2	24.8	6.5	11.4	7.7	8.5	8.1	7.3	26.0

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		N-P-A-5	N-P-A-200	N-P-B-5	N-P-B-200	N-P-C-5	N-P-C-200	S-0-A-5	S-0-A-200	S-10-A-5	S-10-A-200
	Date	Minumum	Maximum	Mean	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.2	0.2	0.2	0.9	0.2	0.4	0.4	0.6	0.3	0.2
Thorium	mg/kg	2.7	15.7	7.4	4.8	5.5	5.1	7	5.8	5.7	1.4	7.5	3.6	3.1
Uranium	Bq/kg	16	110	35	2.5	2.5	2.5	11.1	2.5	4.9	4.9	7.4	3.7	2.5
Thorium	Bq/kg	11	64	30	19.5	22.4	20.7	28.5	23.6	23.2	5.7	30.5	14.6	5 12.6

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		S-10-B-5	S-10-B-200	S-10-C-5	S-10-C-200	S-10-D-5	S-10-D-200	S-30-A-5	S-30-A-200	S-30-B-5	S-30-B-200
	Date	Minumum	Maximum	Mean	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.6	0.5	0.5	0.6	0.5	0.5	0.1	0.2	0.2	0.3
Thorium	mg/kg	2.7	15.7	7.4	2.8	5.2	1.7	1.9	3.6	6.7	1.7	2.4	2.7	3.4
Uranium	Bq/kg	16	110	35	7.4	6.2	6.2	7.4	6.2	6.2	1.2	2.5	2.5	, 3.7
Thorium	Bq/kg	11	64	30	11.4	21.1	6.9	7.7	14.6	27.2	6.9	9.8	11.0) 13.8

		Mean Dis	tribution (UN	CEAR 2000)										
	Field ID	Range	Range		S-30-C-5	S-30-C-200	S-30-D-5	S-30-D-200	S-30-E-5	S-30-E-200	S-R-A-5	S-R-A-200	S-R-B-5	S-R-B-200
	Date	Minumum	Maximum	Mean	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.3	0.4	0.1	1.4	0.5	0.6	0.2	0.2	0.3	0.3
Thorium	mg/kg	2.7	15.7	7.4	2.2	2.5	1	6.3	3.9	4.6	2.3	2.3	3.2	3.6
Uranium	Bq/kg	16	110	35	3.7	4.9	1.2	17.3	6.2	7.4	2.5	2.5	3.7	3.7
Thorium	Bq/kg	11	64	30	8.9	10.2	4.1	25.6	15.9	18.7	9.3	9.3	13.0	14.6

	LEGE	<u>ND</u>		
Uranium	Bq/kg	1.2	1.2	
Thorium	Bq/kg	6.1	7.7	- Converted r

Converted results from mg/kg to Bq/kg

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		S-R-C-5	S-R-C-200	S-R-D-5	S-R-D-200	S-R-E-5	S-R-E-200	W-0-A-5	W-0-A-200	W-0-B-5	W-0-B-200
	Date	Minumum	Maximum	Mean	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	7/02/2018	7/02/2018	6/02/2018	6/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.4	0.4	0.5	0.4	0.4	0.3	0.1	0.1	0.1	0.1
Thorium	mg/kg	2.7	15.7	7.4	4.9	5.2	4.9	5.2	4.3	5.2	2.3	1.7	2.6	1.8
Uranium	Bq/kg	16	110	35	4.9	4.9	6.2	4.9	4.9	3.7	1.2	1.2	1.2	1.2
Thorium	Bq/kg	11	64	30	19.9	21.1	19.9	21.1	17.5	21.1	9.3	6.9	10.6	7.3

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		W-0-C-5	W-0-C-200	W-0-D-5	W-0-D-200	W-0-E-5	W-0-E-200	W-10-A-5	W-10-A-200	W-10-B-5	W-10-B-200
	Date	Minumum	Maximum	Mean	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.1	0.1	0.1	0.1	0.1	0.4	0.1	0.1	0.1	0.3
Thorium	mg/kg	2.7	15.7	7.4	2.4	2.3	2.5	2.3	2.5	3.1	1.5	2	1.8	4.8
Uranium	Bq/kg	16	110	35	1.2	1.2	1.2	1.2	1.2	4.9	1.2	1.2	1.2	3.7
Thorium	Bq/kg	11	64	30	9.8	9.3	10.2	9.3	10.2	12.6	6.1	8.1	7.3	3 19.5

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		W-10-E-5	W-10-E-200	W-10-F-5	W-10-F-200	W-10-G-5	W-10-G-200	W-10-H-5	W-10-H-200	W-30-A-5	W-30-A-200
	Date	Minumum	Maximum	Mean	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	29/05/2018	29/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.1	0.1	0.1	0.1	0.1	0.1	1.1	0.3	1.4	0.3
Thorium	mg/kg	2.7	15.7	7.4	1.7	2.2	1.4	1.7	1.9	1.5	1.6	3.8	1.9	3
Uranium	Bq/kg	16	110	35	1.2	1.2	1.2	1.2	1.2	1.2	13.6	3.7	17.3	3.7
Thorium	Bq/kg	11	64	30	6.9	8.9	5.7	6.9	7.7	6.1	6.5	15.4	7.7	12.2

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		W-30-B-5	W-30-B-200	W-30-C-5	W-30-C-200	W-30-D-5	W-30-D-200	W-30-E-5	W-30-E-200	W-30-F-5	W-30-F-200
	Date	Minumum	Maximum	Mean	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.1	0.3	0.1	0.4	0.1	0.4	0.1	0.2	0.1	0.2
Thorium	mg/kg	2.7	15.7	7.4	1.6	6	1.6	3.7	1.4	4.6	1.6	2.7	1.5	2.9
Uranium	Bq/kg	16	110	35	1.2	3.7	1.2	4.9	1.2	4.9	1.2	2.5	1.2	2.5
Thorium	Bq/kg	11	64	30	6.5	24.4	6.5	15.0	5.7	18.7	6.5	11.0	6.1	. 11.8

	LEGEI	ND		
Uranium	Bq/kg	1.2	1.2	
Thorium	Bq/kg	6.1	7.7	- Converted r

Converted results from mg/kg to Bq/kg

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		WG-0-A-10	WG-0-A-200	WG-0-B-10	WG-0-C-10	WG-0-C-200	WG-0-E-10	WG-0-E-200	WG-1-B-10	WG-1-B-200	WG-1-D-10
	Date	Minumum	Maximum	Mean	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
Uranium	mg/kg	1.3	8.9	2.8	0.1	1.5	1.5	1.3	1.3	1.4	1.7	1.3	1.5	1.2
Thorium	mg/kg	2.7	15.7	7.4	2.1	2.9	3	2.8	2.7	3.5	3.3	2.6	2.6	2.4
Uranium	Bq/kg	16	110	35	1.2	18.5	18.5	16.0	16.0	17.3	21.0	16.0	18.5	14.8
Thorium	Bq/kg	11	64	30	8.5	11.8	12.2	11.4	11.0	14.2	13.4	10.6	10.6	9.8

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		WG-1-D-200	WG-2-A-10	WG-2-A-200	WG-2-C-10	WG-2-C-200	WG-2-E-10	WG-2-E-200	WG-3-B-10	WG-3-B-200	WG-3-D-10
	Date	Minumum	Maximum	Mean	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	7/02/2018	7/02/2018	7/02/2018
Uranium	mg/kg	1.3	8.9	2.8	1.5	1.4	1.4	1.4	1.5	1.3	1.4	0.1	0.2	0.1
Thorium	mg/kg	2.7	15.7	7.4	2.9	2.7	2.5	2.8	2.7	2.9	2.8	1.8	3	1.6
Uranium	Bq/kg	16	110	35	18.5	17.3	17.3	17.3	18.5	16.0	17.3	1.2	2.5	, 1.2
Thorium	Bq/kg	11	64	30	11.8	11.0	10.2	11.4	11.0	11.8	11.4	7.3	12.2	2 6.5

		Mean Dis	stribution (UN	CEAR 2000)										
	Field ID	Range	Range		WG-3-D-200	W-D-B-5	W-D-B-200	W-D-A-5	W-D-A-200	W-P-A-5	W-P-A-200	W-P-B-5	W-P-B-200	W-P-C-5
	Date	Minumum	Maximum	Mean	7/02/2018	29/05/2018	29/05/2018	29/05/2018	29/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.1	0.2	0.1	0.1	0.1	0.2	0.3	0.2	0.3	0.1
Thorium	mg/kg	2.7	15.7	7.4	1.9	4	2.3	2.6	2.8	4.1	5.5	2.6	4.3	4.7
Uranium	Bq/kg	16	110	35	1.2	2.5	1.2	1.2	1.2	2.5	3.7	2.5	3.7	1.2
Thorium	Bq/kg	11	64	30	7.7	16.3	9.3	10.6	11.4	16.7	22.4	10.6	17.5	19.1

		Mean Di	stribution (UN	CEAR 2000)					
	Field ID	Range	Range		W-P-C-200	W-P-D-5	W-P-D-200	W-P-E-5	W-P-E-200
	Date	Minumum	Maximum	Mean	30/05/2018	30/05/2018	30/05/2018	30/05/2018	30/05/2018
Uranium	mg/kg	1.3	8.9	2.8	0.2	0.2	0.2	0.2	0.4
Thorium	mg/kg	2.7	15.7	7.4	5.5	5	6.2	5.6	6.3
Uranium	Bq/kg	16	110	35	2.5	2.5	2.5	2.5	4.9
Thorium	Bq/kg	11	64	30	22.4	20.3	25.2	22.8	25.6

	LEGE			
Uranium	Bq/kg	1.2	1.2	
Thorium	Bq/kg	6.1	7.7	- Converted re

Appendix I – Data Validation and Quality Assessment

Appendix I - Quality Assurance and Quality Control

A review of the quality of data has been based on the following:

- Review of the findings of sample analyses against field observations and measurements
- Review of data quality based on the verification of field Quality Assurance / Quality Control (QA/QC) procedures, evidence of proper transference of samples and sample analysis
- Analysis of duplicate samples by an independent laboratory (split duplicate) for samples subjected to radiological analysis
- Internal laboratory QA/QC analyses including analysis of reagent blanks, spike recoveries and duplicates.

These requirements are defined in NEPM 1999 (2013 amendment) and relevant Australian Standards, as listed in the report body.

The radiological samples and QA/QC results were reported in laboratory reports from the primary lab (SGS) and from the secondary laboratory (ANSTO). The data quality assessment described herein is based upon the results reported in these laboratory certificates and associated QC reports.

A summary of the QC analyses from these reports completed as part of the study is provided in **Tables A** through **Table E** at the end of this appendix.

