

Australia's National Science Agency

National Hydrogen Research, Development and Demonstration (RD&D)

Technical Repository

December 2019

CITATION

Charnock S., Temminghoff M., Srinivasan V., Burke N., Munnings C., Hartley P. (2019) *Hydrogen Research, Development and Demonstration: Technical Repository,* CSIRO.

COPYRIGHT

© Commonwealth Scientific and Industrial Research Organisation 2019. To the extent permitted by law, all rights are reserved, and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

IMPORTANT DISCLAIMER

CSIRO advises that the information contained in this publication comprises general statements based on consultations and desktop research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO, the Steering Committee and Sponsors and Supporters (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document, please contact csiroenquiries@csiro.au.

Contents

Ackno	wledger	nent	7
1	Introdu	uction	8
2	Snapsh	not of current Australian hydrogen RD&D project activity	9
	2.1.1	Production	
	2.1.2	Storage13	
	2.1.3	Utilisation15	
	2.1.4	Cross-Cutting RD&D17	
	2.1.5	Institutional contacts18	
3	Austra	lian demonstration projects and research infrastructure	19
4	Techno	ology repository: Introduction	23
5	Techno	ology repository: Production	25
5.1	Electro	lysis	
	5.1.1	Alkaline electrolysis	
	5.1.2	Anion exchange membrane (AEM) electrolysis	
	5.1.3	Carbon and hydrocarbon-assisted water electrolysis	
	5.1.4	Polymer electrolyte membrane (PEM) electrolysis	
	5.1.5	Solid oxide electrolysis	
5.2	Fossil f	uel conversion	
	5.2.1	Autothermal reforming (dry or steam)	
	5.2.2	Chemical looping water splitting	
	5.2.3	Coal gasification	
	5.2.4	Coal and oil pyrolysis	
	5.2.5	Concentrated solar-thermal methane reforming	
	5.2.6	Natural gas pyrolysis (methane cracking)	
	5.2.7	Partial oxidation: thermal or catalytic	
	5.2.8	Steam methane reforming and carbon dioxide reforming	
5.3	Biomas	ss and waste conversion	

 5.3.3 Biomass and waste pyrolysis 5.3.4 Plasma-assisted biogas reforming 5.3.5 Plasma assisted biomass conversion 	
5.3.4 Plasma-assisted biogas reforming	
E 2 E Diasma assisted biomass conversion	
5.5.5 Plasifia-assisted piofilass conversion	
5.4 Thermal water splitting	
5.4.1 Solar thermochemical water splitting (two-stage)	
5.4.2 Solar thermochemical water splitting (multi-stage)	
5.5 Biological hydrogen production	
5.5.1 Biophotolysis (direct and indirect)	
5.5.2 Dark fermentation	
5.5.3 Hybrid light and dark fermentation	
5.5.4 Microbial electrolysis	
5.5.5 Photofermentation	51
5.5.6 Dark fermentation followed by anaerobic digestion of biomage	ss53
5.6 Photochemical and photocatalytic processes	54
5.6.1 Photocatalytic water splitting	
5.6.1Photocatalytic water splitting5.6.2Photoelectrochemical water splitting	55
 5.6.1 Photocatalytic water splitting 5.6.2 Photoelectrochemical water splitting 6 Technology repository: Storage 	55
 5.6.1 Photocatalytic water splitting 5.6.2 Photoelectrochemical water splitting 6 Technology repository: Storage 6.1 Compression and liquefaction 	
 5.6.1 Photocatalytic water splitting 5.6.2 Photoelectrochemical water splitting 6 Technology repository: Storage 6.1 Compression and liquefaction	
 5.6.1 Photocatalytic water splitting	
 5.6.1 Photocatalytic water splitting	
 5.6.1 Photocatalytic water splitting	
 5.6.1 Photocatalytic water splitting 5.6.2 Photoelectrochemical water splitting 6 Technology repository: Storage 6.1 Compression and liquefaction 6.1.1 Compression: Electrochemical 6.1.2 Compression: Metal hydrides 6.1.3 Compression: Ionic liquids 6.1.4 Liquid hydrogen: Cryo-compression 6.1.5 Liquid hydrogen: Cryogenic tanks 	
 5.6.1 Photocatalytic water splitting	55 58 58 59 60 61 62 64
 5.6.1 Photocatalytic water splitting	55 58 58 59 60 61 62 64 65
 5.6.1 Photocatalytic water splitting	55 58 58 59 60 61 61 62 64 64 65 66
 5.6.1 Photocatalytic water splitting	55 58 58 59 60 61 61 62 64 65 66 66
 5.6.1 Photocatalytic water splitting	55 58 58 59 60 61 61 62 64 64 65 66 66 66 66
 5.6.1 Photocatalytic water splitting	55 58 58 59 60 61 61 62 64 62 64 65 66 66 66 66 66 68 69