1 Data Quality Indicators

Data Quality Indicators (DQIs) are developed to provide goals for the quality of data required to sufficiently meet the site-specific objectives of Environmental Site Assessments. Precision, sensitivity, accuracy, representativeness, comparability and completeness (PSARCC) parameters are all indicators of data quality. The below points describe each PSARCC parameter in relation to assessment of data quality and the typical methods and assessment employed to verify the DQIs:

- Precision measure of the variation in results from a laboratory method. Achieved through assessment of laboratory and field duplicate results
- Sensitivity the ability of an analytical method or technology to reliably identify a compound in the sample medium at an appropriate level of interest. Achieved through ensuring that laboratory detection limits are below the adopted criteria
- Accuracy measure of the closeness of the analytical result obtained by a method to the 'true' value. Assessed through laboratory QA/QC samples such as matrix spikes, laboratory control samples, method blanks and surrogate spikes;
- Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sample point, or an environmental condition. Achieved through assessment of trip spike, trip blank and rinsate sample results along with standard procedures for sample collection, transport and extraction and holding times
- Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. Achieved through undertaking fieldwork using standard operating procedures and consistent field personnel
- Completeness defined as the percentage of measurements made which are judged to be valid measurements. Achieved through assessment of the percentage of data that passed the QA/QC assessment with a goal of 95%.

The typical DQIs used to assess the PSARCC parameters for this investigation are detailed in **Table A** below.

Data Quality Indicator	r Typical DQI Requirement	
Precision		
Field Duplicate RPDs.	AS4482.1-2005 states that the RPDs of duplicates are typically 30-50%, however, variation can be expected to be higher for organic analyses than inorganic analyses and for low concentrations of analytes. CH2M has developed the following DQIs for field duplicates that are generally consistent with AS4482.1-2005:	
	Less than 10 times LOR: no limit	
	Between 10-20 times LOR: <50% RPD	
	Greater than 20 times LOR: <20% RPD	
	One intra-laboratory duplicate should be submitted to the primary laboratory every twenty samples. One inter-laboratory duplicate should be submitted to the secondary laboratory every twenty samples.	

Table A – Summary of Typical Data Quality Indicators

Data Quality Indicator	Typical DQI Requirement	
Laboratory duplicate RPDs	Laboratory limits specified in ALS Method QWI-EN/38 (consistent with the field duplicate DQIs).	
	Less than 10 times LOR: no limit	
	Between 10-20 times LOR: <50% RPD	
	Greater than 20 times LOR: <20% RPD	
	One internal laboratory duplicate to be analysed by the primary and secondary laboratories, respectively, for every twenty samples analysed.	
Sensitivity		
Laboratory detection limits	Laboratory achieved LORs to be appropriate for comparison to screening criteria, a detailed in Tables C to G , contained within this Appendix.	
Accuracy		
Laboratory Control Samples (inorganics)	70% to 130% recovery for inorganics.	
Laboratory Control Spikes (organics)	Dynamic recovery limits based on statistical evaluation of processed control spike the laboratory.	
Matrix Spikes (organics)	70% to 130% recovery for inorganics, or as otherwise specified by the respective laboratory.	
Method Blanks (organics)	Not detected above laboratory LOR.	
Surrogate Spikes (organics)	Acceptable limits are determined by the laboratory based on the recoveries obtain for samples of similar matrix type analysed under the same analytical conditions.	
Representativeness		
Trip Blanks (for volatiles and semi-volatiles in soil and water)	Not detected above laboratory LOR	
Trip Spikes (for volatiles and semi-volatiles in soil and water) and Trip Spike Controls (for volatiles and semi-volatiles in soil)	The trip spikes are used to assess potential volatile losses during the handing and transport of the closed primary samples. Trip spikes are taken into the field and transported with the primary samples to the laboratory. Trip spikes are not opened ir the field. The DQI for trip spikes is the percentage recovery and should be between 30% and 130%, which is generally consistent with AS4482.1-2005 for field duplicates.	
Procedures	All fieldwork including decontamination procedures to be undertaken in general accordance with CH2M's Standard Operating Procedures (SOPs). In particular, reusable sampling equipment is decontaminated after each use as follows:	
	 put on phthalate-free nitrile gloves set up three buckets and: a) fill bucket 1 with 2-5% Decon 90 solution b) fill bucket 2 with potable water c) fill bucket 3 with potable water wash all equipment surfaces that contacted potentially contaminated soil/water in bucket 1 rinse equipment in bucket 2 repeat rinse in bucket 2 air dry 	
Analysis	QAQC to be conducted in accordance with NEPM 1999 (2013 amendment).	

Data Quality Indicator	Typical DQI Requirement	
Handling and Transport	Sample handling, storage and transport to be in accordance with the requirements of NEPM 1999 (2013 amendment).	
Holding Times	Samples to be extracted and analysed within appropriate holding times.	
Chain of Custody	Samples to be transported under full chain of custody documentation (COC). The laboratory to return a copy of the signed COC acknowledging the receipt data and time and identity of samples included in the shipment.	
Certificates of Analysis	Include Laboratory Certificates of Analysis which detail any standard and non-standard methods used.	
Rinsate	The rinsate should be collected from re-useable equipment that was used at mult sampling locations and decontaminated in between samples. The rinsate should be collected from decontaminated equipment using laboratory supplied rinsate water and collection bottles. The DQI for the rinsate is below detection limits or low concentrations of contaminants of concern.	
Comparability		
Procedures	Samples to be collected in general accordance CH2M's SOPs and NEPM 1999 (2013 amendment). All field team members to be appropriately trained in these documents.	
Logging of Sample Locations	Logs and field data to be recorded for each sample location noting any observed variations between conditions and signs of potential contamination.	
Handling and Transport	Primary samples to be stored, handled and transported under the same conditions and analysed by the same laboratory using consistent methods.	
	DQIs to indicate acceptable precision and accuracy.	
Completeness		
Critical Samples	Data from all critical samples to be considered valid.	
Dataset Evaluation	Overall dataset to be considered valid (>95% acceptable after data validation procedures).	

The assessment of QA/QC against the typical requirements listed in **Table A**, including a data quality assessment of the laboratory data is provided in **Table B** below and in **Tables C to G** included in this Appendix. Included in **Table B** are the Data Quality Indicators (DQIs) used to measure the Precision, Accuracy, Representativeness, Completeness, Comparability and Sensitivity (PARCCS) parameters for the DSI field and analytical program.

Detailed Site Investigation **Data Quality Indicator Data Quality Indicators** Summary of Results Compliance Precision Field Duplicate Relevant AS4482.1-2005 states that the 5 inter-lab duplicates were collected for Yes Percent Difference (RPD). RPDs of duplicates are radiological samples, which were analysed at typically 30-50%, however, ANSTO. AS there is no standard LOR for variation can be expected to radiological sample analysis, there is subsequently no DQIs for field duplicate RPDs. Additionally, be higher for organic analyses than inorganic analyses and radiological results are returned with unique for low concentrations of confidence limits (95%) or standard error. analytes. CH2M has If an RPD DQI of 50% is applied, without considering developed the following DQIs standard error or confidence limits for samples or for field duplicates that are LOR, three samples exceed this limit. Samples W-0generally consistent with B-10 and N-10-B-5 returned RPDs of 99% and 75% AS4482.1-2005: respectively for Lead-210. Sample E-0-C-5 returned Less than 4 times limit of an RPD of 52% for Radium-226. reporting (LOR): plus or minus 2 times LOR As Lead-210 is not a radionuclide of concern, the RPD exceedances for samples W-0-B-10 and N-10-Between 4-10 times LOR: B-5 are not considered to impact the quality of the <50% RPD assessment. Greater than 10 times LOR: <30% RPD. ANSTO used two daughter product surrogates to calculate Radium-226 activity (Bismuth-214 and One intra-laboratory and one Lead-214), while SGS has only used Lead-214. inter-laboratory duplicate Comparison of the Bismuth-214 derived result to should be submitted to the the SGS Lead-210 result, as well as comparison laboratories every twenty between the two calculation methods used by samples. ANSTO, results in an RPD below 50%. ANSTO also notes that radiological measurements depend on several factors such as spectrometry equipment use, sample matrix and homogeneity, counting time and applied efficiency calibration and density correction. Additionally, as radiological results were below background levels, it is not considered that the RPD exceedance in this case impacts the quality of the assessment. No intra- or inter-lab duplicates were collected for metals or TRH/BTEXN/PAH. However, as these analytes were not the primary contaminant of concern, and all sample results were below the highly conservative criteria adopted, this is not considered to have impacted the quality of the assessment.

Table B – Summary of Data Quality Indicators

Laboratory specified limits

Laboratory Duplicate

RPDs.

There was no laboratory duplicate RPD

exceedances for non-radiological samples.

Yes

Data Quality Indicator	Data Quality Indicators	Summary of Results	Compliance
		For Radium-226 samples analysed by ANSTO, alternative daughter product surrogates used to estimate results did not result in RPD exceedances.	
Sensitivity			
Laboratory detection limits	Laboratory achieved Limit of Reporting (LOR) values to be appropriate for comparison to screening criteria.	Achieved LORs were below relevant screening criteria for heavy metals, metals, and TRH/BTEXN/PAH. Laboratory detection limits for radiological analysis are dependent on a range of factors and differ from sample to sample.	
Accuracy			
Laboratory Control Samples (inorganics)	70% to 130% recovery for inorganics.		Yes
(Organics)	70% to 130% recovery for organics.		Yes
Matrix Spikes		SVOC matrix spikes were not reported for Composite 01 due to sample matrix interferences. All results were below laboratory detection limits.	
		TRH matrix spikes could not be reported due to significant TRH within the sample. However, as these are not the primary contaminants of concern, this is not considered to have impacted the quality of the assessment.	conformance is nc
Method Blanks	Not detected above LOR		Yes
Surrogate Spikes	Laboratory specified limits		Yes
Representativeness			
Spike Controls (soil) assess potential w during the handir transport of the o primary samples. spikes were taker field and transpo primary samples laboratory. The tr were not opened The DQI for these	The trip spikes are used to assess potential volatile losses during the handing and transport of the closed primary samples. The trip spikes were taken into the field and transported with the primary samples to the laboratory. The trip spikes were not opened in the field. The DQI for these trip spikes is percentage recovery between	It is noted that, in relation to the nature of contamination at the Site based on field screening and analytical results, volatiles are not considered a key contaminant of concern and were not analysed. As such, this DQI is not applicable to the data set.	

Data Quality Indicator	Data Quality Indicators	Summary of Results	Compliance
	70% and 130%, which is generally consistent with AS4482.1-2005 for field duplicates.		
	All fieldwork including decontamination procedures to be undertaken in general accordance with Jacobs' Standard Operating Procedures (SOPs).	Due to the homogeneity of the soil sampled, the auger was not cleaned with a decontaminant between samples. Fresh nitrate gloves were used at each sample location and the auger brushed clean prior to each sample being taken.	Yes
	QAQC to be conducted in accordance with NEPM 1999 (2013 amendment).	-	Yes
	Sample handling, storage and transport to be in accordance with the requirements of NEPM 1999 (2013 amendment).	-	Yes
	Samples to be extracted and analysed within appropriate holding times.	-	Yes
	Samples to be transported under full chain of custody documentation (COC). The laboratory to return a copy of the signed COC acknowledging the receipt data and time and identity of samples included in the shipment.	-	Yes
	Include Laboratory Certificates of Analysis which detail any standard and non- standard methods used.	-	Yes
Rinsate	The rinsate should be collected from re-useable equipment that was used at multiple sampling locations and decontaminated in between samples. The rinsate should be collected from decontaminated equipment using laboratory supplied rinsate water and collection bottles. The DQI for the rinsate is below detection limits or low concentrations of contaminants of concern	Rinsates were not collected during the field campaign for several reasons, including the homogeneity of the soil sampled and the indication of organics/inorganics analysis as secondary to the radiological component of the analysis. Additionally, the low results of the soils analysis indicated that any contamination at the site is low and, notwithstanding the lack of rinsate samples, the results are acceptable.	conformance is no considered t impact th quality of th data

Detailed Site Investiga	tion		
Data Quality Indicator	Data Quality Indicators	Summary of Results	Compliance
Comparability	Samples to be collected in general accordance CH2M's SOPs and NEPM 1999 (2013 amendment). All field team members to be appropriately trained in these documents.	-	Yes
	Logs and field data to be recorded for each sample location noting any observed variations between conditions and signs of potential contamination.	-	Yes
	Primary samples to be stored, handled and transported under the same conditions and analysed by the same laboratory using consistent methods.	-	Yes
	DQIs to indicate acceptable Precision and Accuracy.	-	Yes
Completeness	Data from all critical samples to be considered valid.	-	Yes
	Overall dataset to be considered valid (>95% acceptable after data validation procedures).	Non-conformances listed above are not considered to have impacted the quality of the data assessment and the dataset is considered to be valid.	Yes

Although there were some minor non-conformances, the majority of the PARCCS indicators were within the specified DQIs and therefore, overall, it is considered that the data is of sufficient quality to meet the objectives of the assessment.

						Metals]	Inorganics	
		Arsenic Mg/kg	mg/kg	chromium (III+VI) m8/k8	copper mg/kg	peag mg/kg	Činoja W Mg/kg	Nickel mg/kg	mg/kg	ou IZ mg/kg	&% Moisture	E H mg/kg	mg/kg
EQL		1	0.3	0.5	0.5	1	0.05	0.5	0.1	2	1	0.5	0
Field ID N-30-B-200	Date 06-02-18	2	<0.3	11	4.5	3	<0.05	3.8	0.1	11	7.3	2.1	
RPD	26-02-18	2	<0.3	11 11 0	4.3	3	<0.05	3.8 0		10 10			
N-30-C-200	06-02-18	2	0.3	11	3.7	3	<0.05	3.2	<0.1	9	6.6	1.8	
RPD W-0-C-200	06-02-18	1	<0.3	12	5.1	4	<0.05	4.7	0.1	15	5.9 11 7.7 7.5	2.3	940,000
RPD W-0-E-200	06-02-18	3	0.4	15	8.6	15	<0.05	7.4	0.4	29	3 11.8	3.1	550,000
	26-02-18	4	0.3	15	8.7 1	13	<0.05	7.0	0.4	29 29 0	11.0	5.1	
RPD W-10-F-200	06-02-18	29 1	29 <0.3	0 9.6	3.2	14 3	0 <0.05	2.9	<0.1	8	7.0	1.7	
RPD	26-02-18	1 0	<0.3 0	11 14	3.4 6	3	<0.05 0	3.4 16		9 12			
W-10-H-200	06-02-18	4	0.4	17	10	6	<0.05	8.3	0.3	24	15.6 14.9	3.8	850,000
RPD WG-0-A-10	06-02-18	<1	0.4	13	5.3	5	<0.05	4.7	<0.1	66	5 8.0	2.1	
RPD	22-02-18	1 0	0.5 22	12 8	5.3 0	5 0	<0.05 0	4.3 9		79 18			
WG-1-D-10 RPD	06-02-18	3	0.6	11	6.1	8	<0.05	5.0	1.2	97	8.4 9.0 7	2.4	910,000
WG-1-D-200	06-02-18 22-02-18	1	<0.3 <0.3	9.3 9.4	3.0 3.2	3	<0.05 <0.05	2.4 2.4	1.5	12 12	9.2	2.9	
RPD S-0-A-200	07-02-18	0 6 6	0 <0.3 0.4	1 28 28	6 19 19	0 9 9	0 <0.05 <0.05	0 16 16	0.6	0 46 47	20.0	7.5	
RPD S-10-A-200	07-02-18	0 4	29 0.5	0 14	0	0	0	0 7.9	0.2	2 110	9.2	3.1	
RPD			0.0					,	0.2		9.2 8.8 4	5.1	910,000
RPD S-10-D-5	07-02-18	6	0.5	17	13	12	<0.05	11	0.5	34	4 13.7	3.6	
RPD	26-02-18	4	0.4	15 12	11 17	12 0	<0.05 0	9.1 19		32 6			
W-0-A-5	07-02-18 26-02-18	2	<0.3 <0.3	11 12	5.0 4.9	4	<0.05 <0.05	4.4 4.5	<0.1	15 15	7.0	2.3	
RPD W-10-A-5	07-02-18	0	0 <0.3	9 9.3	2 2.4	29 2	0 <0.05	2 2.4	<0.1	0 6	4.3 4.8	1.5	950,000
RPD W-10-B-5	07-02-18	2	<0.3	9.5	3.7	2	<0.05	3.0	<0.1	8	11 6.4	1.8	
RPD											7.7 18		920,000
E-0-B-200 RPD	08-02-18	2	<0.3	10	6.0	4	<0.05	4.4	0.2	45	7.0 7.7 10	1.8	920,000
N-0-B-5	08-02-18 26-02-18	3	<0.3 0.4	12 11	7.3	14 16	<0.05	5.4	0.3	76 90	3.9	2.4	
RPD		0	29	9	7.4	13	<0.05 0	5.5 2		17			
N-10-B-200	08-02-18	6	0.6	25	18	8	<0.05	15	0.6	40	19.2 20.2	6.5	800,000
RPD N-10-C-200	08-02-18	9	0.5	25	18	9	<0.05	14	0.3	37	5 20.0	6.3	
RPD	26-02-18	8 12	0.5 0	26 4	19 5	9 0	<0.05 0	15 7		40 8			
E-10-A-200	29-05-18	5	1.1 1.3	15 18	14 16	6 7	<0.05 <0.05	11 12	0.5	34 39	20.8	5.7	
RPD E-10-B-200	29-05-18	18 7	17 1.3	18 17	13 15	15 7	0 <0.05	9 12	0.7	14 35	21.1	5.6	
RPD											19.7 7		800,000
E-30-A-5	29-05-18	6	<0.3 <0.3	20 21	14 15	12 12	<0.05 <0.05	15 14	0.5	42 43	9.3	5.1	
RPD S-30-B-200	29-05-18	0 4	0	5	7	0	0	7 8.3	0.3	2	7.2	3.4	
	25-05-18	4	NO.3	14		5	<0.05	0.5	0.5	50	7.2	3.4	930,000
RPD S-30-C-5	29-05-18	2	<0.3	7.1	6.6	9	<0.05	5.0	0.3	71	0 5.2	2.2	
RPD		3 40	<0.3 0	8.0 12	6.5 2	13 36	<0.05 0	5.3 6		57 22			<u> </u>
S-R-A-200	29-05-18	2	0.8 0.7	9.9 8.2	5.9 5.2	76	<0.05 <0.05	4.8 4.5	0.2	18 16	7.2	2.3	
RPD S-R-B-200	29-05-18	0 3	13 1.0	19 12	13 10	15 8	0 <0.05	6 8.1	0.3	12 50	6.7	3.6	
RPD											7.0 4		930,000
W-30-B-5	29-05-18	2	0.6	10	3.6	3	<0.05	3.3	<0.1	9	6.0 5.5	1.6	950,000
RPD		<1	0.4	9.1	3.0	2	<0.05	2.8		8	9		
RPD W-D-B-5	29-05-18	67	40	9 17	18 10	40	0	16 7.8	0.2	12 34	5.8	4.0	İ
RPD						-					4.9		950,000
RPD		2	1.4 15	19 11	11 10	9	<0.05	9.1 15		37			
кро Е-Р-А-5	30-05-18	7	15 <0.3	11 28	10 20	12 10	0 <0.05	15 15	0.4	48	7.7	6.1	020.000
RPD											6.9 11		930,000
E-P-D-200	30-05-18	4	0.6	15 14	12 11	17 12	<0.05 <0.05	8.7 7.7	0.3	42 38	3.4	2.9	<u> </u>
RPD N-P-B-200	30-05-18	29 10	29 <0.3	7 32	9 23	34 10	0 <0.05	12 18	0.9	10 55	14.8	7.0	
RPD		9 11	<0.3 0	31 3	22 4	10 0	<0.05 0	18 0		57 4			
W-P-A-5	30-05-18	3	<0.3	20	12	10	<0.05	9.9	0.2	44	6.5 5.6	4.1	940,000
RPD W-P-C-5	30-05-18	1	<0.3	22	14	14	<0.05	12	0.1	55	15 7.7	4.7	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RPD							<0.05 <0.05 0						
RPD		2 67	<0.3 0	23 4	14 0	12 15		13 8		59 7			
W-P-E-200	30-05-18	13	<0.3	31	26	9	<0.05	17	0.4	52	13.3 13.2	6.3	870,000
RPD											13.2		2. 3,000