5.3.1

7

6.2.7	Ammonia: Non-thermal plasma synthesis	'3
6.2.8	Ammonia: combined system synthesis	′4
6.2.9	Ammonia: solid oxide electrolysis	′5
6.2.10	Dimethyl ether (DME)	6'
6.2.11	Electrochemical carbon-based storage: proton batteries	6'
6.2.12	Hydrides: chemical	'9
6.2.13	Hydrides: complex	30
6.2.14	Hydrides: metal	32
6.2.15	Liquid organic hydrogen carrier: Dibenzyl toluene	34
6.2.16	Liquid organic hydrogen carrier: Toluene/methylcyclohexane	35
6.2.17	Methanol	36
6.2.18	Methanol: combined system synthesis	38
6.2.19	Methanol: solid oxide electrolysis	39
6.2.20	Physisorption: Metal organic frameworks (MOFs)	90
6.2.21	Synthetic methane (compressed gas or liquid)) 1
6.2.22	Synthetic methane: combined system synthesis	93
6.2.23	Synthetic methane: solid oxide electrolysis	94
Techno	ology repository: Utilisation	9
Publica	itions search strategy	9
Bibliom	netric Methodology	98
Data So	ources	98
8.2.1	Web of Science (WoS)	98

Ammonia: Hydration of metal nitrides72

9 Patent landscape search

8

8.1

8.2

8.2.2

6.2.5

6.2.6

9.1	Details of relevant IPCs and / or CPCs covered by the search strategy	102
9.2	Search strategy	104
9.3	Copyright, search limitations and disclaimers	106

Acknowledgement

CSIRO acknowledges the Traditional Owners of the lands that we live and work on across Australia and pay their respect to Elders past, present and emerging. CSIRO recognises that Aboriginal and Torres Strait Islander peoples have made and will continue to make extraordinary contributions to all aspects of Australian life including culture, economy and science.

The project team would like to thank the project Sponsors and Supporters as well as the Steering Committee for providing support, guidance and oversight throughout the repository's development. This includes Dr Alan Finkel AO and the National Hydrogen Strategy Taskforce for their ongoing support and guidance.

We are also grateful for the time and input of the stakeholders from industry, government and academia, and the CSIRO who were consulted throughout this project. In particular, the project team would like to thank and acknowledge Lisa Jarrett from CSIRO Futures; Jenny Hayward from CSIRO's Energy Economics team; Tadro Abbott and Adam Finch from CSIRO's Science Impact & Policy team; Greg Maloney and Matthew Roper from CSIRO's Intellectual Property team; and Rebecca Hinton, Kirsten Lawarik and Natalie Clark from CSIRO's Innovation Catalyst Global team and CSIRO's Web Solutions Team.

Sponsors and Supporters

Steering Committee

Name	Institution
Dr Patrick Hartley	CSIRO
Dr Chris Munnings	CSIRO
Alison Reeve	National Hydrogen Strategy
Nicole Henry	Taskforce
Prof Paul Webley	The University of Melbourne
Prof Doug MacFarlane	Monash University
Prof John Andrews	RMIT University
Prof Kenneth Baldwin	The Australian National University
Dr Jason Scott	The University of New South Wales
Dr Simon Smart	The University of Queensland
Prof Evan Gray	Griffith University
Prof Gus Nathan	The University of Adelaide
Dongke Zhang	The University of Western Australia
Alison Wiltshire	The Australian Renewable Energy
Dr Charlotte Rouse	Agency

1 Introduction

Australia's hydrogen research, development and demonstration (RD&D) community is diverse, with participation from many research institutions and companies. This document serves as a technical appendix to the CSIRO National Hydrogen RD&D Report,¹ providing a resource for stakeholders across Australia's hydrogen RD&D community. As a supporting document, it serves as a technical repository of the summary content described in the main report.

It is intended that this repository act as the foundation for a 'living document' which is updated over time. The document is accompanied by a digital edition of the report and repository, which allow navigation through the main elements of the report and technical summaries for hydrogen production and storage. The website aims to facilitate collaboration between institutions, industry, and government across various hydrogen research areas.

The report and digital repository, created by CSIRO's Innovation Catalyst Global team and CSIRO's Web Solutions Team, are available at: https://www.csiro.au/en/Showcase/Hydrogen. This document covers the following:

- Australian RD&D capability summary A collation of data regarding active research currently being conducted by Australian research institutions in various hydrogen technology areas.
- Australian demonstration projects and research infrastructure A list of active, under completion, or proposed research and demonstration facilities across Australia. Locations and key organisations are described alongside summaries of each project.
- **Technology repository** A collection of hydrogen production, storage, and utilisation technologies across the value chain. These summaries were created from literature review and consultation with hydrogen researchers across Australia.
- **Publications and search strategy** Technical details of the search strategy conducted to provide an overview of Australian and global hydrogen-related publications.
- **Patent landscape research** Technical details of the patent landscape search conducted to provide an overview of Australian and global hydrogen-related patents.

¹ Srinivasan, V., Temminghoff, M., Charnock, S., Hartley, P. (2019). *Hydrogen Research, Development and Demonstration: Priorities and Opportunities for Australia*, CSIRO.

2 Snapshot of current Australian hydrogen RD&D project activity

Australia has significant RD&D capability across various institutions, including universities, publicly funded research agencies and cooperative research centres. This summary showcases the active research currently being conducted by Australian research institutions in various hydrogen technology areas across the value chain, as identified through consultations and desktop research.

The objectives of this summary are to assist institutions with developing their own strategies, stimulating collaboration between institutions, and helping international partners understand the hydrogen-related capabilities of Australian institutions. To stimulate and encourage collaboration across Australia's RD&D ecosystem, institutional contact details are provided in Section 2.1.5. It should also be emphasised that this summary acts as a snapshot of currently active projects across the value chain and categories by 'process group' (see FIGURE 1). As such, it does not capture existing capability that could be readily transferred from one area of hydrogen research into another, nor knowledge and experience that may have been developed in a given institution over time.

Furthermore, hydrogen RD&D is expected to change rapidly over the coming years, as will capabilities that emerge with new projects and researchers. Ideally, this summary should be maintained regularly to hold an accurate picture of the Australian hydrogen RD&D landscape.

Not all information could be collated regarding the institutional activity in each hydrogen technology area, in part due to the wide range of active research being conducted at a given institution. While care has been taken to provide a comprehensive account of Australia's RD&D activity, it is likely that any given institution's active hydrogen research portfolio falls beyond the scope of any individual consulted for this project.

FIGURE 1: SNAPSHOT OF CURRENT HYDROGEN RD&D PROJECT ACTIVITY, BY CATEGORY AND NUMBER OF ACTIVE AUSTRALIAN INSTITUTIONS

Hydrogen pro	oduction	HOH	Storage and d	istribution
Electrolysis	12		Compression and liquefaction	13
Fossil fuel conversion	12		Compressed hydrogen	6
Biomass and waste conversion	11		Liquid hydrogen	6
Direct hydrogen carrier production	4		Underground storage	4
Thermal water splitting	5		Pipeline storage	5
Biological hydrogen	9		Chemical storage	17
Photochemical	16		Ammonia	10
processes			Synthetic fuels	10
			Liquid organic hydrogen carriers	5
Cross-cutting	RD&D	RA I	Hydrides	11
Environment	E		Proton batteries	3
Social licence.	5		Physisorption	9
safety and standards	13			
Modelling	15		Hvdrogen utili	sation 🔥
Policy and regulation	6			0
Ancillary technology and services	12	L	Hydrogen application-s technologies for:	pecific technologies including
			Hydrogen utilisation	14
			Direct hydrogen carrier utilisation	4