Laboratory Control al Lab Report Number PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413		Matrix Type Field ID Samp soil soil soil soil	Ied Date/Time Chem Name 20-02-18 10:05 Ethylbenzene 20-02-18 10:05 Xylene (m & p) 20-02-18 10:05 Toluene	Result Method Name 101 VOC's in Soil 104 VOC's in Soil 98 VOC's in Soil	Sample Code PE123413_LB142555-0003477497 PE123413_LB142555-0003477497 PE123413_LB142555-0003477497
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413	LCS LCS LCS LCS	soil soil	20-02-18 10:05 Xylene (m & p)	104 VOC's in Soil	PE123413_LB142555-0003477497
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413	LCS LCS LCS	soil			
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413	LCS LCS				
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413			Pyrene	106 SVOC in Soil	PE123413_LB142557-0003477527
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413	LCS	soil	Benzo(a) pyrene	93 SVOC in Soil	PE123413_LB142557-0003477527
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413 PE123413	1.00	soil	Benz(a)anthrace		PE123413_LB142557-0003477527
PE123413 PE123413 PE123413 PE123413 PE123413 PE123413	LCS LCS	soil	20-02-18 10:05 Benzene 20-02-18 10:05 Benzene	99 VOC's in Soil 99 Volatile Petroleum Hydrocarbons in Soil	PE123413_LB142555-0003477497 PE123413_LB142555-0003477497
PE123413 PE123413 PE123413	LCS	soil	22-02-18 14:39 Lead	98 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142699-0003481325
PE123413 PE123413	LCS	soil	26-02-18 11:43 Lead	92 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142799-0003484535
PE123413	LCS	soil	26-02-18 11:50 Lead	101 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142800-0003484571
	LCS LCS	soil	26-02-18 11:55 Lead	99 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142801-0003484602
	LCS	soil	26-02-18 11:58 Lead 26-02-18 11:58 Mercury	100 Total Recoverable Elements in Soil by ICPOES 97 Mercury in Soil	PE123413_LB142803-0003484653 PE123413_LB142803-0003484653
PE123413	LCS	soil	26-02-18 11:55 Mercury	102 Mercury in Soil	PE123413_LB142801-0003484602
PE123413	LCS	soil	26-02-18 11:50 Mercury	103 Mercury in Soil	PE123413_LB142800-0003484571
PE123413	LCS	soil	26-02-18 11:43 Mercury	99 Mercury in Soil	PE123413_LB142799-0003484535
PE123413 PE123413	LCS LCS	soil	22-02-18 14:39 Mercury 22-02-18 14:39 Nickel	100 Mercury in Soil 101 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142699-0003481325 PE123413_LB142699-0003481325
PE123413	LCS	soil	26-02-18 11:43 Nickel	102 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142799-0003484535
PE123413	LCS	soil	26-02-18 11:50 Nickel	108 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142800-0003484571
PE123413	LCS	soil	26-02-18 11:55 Nickel	108 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142801-0003484602
PE123413	LCS	soil	26-02-18 11:58 Nickel	104 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142803-0003484653
PE123413 PE123413	LCS	soil	26-02-18 11:58 Arsenic	97 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142803-0003484653
PE123413 PE123413	LCS LCS	soil	26-02-18 11:55 Arsenic 26-02-18 11:50 Arsenic	107 Total Recoverable Elements in Soil by ICPOES 104 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142801-0003484602 PE123413_LB142800-0003484571
PE123413 PE123413	LCS	soil	26-02-18 11:43 Arsenic	100 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142799-0003484535
PE123413	LCS	soil	22-02-18 14:39 Arsenic	103 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142699-0003481325
PE123413	LCS	soil	22-02-18 14:39 Cadmium	96 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142699-0003481325
PE123413 PE123413	LCS LCS	soil	26-02-18 11:43 Cadmium 26-02-18 11:50 Cadmium	94 Total Recoverable Elements in Soil by ICPOES 103 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142799-0003484535 PE123413 LB142800-0003484571
PE123413 PE123413	LCS	soil	26-02-18 11:55 Cadmium	103 Total Recoverable Elements in Soil by ICPOES 102 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142800-0003484571 PE123413 LB142801-0003484602
PE123413	LCS	soil	26-02-18 11:58 Cadmium	99 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142803-0003484653
PE123413	LCS	soil	26-02-18 11:58 Chromium (III+V) 99 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142803-0003484653
PE123413	LCS	soil	26-02-18 11:55 Chromium (III+V		PE123413_LB142801-0003484602
PE123413 PE123413	LCS LCS	soil	26-02-18 11:50 Chromium (III+V 26-02-18 11:43 Chromium (III+V		PE123413_LB142800-0003484571 PE123413_LB142799-0003484535
PE123413 PE123413	LCS	soil	26-02-18 11:43 Chromium (III+V 22-02-18 14:39 Chromium (III+V		PE123413_LB142799-0003484535 PE123413_LB142699-0003481325
PE123413 PE123413	LCS	soil	22-02-18 14:39 Chromium (m+v 22-02-18 14:39 Copper	98 Total Recoverable Elements in Soil by ICPOES 98 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142699-0003481325
PE123413	LCS	soil	26-02-18 11:43 Copper	96 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142799-0003484535
PE123413	LCS	soil	26-02-18 11:50 Copper	101 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142800-0003484571
PE123413 PE123413	LCS	soil	26-02-18 11:55 Copper	102 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142801-0003484602 PE123413 LB142803-0003484653
PE123413 PE123413	LCS	soil	26-02-18 11:58 Copper 26-02-18 11:58 Zinc	99 Total Recoverable Elements in Soil by ICPOES 95 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142803-0003484653
PE123413	LCS	soil	26-02-18 11:55 Zinc	96 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142801-0003484602
PE123413	LCS	soil	26-02-18 11:50 Zinc	97 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142800-0003484571
PE123413	LCS	soil	26-02-18 11:43 Zinc	92 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142799-0003484535
PE123413	LCS	soil	22-02-18 14:39 Zinc Phenanthrene	95 Total Recoverable Elements in Soil by ICPOES	PE123413_LB142699-0003481325
PE123413 PE123413	LCS LCS	soil	Fluorene	97 SVOC in Soil 103 SVOC in Soil	PE123413_LB142557-0003477527 PE123413_LB142557-0003477527
PE123413	LCS	soil	Naphthalene	94 SVOC in Soil	PE123413_LB142557-0003477527
PE123413	LCS	soil	20-02-18 10:05 Xylene (o)	102 VOC's in Soil	PE123413_LB142555-0003477497
PE123413	LCS	soil	TPH C10 - C14	112 TRH (Total Recoverable Hydrocarbons) in Soil	PE123413_LB142557-0003477527
PE123413 PE123413	LCS	soil	TRH >C10 - C16 TPH C15 - C28	112 TRH (Total Recoverable Hydrocarbons) in Soil	PE123413_LB142557-0003477527 PE123413_LB142557-0003477527
PE123413 PE123413	LCS LCS	soil	TRH >C16 - C34	100 TRH (Total Recoverable Hydrocarbons) in Soil 100 TRH (Total Recoverable Hydrocarbons) in Soil	PE123413_LB142557-0003477527 PE123413_LB142557-0003477527
PE123413	LCS	soil	TPH C29-C36	100 TRH (Total Recoverable Hydrocarbons) in Soil	PE123413_LB142557-0003477527
PE123413	LCS	soil	TRH >C34 - C40	100 TRH (Total Recoverable Hydrocarbons) in Soil	PE123413_LB142557-0003477527
PE123413	LCS	soil	20-02-18 10:05 TPH C6 - C9	100 Volatile Petroleum Hydrocarbons in Soil	PE123413_LB142555-0003477497
PE126215 PE126215	LCS LCS	soil	Zinc	90 Total Recoverable Elements in Soil by ICPOES 84 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598827 PE126215_LB146621-0003595466
PE126215	LCS	soil	Zinc	100 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003605154
PE126215	LCS	soil	Copper	79 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595409
PE126215	LCS	soil	Copper	91 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595441
PE126215	LCS	soil	Zinc	95 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595441
PE126215 PE126215	LCS LCS	soil	Zinc Chromium (III+V	86 Total Recoverable Elements in Soil by ICPOES 98 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595409 PE126215_LB146729-0003598827
PE126215 PE126215	LCS	soil	Chromium (III+V Chromium (III+V		PE126215_LB146621-00035958627 PE126215_LB146621-0003595466
PE126215	LCS	soil	Chromium (III+V) 105 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003605154
PE126215	LCS	soil	Copper	105 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003605154
PE126215	LCS	soil	Copper	75 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595466
PE126215 PE126215	LCS LCS	soil	Copper Cadmium	94 Total Recoverable Elements in Soil by ICPOES 92 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598827 PE126215_LB146619-0003595409
PE126215 PE126215	LCS	soil	Cadmium	86 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595409 PE126215_LB146620-0003595441
PE126215	LCS	soil	Chromium (III+V		PE126215_LB146620-0003595441
PE126215	LCS	soil	Chromium (III+V) 88 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595409
PE126215	LCS	soil	Arsenic	93 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598827
PE126215	LCS LCS	soil	Arsenic	89 Total Recoverable Elements in Soil by ICPOES 102 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595466 PE126215_LB146835-0003605154
PE126215 PE126215	LCS	soil	Arsenic Cadmium	102 Total Recoverable Elements in Soil by ICPOES 107 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003605154 PE126215_LB146835-0003605154
PE126215	LCS	soil	Cadmium	78 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595466
PE126215	LCS	soil	Cadmium	96 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598827
PE126215	LCS	soil	Nickel	96 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595409
PE126215 PE126215	LCS LCS	soil	Nickel	91 Total Recoverable Elements in Soil by ICPOES 100 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595441 PE126215_LB146620-0003595441
PE126215 PE126215	LCS	soil	Arsenic	95 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595441 PE126215_LB146619-0003595409
PE126215	LCS	soil	Mercury	95 Mercury in Soil	PE126215_LB146729-0003598827
PE126215	LCS	soil	Mercury	95 Mercury in Soil	PE126215_LB146621-0003595466
PE126215	LCS	soil	Mercury	100 Mercury in Soil	PE126215_LB146835-0003607579
PE126215	LCS	soil	Nickel	108 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003605154
PE126215	LCS	soil	Nickel	82 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595466 PE126215_LB146729-0003598827
PE126215 PE126215	LCS LCS	soil	Nickel Lead	103 Total Recoverable Elements in Soil by ICPOES 95 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598827 PE126215_LB146619-0003595409
	LCS	soil	Lead	94 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595441
r L120215	LCS	soil	Mercury	95 Mercury in Soil	PE126215_LB146620-0003595441
PE126215	LCS	soil	Mercury	93 Mercury in Soil	PE126215_LB146619-0003595409
PE126215 PE126215					
PE126215 PE126215 PE126215 PE126215 PE126215	LCS	soil soil	Lead	104 Total Recoverable Elements in Soil by ICPOES 83 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003605154 PE126215_LB146621-0003595466

		(v				r						·											
					Me	etals					TRH - N	EPM 2013 Fr	actions		1	TPH - NEPM 1	999 Fraction	S			BTE	EXN												PAH	нs	
		yarsenic Mg/kg	E Cadmir mg/kg	chromium (III+VI) ba//8m	a doo mg/kg	ष्ठ मु mg/kg	Cirros We mg/kg	lə böz izi mg/kg	2 īz mg/kg	012 - 92- H3L mg/kg	m m kH >C10 - C16	в ж/ ткн >с16 - С34	mg/kg	B TRH >C6 - C10 less 7 BTEX (F1)	60 - 90 HdL mg/kg	mg/gm kg	mg/gm gy/gm gy/gm gy/gm gy gy gy gy gy gy gy gy gy gy gy gy gy	mg/kg	ana su	Bay/senzene Bay/senzene	a Maphthalene	euan Lol mg/kg	mg/kg	a Xylene (o)	머 D Benzo(a)pyrene Total 跛 Potency Equivalent k	ය 8 8 1-Methyinaphthalene	m may/a b thaphthalene	aw/ ^{gg}	ay/8 by/8	mg/kg g/kg	may/Benz(a)anthracene	mg/kg	Dal Dal Bull Carcinogenic PAHs (as B(a)P TPE) ba	Benzo(b)fluoranthen 8 e	Benzo(g,h,i)perylene ^{gg} / ^{gg}	Benzo(k)fluoranthene
Field ID	Date																																			
		<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2																											
		<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2																											
		<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2																							1				
		<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2																							1	i			
		<1	< 0.3	<0.5	<0.5	<1		< 0.5	<2																							1	i			
											<25	<90	<120			<20	<45	<45			<0.1				<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1
	20-02-18									<25			-	<25	<20				<0.1	<0.1	<0.1	<0.1	<0.2	<0.1				-								
	22-02-18	<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2				-										-					-								
	26-02-18	<1	<0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2				-										-					-								
	26-02-18	<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2				-										-					-								
	26-02-18	<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2				-										-					-								
	26-02-18	<1	< 0.3	<0.5	<0.5	<1	< 0.05	<0.5	<2																											

Method Blanks

전 Benzo(k)fluoranthene	chrysene mg/g	a Dibenz(a,h)anthracen % e	제 D Carcinogenic PAHs (as B(a)P TPE, PEFx3) 형	mg/kg	eurorene Mg/kg	B Inde no(1,2,3- 정 C,d)pyrene	bhenanthrene mg/kg	e Buszka mg/kg
0.1	<0.1	<0.1	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1

Matrix Spikes						
Lab Report Number	Sample Type		Field ID Sampled Date/Time Chem Name	Result Method Name		Sample Code
PE123413	MS D	soil	Mercury	100 Mercury in Soil		PE123413_LB142800-0003484580
PE123413 PE123413	MS_D MS_D	soil soil	Mercury Mercury	100 Mercury in Soil 102 Mercury in Soil		PE123413_LB142800-0003484581 PE123413_LB142801-0003488873
PE123413	MS_D	soil	Mercury	100 Mercury in Soil		PE123413_LB142801-0003488874
PE123413	MS D	soil	Mercury	100 Mercury in Soil		PE123413 LB142699-0003481333
PE123413	MS	soil	Mercury	99 Mercury in Soil		PE123413 LB142699-0003481334
PE123413	MS	soil	Mercury	102 Mercury in Soil		PE123413 LB142799-0003484541
PE123413	MS_D	soil	Mercury	100 Mercury in Soil		PE123413_LB142799-0003484542
PE123413	MS	soil	26-02-18 11:52 Nickel	104 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142800-0003484578
PE123413	MS	soil	26-02-18 11:57 Nickel	94 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142801-0003484606
PE123413	MS_D	soil	26-02-18 11:52 Nickel	102 Total Recoverable Elements in Soil		PE123413_LB142800-0003484579
PE123413	MS_D	soil	26-02-18 11:45 Nickel	120 Total Recoverable Elements in Soil		PE123413_LB142799-0003484540
PE123413	MS	soil	26-02-18 11:45 Nickel	108 Total Recoverable Elements in Soil	,	PE123413_LB142799-0003484539
PE123413	MS_D	soil	22-02-18 14:40 Nickel	106 Total Recoverable Elements in Soil		PE123413_LB142699-0003481332
PE123413	MS	soil	22-02-18 14:40 Nickel	98 Total Recoverable Elements in Soil		PE123413_LB142699-0003481329
PE123413	MS_D	soil	26-02-18 11:57 Nickel	79 Total Recoverable Elements in Soil		PE123413_LB142801-0003484607
PE123413 PE123413	MS D	soil soil	26-02-18 12:00 Nickel 26-02-18 11:59 Nickel	123 Total Recoverable Elements in Soil 107 Total Recoverable Elements in Soil		PE123413_LB142803-0003484688 PE123413_LB142803-0003484687
PE123413	MS D	soil	26-02-18 11:59 Arsenic	99 Total Recoverable Elements in Soil		PE123413 LB142803-0003484687
PE123413	MS	soil	26-02-18 12:00 Arsenic	98 Total Recoverable Elements in Soil		PE123413 LB142803-0003484688
PE123413	MS D	soil	26-02-18 11:57 Arsenic	83 Total Recoverable Elements in Soil		PE123413 LB142801-0003484607
PE123413	MS	soil	22-02-18 14:40 Arsenic	89 Total Recoverable Elements in Soil		PE123413 LB142699-0003481329
PE123413	MS_D	soil	22-02-18 14:40 Arsenic	103 Total Recoverable Elements in Soil		PE123413_LB142699-0003481332
PE123413	MS	soil	26-02-18 11:45 Arsenic	95 Total Recoverable Elements in Soil		
PE123413	MS_D	soil	26-02-18 11:45 Arsenic	102 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142799-0003484540
PE123413	MS_D	soil	26-02-18 11:52 Arsenic	98 Total Recoverable Elements in Soil		PE123413_LB142800-0003484579
PE123413	MS	soil	26-02-18 11:57 Arsenic	93 Total Recoverable Elements in Soil		PE123413_LB142801-0003484606
PE123413	MS	soil	26-02-18 11:52 Arsenic	94 Total Recoverable Elements in Soil		PE123413_LB142800-0003484578
PE123413	MS	soil	26-02-18 11:52 Cadmium	98 Total Recoverable Elements in Soil		PE123413_LB142800-0003484578
PE123413	MS D	soil	26-02-18 11:57 Cadmium	97 Total Recoverable Elements in Soil		PE123413_LB142801-0003484606
PE123413 PE123413	MS_D	soil	26-02-18 11:52 Cadmium 26-02-18 11:45 Cadmium	98 Total Recoverable Elements in Soil 97 Total Recoverable Elements in Soil		PE123413_LB142800-0003484579 PE123413_LB142799-0003484540
PE123413 PE123413	MS_D MS	soil soil	26-02-18 11:45 Cadmium 26-02-18 11:45 Cadmium	97 Total Recoverable Elements in Soil 93 Total Recoverable Elements in Soil	,	PE123413_LB142799-0003484540 PE123413 LB142799-0003484539
PE123413	MS D	soil	22-02-18 11:45 Cadmium	103 Total Recoverable Elements in Soil		PE123413 LB142699-0003481332
PE123413	MS	soil	22-02-18 14:40 Cadmium	92 Total Recoverable Elements in Soil		PE123413 LB142699-0003481329
PE123413	MS D	soil	26-02-18 11:57 Cadmium	100 Total Recoverable Elements in Soil		PE123413 LB142801-0003484607
PE123413	MS	soil	26-02-18 12:00 Cadmium	97 Total Recoverable Elements in Soil		PE123413 LB142803-0003484688
PE123413	MS_D	soil	26-02-18 11:59 Cadmium	98 Total Recoverable Elements in Soil		PE123413_LB142803-0003484687
PE123413	MS_D	soil	26-02-18 11:59 Chromium (III+VI)	102 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142803-0003484687
PE123413	MS	soil	26-02-18 12:00 Chromium (III+VI)	139 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142803-0003484688
PE123413	MS_D	soil	26-02-18 11:57 Chromium (III+VI)	62 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142801-0003484607
PE123413	MS	soil	22-02-18 14:40 Chromium (III+VI)	93 Total Recoverable Elements in Soil		PE123413_LB142699-0003481329
PE123413	MS_D	soil	22-02-18 14:40 Chromium (III+VI)	110 Total Recoverable Elements in Soil		PE123413_LB142699-0003481332
PE123413	MS	soil	26-02-18 11:45 Chromium (III+VI)	104 Total Recoverable Elements in Soil		PE123413_LB142799-0003484539
PE123413	MS_D	soil	26-02-18 11:45 Chromium (III+VI)	113 Total Recoverable Elements in Soil		PE123413_LB142799-0003484540
PE123413	MS_D	soil	26-02-18 11:52 Chromium (III+VI)	99 Total Recoverable Elements in Soil		PE123413_LB142800-0003484579
PE123413 PE123413	MS MS	soil soil	26-02-18 11:57 Chromium (III+VI) 26-02-18 11:52 Chromium (III+VI)	85 Total Recoverable Elements in Soil 101 Total Recoverable Elements in Soil		PE123413_LB142801-0003484606 PE123413 LB142800-0003484578
PE123413 PE123413	MS	soil	26-02-18 11:52 Contracting (III+VI)	105 Total Recoverable Elements in Soil		PE123413_LB142800-0003484578
PE123413	MS	soil	26-02-18 11:57 Copper	90 Total Recoverable Elements in Soil		PE123413 LB142801-0003484606
PE123413	MS D	soil	26-02-18 11:52 Copper	103 Total Recoverable Elements in Soil		PE123413 LB142800-0003484579
PE123413	MS D	soil	26-02-18 11:45 Copper	97 Total Recoverable Elements in Soil		PE123413 LB142799-0003484540
PE123413	MS	soil	26-02-18 11:45 Copper	88 Total Recoverable Elements in Soil		 PE123413_LB142799-0003484539
PE123413	MS_D	soil	22-02-18 14:40 Copper	109 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142699-0003481332
PE123413	MS	soil	22-02-18 14:40 Copper	95 Total Recoverable Elements in Soil	by ICPOES	PE123413_LB142699-0003481329
PE123413	MS_D	soil	26-02-18 11:57 Copper	67 Total Recoverable Elements in Soil		PE123413_LB142801-0003484607
PE123413	MS	soil	26-02-18 12:00 Copper	103 Total Recoverable Elements in Soil		PE123413_LB142803-0003484688
PE123413	MS_D	soil	26-02-18 11:59 Copper	96 Total Recoverable Elements in Soil	,	PE123413_LB142803-0003484687
PE123413	MS D	soil	22-02-18 14:40 Lead	97 Total Recoverable Elements in Soil		PE123413_LB142699-0003481329
PE123413	MS_D	soil	22-02-18 14:40 Lead	110 Total Recoverable Elements in Soil		PE123413_LB142699-0003481332
PE123413 PE123413	MS D	soil	26-02-18 11:45 Lead 26-02-18 11:45 Lead	97 Total Recoverable Elements in Soil 113 Total Recoverable Elements in Soil		PE123413_LB142799-0003484539 PE123413_LB142799-0003484540
PE123413 PE123413	MS_D MS	soil soil	26-02-18 11:45 Lead 26-02-18 11:52 Lead	92 Total Recoverable Elements in Soil		PE123413_LB142799-0003484540 PE123413 LB142800-0003484578
PE123413 PE123413	MS D	soil	26-02-18 11:52 Lead	95 Total Recoverable Elements in Soil		PE123413_LB142800-0003484579
PE123413	MS_D	soil	26-02-18 11:52 Lead	89 Total Recoverable Elements in Soil		PE123413 LB142801-0003484606
PE123413	MS D	soil	26-02-18 11:57 Lead	83 Total Recoverable Elements in Soil		PE123413 LB142801-0003484607
PE123413	MS_D	soil	26-02-18 11:59 Lead	96 Total Recoverable Elements in Soil		PE123413_LB142803-0003484687
PE123413	MS	soil	26-02-18 12:00 Lead	95 Total Recoverable Elements in Soil		PE123413_LB142803-0003484688
PE123413	MS_D	soil	26-02-18 11:59 Zinc	92 Total Recoverable Elements in Soil		
PE123413	MS	soil	26-02-18 12:00 Zinc	99 Total Recoverable Elements in Soil		PE123413_LB142803-0003484688
PE123413	MS_D	soil	26-02-18 11:57 Zinc	20 Total Recoverable Elements in Soil		PE123413_LB142801-0003484607
PE123413	MS	soil	22-02-18 14:40 Zinc	145 Total Recoverable Elements in Soil	,	PE123413_LB142699-0003481329
PE123413	MS_D	soil	22-02-18 14:40 Zinc	198 Total Recoverable Elements in Soil		PE123413_LB142699-0003481332
PE123413	MS D	soil	26-02-18 11:45 Zinc	96 Total Recoverable Elements in Soil		PE123413_LB142799-0003484539
PE123413	MS_D	soil	26-02-18 11:45 Zinc	119 Total Recoverable Elements in Soil		PE123413_LB142799-0003484540
PE123413	MS_D	soil	26-02-18 11:52 Zinc	101 Total Recoverable Elements in Soil		PE123413_LB142800-0003484579
PE123413 PE123413	MS MS	soil	26-02-18 11:57 Zinc	77 Total Recoverable Elements in Soil 104 Total Recoverable Elements in Soil		PE123413_LB142801-0003484606 PE123413 LB142800-0003484578
PE123413 PE123413	MS	soil soil	26-02-18 11:52 Zinc Mercury	99 Mercury in Soil	UY ICPUES	PE123413_LB142800-0003484578 PE123413_LB142803-0003484689
PE123413 PE123413	MS D	soil	Mercury	101 Mercury in Soil		PE123413_LB142803-0003484689 PE123413 LB142803-0003484690
PE123413 PE126215	MS_D	soil	Mercury	94 Mercury in Soil		PE126215 LB142603-0003595477
PE126215	MS D	soil	Mercury	95 Mercury in Soil		PE126215_LB146619-0003595477 PE126215_LB146619-0003595478
PE126215	MS_D	soil	Lead	99 Total Recoverable Elements in Soil	by ICPOES	PE126215_LB146619-0003595470
PE126215	MS_D	soil	Lead	108 Total Recoverable Elements in Soil		PE126215_LB146619-0003595471
PE126215	MS_D	soil	Lead	89 Total Recoverable Elements in Soil		PE126215_LB146620-0003595484
PE126215	MS	soil	Lead	118 Total Recoverable Elements in Soil		PE126215_LB146620-0003595485
PE126215	MS_D	soil	Lead	92 Total Recoverable Elements in Soil		PE126215 LB146621-0003595729

PE126215	MS	soil	Lead	82 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595730
PE126215	MS_D	soil	Lead	108 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598852
PE126215	MS	soil	Lead	97 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598853
PE126215	MS	soil	Lead	104 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601650
PE126215	MS_D	soil	Lead	110 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601852
PE126215	MS_D	soil	Mercury	94 Mercury in Soil	PE126215_LB146729-0003598860
PE126215	MS	soil	Mercury	92 Mercury in Soil	PE126215_LB146729-0003598861
PE126215	MS_D	soil	Mercury	101 Mercury in Soil	PE126215_LB146835-0003601995
PE126215	MS	soil	Mercury	103 Mercury in Soil	PE126215_LB146835-0003601650
PE126215	MS_D	soil	Mercury	86 Mercury in Soil	PE126215_LB146620-0003595486
PE126215	MS	soil	Mercury	91 Mercury in Soil	PE126215 LB146620-0003595487
PE126215	MS D	soil	Mercury	95 Mercury in Soil	PE126215 LB146621-0003595731
PE126215	MS	soil	Mercury	95 Mercury in Soil	PE126215 LB146621-0003595732
PE126215	MS D	soil	Copper	95 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146620-0003595484
PE126215	MS D	soil	Copper	107 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146619-0003595471
PE126215	MS	soil	Copper	97 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146619-0003595470
PE126215	MS	soil	Copper	77 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146621-0003595730
PE126215	MS D	soil	Copper	93 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146621-0003595729
PE126215	MS_D	soil	Copper	95 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146620-0003595485
PE126215	MS	soil	Copper	114 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146835-0003601650
PE126215	MS	soil	Copper	101 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146729-0003598853
				· · · · · ·	_
PE126215	MS_D	soil	Copper	110 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598852
PE126215	MS_D	soil	Copper	121 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601852
PE126215	MS_D	soil	Zinc	130 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601852
PE126215	MS_D	soil	Zinc	103 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598852
PE126215	MS	soil	Zinc	85 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598853
PE126215	MS	soil	Zinc	119 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601650
PE126215	MS	soil	Zinc	142 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485
PE126215	MS_D	soil	Zinc	121 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595729
PE126215	MS	soil	Zinc	94 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595730
PE126215	MS	soil	Zinc	120 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595470
PE126215	MS_D	soil	Zinc	130 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595471
PE126215	MS_D	soil	Zinc	174 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595484
PE126215	MS_D	soil	Cadmium	82 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595484
PE126215	MS_D	soil	Cadmium	94 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595471
PE126215	MS	soil	Cadmium	95 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595470
PE126215	MS	soil	Cadmium	74 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595730
PE126215	MS D	soil	Cadmium	84 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146621-0003595729
PE126215	MS	soil	Cadmium	85 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146620-0003595485
PE126215	MS	soil	Cadmium	107 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146835-0003601650
PE126215	MS	soil	Cadmium	97 Total Recoverable Elements in Soil by ICPOES	 PE126215 LB146729-0003598853
PE126215	MS D	soil	Cadmium	104 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146729-0003598852
PE126215	MS D	soil	Cadmium	109 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146835-0003601852
PE126215	MS D	soil	Chromium (III+VI)	125 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146835-0003601852
PE126215	MS D	soil	Chromium (III+VI)	116 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146729-0003598852
PE126215	MS	soil	Chromium (III+VI)	106 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146729-0003598853
PE126215	MS	soil	Chromium (III+VI)	116 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146835-0003601650
PE126215	MS	soil	Chromium (III+VI)	102 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146620-0003595485
PE126215	MS D	soil	Chromium (III+VI)	98 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146621-0003595485
			Chromium (III+VI)	82 Total Recoverable Elements in Soil by ICPOES	_
PE126215	MS MS	soil	Chromium (III+VI) Chromium (III+VI)	105 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595730
PE126215		soil			PE126215_LB146619-0003595470
PE126215	MS_D	soil	Chromium (III+VI)	112 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595471
PE126215	MS_D	soil	Chromium (III+VI)	92 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595484
PE126215	MS_D	soil	Nickel	85 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595484
PE126215	MS_D	soil	Nickel	120 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595471
PE126215	MS	soil	Nickel	117 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146619-0003595470
PE126215	MS	soil	Nickel	78 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595730
PE126215	MS_D	soil	Nickel	94 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146621-0003595729
PE126215	MS	soil	Nickel	85 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485
PE126215	MS	soil	Nickel	111 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601650
PE126215	MS	soil	Nickel	107 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598853
PE126215	MS_D	soil	Nickel	114 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598852
PE126215	MS_D	soil	Nickel	118 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601852
PE126215	MS_D	soil	Arsenic	100 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146835-0003601852
85486845	MS_D	soil	Arsenic	99 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146729-0003598852
PE126215		soil	Arsenic	89 Total Recoverable Elements in Soil by ICPOES	 PE126215_LB146729-0003598853
PE126215 PE126215	MS	3011		· · · · · · · · · · · · · · · · · · ·	-
	MS MS	soil	Arsenic	98 Total Recoverable Elements in Soil by ICPOES	PE126215 LB146835-0003601650
PE126215 PE126215	MS	soil		· · ·	PE126215_LB146835-0003601650 PE126215 LB146620-0003595485
PE126215 PE126215 PE126215	MS MS	soil soil	Arsenic	95 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485
PE126215 PE126215 PE126215 PE126215 PE126215	MS MS MS_D	soil soil soil	Arsenic Arsenic	95 Total Recoverable Elements in Soil by ICPOES 78 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485 PE126215_LB146621-0003595729
PE126215 PE126215 PE126215 PE126215 PE126215 PE126215	MS MS MS_D MS	soil soil soil soil	Arsenic Arsenic Arsenic	95 Total Recoverable Elements in Soil by ICPOES 78 Total Recoverable Elements in Soil by ICPOES 72 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485 PE126215_LB146621-0003595729 PE126215_LB146621-0003595730
PE126215 PE126215 PE126215 PE126215 PE126215 PE126215 PE126215	MS MS_D MS MS MS	soil soil soil soil soil	Arsenic Arsenic Arsenic Arsenic Arsenic	95 Total Recoverable Elements in Soil by ICPOES 78 Total Recoverable Elements in Soil by ICPOES 72 Total Recoverable Elements in Soil by ICPOES 101 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485 PE126215_LB146621-0003595729 PE126215_LB146621-0003595730 PE126215_LB146619-0003595470
PE126215 PE126215 PE126215 PE126215 PE126215 PE126215	MS MS MS_D MS	soil soil soil soil	Arsenic Arsenic Arsenic	95 Total Recoverable Elements in Soil by ICPOES 78 Total Recoverable Elements in Soil by ICPOES 72 Total Recoverable Elements in Soil by ICPOES	PE126215_LB146620-0003595485 PE126215_LB146621-0003595729 PE126215_LB146621-0003595730

Laboratory Surroga	ates										
Lab Report Numbe		e Matrix Type	Field ID D	Depth S	Sampled Date/Time	Compound	Result LCL	UCL	Conforming	Lab Qualifier	Lab Comments
PE123413	LCS	soil			20/02/2018 10:05:00 AM	d4-1,2-dichloroethane (Surrogate)	110		NA		
PE123413	LCS	soil		2	20/02/2018 10:05:00 AM	d4-1,2-dichloroethane (Surrogate)	110		NA		
PE123413	LCS	soil		2	20/02/2018 10:05:00 AM	Dibromofluoromethane (Surrogate)	108		NA		
PE123413	LCS	soil		2	20/02/2018 10:05:00 AM	Dibromofluoromethane (Surrogate)	108		NA		
PE123413	LCS	soil		2	20/02/2018 10:05:00 AM	d8-toluene (Surrogate)	106		NA		
PE123413	LCS	soil		2	20/02/2018 10:05:00 AM	d8-toluene (Surrogate)	106		NA		
PE123413	LCS	soil		2	20/02/2018 10:05:00 AM	Bromofluorobenzene (Surrogate)	105		NA		
PE123413	LCS	soil			20/02/2018 10:05:00 AM	Bromofluorobenzene (Surrogate)	105		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	d4-1,2-dichloroethane (Surrogate)	103		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	d4-1,2-dichloroethane (Surrogate)	103		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	Dibromofluoromethane (Surrogate)	104		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	Dibromofluoromethane (Surrogate)	104		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	d8-toluene (Surrogate)	95		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	d8-toluene (Surrogate)	95		NA		
PE123413	MB	soil			20/02/2018 10:05:00 AM	Bromofluorobenzene (Surrogate)	89		NA		
PE123413	MB	soil		2	20/02/2018 10:05:00 AM	Bromofluorobenzene (Surrogate)	89		NA		
PE123413	LCS	soil				2-fluorobiphenyl (Surrogate)	90		NA		
PE123413	LCS	soil				d5-nitrobenzene (Surrogate)	94		NA		
PE123413	LCS	soil				d14-p-terphenyl (Surrogate)	124		NA		
PE123413	MB	soil				2-fluorobiphenyl (Surrogate)	90		NA		
PE123413	MB	soil				d5-nitrobenzene (Surrogate)	90		NA		
PE123413	MB	soil	C		102/2010	d14-p-terphenyl (Surrogate)	124		NA		
PE123413	Normal	soil	Composite 01		5/02/2018	d4-1,2-dichloroethane (Surrogate)	64		NA		
PE123413	Normal	soil	Composite 01		5/02/2018	d4-1,2-dichloroethane (Surrogate)	64		NA		
PE123413	Normal	soil	Composite 01		5/02/2018	Dibromofluoromethane (Surrogate)	74		NA		
PE123413	Normal	soil	Composite 01		5/02/2018	Dibromofluoromethane (Surrogate)	74		NA		
PE123413 PE123413	Normal Normal	soil soil	Composite 01 Composite 01		5/02/2018	d8-toluene (Surrogate)	104 104		NA		
PE123413 PE123413	Normal	soil	Composite 01		5/02/2018 5/02/2018	d8-toluene (Surrogate) 2-fluorobiphenyl (Surrogate)	90		NA		
PE123413 PE123413	Normal	soil	Composite 01		5/02/2018	d5-nitrobenzene (Surrogate)	96		NA		
PE123413 PE123413	Normal	soil	Composite 01		5/02/2018	Bromofluorobenzene (Surrogate)	78		NA		
PE123413 PE123413	Normal				5/02/2018		78		NA		
PE123413 PE123413	Normal	soil soil	Composite 01 Composite 01		6/02/2018	Bromofluorobenzene (Surrogate) d14-p-terphenyl (Surrogate)	126		NA		
PE123413	Normal	soil	Composite 01		5/02/2018	d4-1,2-dichloroethane (Surrogate)	120		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	d4-1,2-dichloroethane (Surrogate)	108		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	Dibromofluoromethane (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	Dibromofluoromethane (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	d8-toluene (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	d8-toluene (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	2-fluorobiphenyl (Surrogate)	92		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	d5-nitrobenzene (Surrogate)	94		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	Bromofluorobenzene (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	Bromofluorobenzene (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 02		5/02/2018	d14-p-terphenyl (Surrogate)	128		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	d4-1,2-dichloroethane (Surrogate)	113		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	d4-1,2-dichloroethane (Surrogate)	113		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	Dibromofluoromethane (Surrogate)	107		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	Dibromofluoromethane (Surrogate)	107		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	d8-toluene (Surrogate)	111		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	d8-toluene (Surrogate)	111		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	2-fluorobiphenyl (Surrogate)	92		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	d5-nitrobenzene (Surrogate)	96		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	Bromofluorobenzene (Surrogate)	114		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	Bromofluorobenzene (Surrogate)	114		NA		
PE123413	Normal	soil	Composite 03		5/02/2018	d14-p-terphenyl (Surrogate)	128		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	d4-1,2-dichloroethane (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	d4-1,2-dichloroethane (Surrogate)	103		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	Dibromofluoromethane (Surrogate)	99		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	Dibromofluoromethane (Surrogate)	99		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	d8-toluene (Surrogate)	104		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	d8-toluene (Surrogate)	104		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	2-fluorobiphenyl (Surrogate)	92		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	d5-nitrobenzene (Surrogate)	90		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	Bromofluorobenzene (Surrogate)	106		NA		
PE123413	Normal	soil	Composite 04		5/02/2018	Bromofluorobenzene (Surrogate)	106		NA		
PE123413	Normal	soil	Composite 04	6	5/02/2018	d14-p-terphenyl (Surrogate)	126		NA		

Appendix J – Comparison of Soil Samples vs. EPA Waste Criteria

Samples Represe	nting Soil	lgoing	to Woomera	Field ID	Composite 01	Composite 02	Composite 03	Composite 04	N-0-A-5	N-0-A-200	N-0-B-5	N-0-B-200	N-10-A-5	N-10-A-200
١	West Land	dfill		Date	6/02/2018	6/02/2018	6/02/2018	6/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018
	South Australian EPA, Criteria for the classification of waste		for the											
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			4.3	6.1	6.2	6.1	3.4	7.1	3.9	3.9	7.3	9.1
Arsenic	mg/kg	1	200	20	2	1	2	2	4	4	3	3	2	2
Cadmium	mg/kg	0.3	30	3	0.8	0.3	<0.3	<0.3	0.3	<0.3	<0.3	0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5			8.6	9.9	10	10	14	15	12	12	11	12
Copper	mg/kg	0.5	2,000	60	7.2	4.1	4.4	4.3	10	9.6	7.3	7.4	4.4	5.8
Lead	mg/kg	1	1,200	300	13	4	6	3	12	7	14	15	3	3
Mercury	mg/kg	0.05	30	1	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	5	3.8	4.4	4	7.3	7.5	5.4	5.2	3.7	4.8
Zinc	mg/kg	2	14,000	200	240	16	34	11	69	38	76	70	10	13
PAH (Total)	mg/kg		40	5	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
TRH C10-C14	mg/kg	20			48	52	29	21						
TRH C15-C28	mg/kg	45			520	320	260	170						
TRH C29-C36	mg/kg	45			1900	810	920	400						
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000	2468	1182	1209	591						

Laboratory Analytical Results above Screening Criteria are in Bolt Font and High-lighted

Comparison of Chemistry Results against South Australian EPA Waste Criteria

Samples Represe	nting Soi	lgoing	to Woomera	Field ID	N-10-B-5	N-10-B-200	N-10-C-5	N-10-C-200	N-10-D-5	N-10-D-200	N-30-A-5	N-30-A-200	N-30-B-5	N-30-B-200
١	West Land	dfill		Date	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	8/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			South Austr Criteria classification	for the										
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			7.9	19.2	12.2	20	16.9	17.6	5.5	9.4	6.3	7.3
Arsenic	mg/kg	1	200	20	2	6	3	9	7	7	2	3	2	2
Cadmium	mg/kg	0.3	30	3	<0.3	0.6	0.4	0.5	0.5	0.4	<0.3	0.4	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5			11	25	14	25	24	25	10	14	11	11
Copper	mg/kg	0.5	2,000	60	4.5	18	7.3	18	17	18	3.5	7.2	4.6	4.5
Lead	mg/kg	1	1,200	300	3	8	5	9	8	8	3	4	3	3
Mercury	mg/kg	0.05	30	1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	3.8	15	6.2	14	13	14	3	5.9	3.7	3.8
Zinc	mg/kg	2	14,000	200	10	40	16	37	36	38	9	17	11	11
PAH (Total)	mg/kg		40	5										
TRH C10-C14	mg/kg	20												
TRH C15-C28	mg/kg	45												
TRH C29-C36	mg/kg	45												
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000										

Samples Represe	nting Soil	going	to Woomera	Field ID	N-30-C-5	N-30-C-200	N-30-D-5	N-30-D-200	S-0-A-5	S-0-A-200	S-10-A-5	S-10-A-200	S-10-B-5	S-10-B-200
١	Nest Land	dfill		Date	6/02/2018	6/02/2018	7/02/2018	6/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018
			South Austr Criteria classification	for the										
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			6	6.6	2.7	19.8	13.9	20	13.3	9.2	13.9	18.3
Arsenic	mg/kg	1	200	20	1	2	2	6	4	6	4	4	5	6
Cadmium	mg/kg	0.3	30	3	<0.3	0.3	<0.3	0.7	<0.3	<0.3	0.6	0.5	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5			11	11	9.7	29	7.8	28	17	14	13	21
Copper	mg/kg	0.5	2,000	60	4.3	3.7	4.2	19	10	19	14	11	13	19
Lead	mg/kg	1	1,200	300	3	3	3	8	3	9	16	11	5	11
Mercury	mg/kg	0.05	30	1	< 0.05	<0.05	<0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	3.9	3.2	3.5	16	7.6	16	9.8	7.9	11	12
Zinc	mg/kg	2	14,000	200	11	9	12	45	11	46	160	110	23	47
PAH (Total)	mg/kg		40	5										
TRH C10-C14	mg/kg	20												
TRH C15-C28	mg/kg	45												
TRH C29-C36	mg/kg	45												
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000										

Samples Represe	nting Soil	going	to Woomera	Field ID	S-10-C-5	S-10-C-200	S-10-D-5	S-10-D-200	W-0-A-5	W-0-A-200	W-0-B-5	W-0-B-200	W-0-C-5	W-0-C-200
١	Nest Land	dfill		Date	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
			South Austr Criteria classification	for the										
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			12.7	13.5	13.7	20.5	7	5.8	8.6	6.7	7	7.7
Arsenic	mg/kg	1	200	20	4	4	6	6	2	1	2	1	1	1
Cadmium	mg/kg	0.3	30	3	<0.3	<0.3	0.5	0.5	<0.3	<0.3	0.5	<0.3	0.3	<0.3
Chromium (III+VI)	mg/kg	0.5			9.1	9.3	17	28	11	9.4	13	10	13	12
Copper	mg/kg	0.5	2,000	60	10	11	13	20	5	6.9	5.7	3.5	5.4	5.1
Lead	mg/kg	1	1,200	300	3	3	12	9	4	3	4	3	4	4
Mercury	mg/kg	0.05	30	1	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	9.3	9.4	11	16	4.4	3	5.1	3.1	4.9	4.7
Zinc	mg/kg	2	14,000	200	12	12	34	45	15	11	16	10	16	15
PAH (Total)	mg/kg		40	5										
TRH C10-C14	mg/kg	20												
TRH C15-C28	mg/kg	45												
TRH C29-C36	mg/kg	45												
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000										

Laboratory Analytical Results above Screening Criteria are in Bolt Font and High-lighted

					W-0-D-5	W-0-D-200	W-0-E-5	W-0-E-200	W-10-A-5	W-10-A-200	W-10-B-5	W-10-B-200	W-10-E-5	W-10-E-200
West Landfill Date					6/02/2018	6/02/2018	6/02/2018	6/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	6/02/2018	6/02/2018
Crite			South Austr Criteria classification	for the										
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			8.1	7.6	8.1	11.8	4.3	5.2	6.4	13.3	6.9	7.8
Arsenic	mg/kg	1	200	20	2	1	2	3	1	2	2	5	<1	2
Cadmium	mg/kg	0.3	30	3	<0.3	<0.3	<0.3	0.4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5			12	11	12	15	9.3	10	9.5	19	10	16
Copper	mg/kg	0.5	2,000	60	5.6	4.4	5.8	8.6	2.4	4.5	3.7	13	2.8	5.1
Lead	mg/kg	1	1,200	300	4	4	9	15	2	3	2	6	3	3
Mercury	mg/kg	0.05	30	1	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	5.2	4.1	5.4	7.4	2.4	3.5	3	9.9	2.6	6.3
Zinc	mg/kg	2	14,000	200	14	12	31	29	6	10	8	28	7	13
PAH (Total)	mg/kg		40	5										
TRH C10-C14	mg/kg	20												
TRH C15-C28	mg/kg	45												
TRH C29-C36	mg/kg	45												
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000										

Laboratory Analytical Results above Screening Criteria are in Bolt Font and High-lighted

Comparison of Chemistry Results against South Australian EPA Waste Criteria

Samples Representing Soil going to Woomera Field ID					W-10-F-5	W-10-F-200	W-10-G-5	W-10-G-200	W-10-H-5	W-10-H-200	WG-0-A-10	WG-0-A-200	WG-0-B-10	WG-0-C-10
West Landfill Date Date					6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
Crite			South Austra Criteria f classification	or the										
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			6.2	7	8.4	6.7	2	15.6	8	8.4	10.1	9
Arsenic	mg/kg	1	200	20	1	1	2	<1	2	4	<1	2	2	1
Cadmium	mg/kg	0.3	30	3	<0.3	<0.3	<0.3	<0.3	0.3	0.4	0.4	0.4	0.9	<0.3
Chromium (III+VI)	mg/kg	0.5			8.5	9.6	10	8.8	5.4	17	13	12	13	11
Copper	mg/kg	0.5	2,000	60	2.3	3.2	3.8	2.6	8.4	10	5.3	5	7.6	4.8
Lead	mg/kg	1	1,200	300	2	3	3	3	7	6	5	5	15	4
Mercury	mg/kg	0.05	30	1	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	2.4	2.9	3.2	4.4	5.5	8.3	4.7	4.3	5.6	3.9
Zinc	mg/kg	2	14,000	200	6	8	9	7	63	24	66	68	380	24
PAH (Total)	mg/kg		40	5										
TRH C10-C14	mg/kg	20												
TRH C15-C28	mg/kg	45												
TRH C29-C36	mg/kg	45												
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000										

Comparison of Chemistry Results against South Australian EPA Waste Criteria

Samples Represe	going	to Woomera	Field ID	WG-0-C-200	WG-0-E-10	WG-0-E-200	WG-1-B-10	WG-1-B-200	WG-1-D-10	WG-1-D-200	WG-2-A-10	WG-2-A-200	WG-2-C-10	
West Landfill Date					6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018	6/02/2018
South Australian EF Criteria for the classification of was				or the										
Classification	Unit	LOR	Intermediate Waste	Waste Fill										
% Moisture	%w/w	1			8	8.4	23.8	9.3	10	8.4	9.2	6.2	7.5	6.3
Arsenic	mg/kg	1	200	20	2	1	6	2	2	3	1	2	1	4
Cadmium	mg/kg	0.3	30	3	0.6	0.3	0.6	<0.3	<0.3	0.6	<0.3	<0.3	<0.3	0.4
Chromium (III+VI)	mg/kg	0.5			10	11	27	11	11	11	9.3	9.9	9	17
Copper	mg/kg	0.5	2,000	60	5.3	5.1	18	5.4	4.9	6.1	3	5	2.6	11
Lead	mg/kg	1	1,200	300	16	4	9	4	4	8	3	4	3	9
Mercury	mg/kg	0.05	30	1	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	4.6	4.2	14	4.4	4	5	2.4	4.3	2.3	8.5
Zinc	mg/kg	2	14,000	200	170	40	49	20	14	97	12	19	6	29
PAH (Total)	mg/kg		40	5										
TRH C10-C14	mg/kg	20												
TRH C15-C28	mg/kg	45												
TRH C29-C36	mg/kg	45												
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000										

Comparison of Chemistry Results against South Australian EPA Waste Criteria

Samples Represe	nting Soil	going	to Woomera	Field ID	WG-2-C-200	WG-2-E-10	WG-2-E-200	WG-3-B-10	WG-3-B-200	WG-3-D-10	WG-3-D-200
١	dfill		Date	6/02/2018	6/02/2018	6/02/2018	7/02/2018	7/02/2018	7/02/2018	7/02/2018	
		South Austr Criteria classification	or the								
Classification	Unit	LOR	Intermediate Waste	Waste Fill							
% Moisture	%w/w	1			10.2	8.5	7.4	7	6.5	4	7.2
Arsenic	mg/kg	1	200	20	2	2	1	1	3	<1	1
Cadmium	mg/kg	0.3	30	3	<0.3	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium (III+VI)	mg/kg	0.5			11	12	9.4	10	13	9	10
Copper	mg/kg	0.5	2,000	60	4.3	5.2	2.9	3.6	7	2.7	4.1
Lead	mg/kg	1	1,200	300	3	4	3	3	4	2	2
Mercury	mg/kg	0.05	30	1	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Nickel	mg/kg	0.5	600	60	3.2	4.5	2.4	3.1	5.7	2.3	3.3
Zinc	mg/kg	2	14,000	200	10	13	7	9	16	6	9
PAH (Total)	mg/kg		40	5							
TRH C10-C14	mg/kg	20									
TRH C15-C28	mg/kg	45									
TRH C29-C36	mg/kg	45									
TPH > C9 (Adding TRH C10 - C36)	mg/kg		1,000	1,000							

Page 8 of 8

Appendix J

	A B C	D E	F	G H I J K	L								
1		UCL Statis	tics for Unc	ensored Full Data Sets									
2													
3	User Selected Options												
4	Date/Time of Computation	ProUCL 5.114-Aug-18 8:	48:01 AM										
5	From File	From File WorkSheet.xls Full Precision OFF											
6	Full Precision OFF Confidence Coefficient 95%												
7													
8	Number of Bootstrap Operations	2000											
9													
10	7 1												
	Zinc												
12			Conoral	Chaliatian									
13	T-t-l			Statistics	40								
14	I otal	Number of Observations	77	Number of Distinct Observations	40								
15		Minimum	<u> </u>	Number of Missing Observations	-								
16		Minimum	6	Mean	36.38								
17		Maximum	380	Median	16								
18		SD	55.95	Std. Error of Mean	6.376								
19		Coefficient of Variation	1.538	Skewness	4.118								
20													
21				GOF Test									
22		hapiro Wilk Test Statistic 5% Shapiro Wilk P Value	0.54	Shapiro Wilk GOF Test									
23		Data Not Normal at 5% Significance Level											
24	Lilliefors Test Statistic 0.294 Lilliefors GOF Test 5% Lilliefors Critical Value 0.101 Data Not Normal at 5% Significance Level												
25	5			Data Not Normal at 5% Significance Level									
26			normal at a										
27		٨٥	euming Nor	nal Distribution									
28	95% N/	ormal UCL	Suming Non	95% UCLs (Adjusted for Skewness)									
29	00%1	95% Student's-t UCL	46.99	95% Adjusted-CLT UCL (Chen-1995)	50.06								
30			40.00	95% Modified-t UCL (Johnson-1978)	47.49								
31													
32			Gamma	GOF Test									
33		A-D Test Statistic	4.133	Anderson-Darling Gamma GOF Test									
34		5% A-D Critical Value	0.78	Data Not Gamma Distributed at 5% Significance Leve	əl								
35		K-S Test Statistic	0.2	Kolmogorov-Smirnov Gamma GOF Test	-								
36		5% K-S Critical Value	0.105	Data Not Gamma Distributed at 5% Significance Leve	əl								
37				ed at 5% Significance Level									
38													
39			Gamma	Statistics									
40		k hat (MLE)	1.055	k star (bias corrected MLE)	1.022								
41		Theta hat (MLE)	34.49	Theta star (bias corrected MLE)	35.59								
42		nu hat (MLE)	162.4	nu star (bias corrected)	157.4								
43	М	LE Mean (bias corrected)	36.38	MLE Sd (bias corrected)	35.98								
44		(Approximate Chi Square Value (0.05)	129.4								
45	Adius	sted Level of Significance	0.0469	Adjusted Chi Square Value	128.9								
46	· · · · · · · · · · · · · · · · · · ·	- 3			-								
47		Ass	suming Gam	ma Distribution									
48	95% Approximate Gamma		44.25	95% Adjusted Gamma UCL (use when n<50)	44.41								
49		, //		,									
50													

Appendix J

	А	В	С	D	E	F	G	н		J	К	L		
51						Lognorma	GOF Test					_		
52			S	hapiro Wilk	Test Statistic	0.915		Shap	oiro Wilk Log	gnormal GOF	Test			
53		5% Shapiro Wilk P Value 2.0551E-5 Data Not Lognormal at 5% Significance Level												
54		Lilliefors Test Statistic 0.162 Lilliefors Lognormal GOF Test												
55		5% Lilliefors Critical Value 0.101 Data Not Lognormal at 5% Significance Leve												
56					Data Not L	.ognormal a	t 5% Signific	ance Level						
57														
58		Lognormal Statistics												
59				Minimum of	Logged Data	1.792				Mean of	logged Data	3.05		
60			Ν	Aaximum of	Logged Data	5.94				SD of	logged Data	0.935		
61														
62							ormal Distrib	ution						
63					95% H-UCL	41.37				Chebyshev (,	44.55		
64				-	(MVUE) UCL	50.05			97.5%	Chebyshev (MVUE) UCL	57.68		
65		99% Chebyshev (MVUE) UCL 72.66												
66														
67							tion Free UC		-					
68					Data do not f	follow a Disc	ernible Distr	ibution (0.05	5)					
69														
70							tribution Fre	e UCLs				46.99		
71			050/		5% CLT UCL	46.86								
72					ootstrap UCL	46.67	95% Bootstrap-t UCL							
73					ootstrap UCL	59.07	95% Percentile Bootstrap UCL							
74					-	51.51 55.5			050/ 01			64.17		
75					ean, Sd) UCL	55.5 76.19				nebyshev(Me				
76			97.5% Cr	ebysnev(Me	ean, Sd) UCL	70.19			99% CI	nebyshev(Me	an, Sû) UCL	99.82		
77						Suggested	UCL to Use							
78			05% Ch	abyshov (Ma	an, Sd) UCL	64.17								
79			90 % CH		an, Suj UCL	04.17								
80	N	Inte: Sugar	stions regard	ing the selec	tion of a QE%	LICI are pr	ovided to bol	n the user to	select the r	nost appropria	ate 95% LICI			
81	IN	ole. Ougge			ations are bas	•		•			uie 30 /0 UUL			
82		These recor				•	,	,		, Maichle, and				
83					•				0	want to consi	()	an		
84		vever, sintu						กาลา การเงาน แ	ie usei iiidy		טוג מ סומנוסנוכונ	an.		
85														