2.1.1 Production

TABLE 1: AUSTRALIAN RESEARCH INSTITUTIONS WITH PRODUCTION RD&D CAPABILITY (BLUE = ACTIVE PROJECTS), LAST UPDATED 26/11/2019

	Institution		CSIRO	University of Adelaide	University of NSW	Macquarie University	Monash University	University of Sydney	University of Technology Sydney	Curtin University	Swinburne University	University of Newcastle	Western Sydney University	University of Melbourne	Australian National University	University of WA	Griffith University	RMIT University	Victoria University	Future Fuels CRC	Deakin University	Queensland University of Technology	University of Queensland	Flinders University
Process	Technology	Count											Produ	uction										
	Biophotolysis (direct and indirect)	2																						
	Dark fermentation	2																						
Biological	Hybrid light and dark fermentation	0																						
production	Microbial electrolysis	3																						
	Photofermentation	1																						
	Dark fermentation followed by anaerobic digestion of biomass	5																						
	Anion exchange membrane (AEM) electrolysis	5																						
	Alkaline electrolysis	7																						
Electrolysis	Carbon and hydrocarbon-assisted water electrolysis	4																						
	Polymer electrolyte membrane (PEM) electrolysis	8																						
	Solid oxide electrolysis	2																						

Photochemical and	Photocatalytic water	13											
photocatalytic processes	Photoelectrochemical water splitting	11											
	Biogas reforming	3											
	Biomass and waste gasification	8											
Biomass and	Hydrothermal liquefaction	4											
waste conversion	Biomass and waste pyrolysis	8											
	Plasma-assisted biomass conversion	3											
	Plasma-assisted biogas reforming	3											
	Chemical looping water splitting	6											
	Coal gasification	4											
	Partial oxidation: thermal or catalytic	4											
	Coal and oil pyrolysis	3											
Fossil fuel	Natural gas pyrolysis (methane cracking)	6											
conversion	Concentrated solar- thermal methane reforming	4											
	Steam methane reforming and carbon dioxide reforming	5											
	Autothermal reforming: dry or steam	2											
Thermal water	Solar thermochemical water splitting (two- stage)	5											
splitting	Solar thermochemical water splitting (multi- stage)	3											
Direct hydrogen carrier production	Direct hydrogen carrier production	4											

2.1.2 Storage

TABLE 2: AUSTRALIAN RESEARCH INSTITUTIONS WITH STORAGE RD&D CAPABILITY (BLUE = ACTIVE PROJECTS), LAST UPDATED 26/11/2019

	Institution		CSIRO	University of Adelaide	University of NSW	Macquarie University	Monash University	University of Sydney	University of Technology Sydney	Curtin University	Swinburne University	University of Newcastle	Western Sydney University	University of Melbourne	Australian National University	University of WA	Griffith University	RMIT University	Victoria University	Future Fuels CRC	Deakin University	Queensland University of Technology	University of Queensland	Flinders University
Process	Technology	Count											Sto	rage										
	Compression: electrochemical	1																						
	Pipelines (gas networks)	5																						
	Compression: Ionic liquids	0																						
	Compression: mechanical	2																						
Compression and liquefaction	Compression: metal hydrides	5																						
	Metal-composite pressurised vessels	2																						
	Underground storage	4																						
	Liquid hydrogen: cryogenic tanks	6																						
	Liquid hydrogen: cryo- compression	1																						
	Physisorption: metal- organic frameworks (MOFs)	9																						
	Ammonia	8																						
Chemical	Ammonia: dense metal membrane- based synthesis	1																						
	Ammonia: electrochemical synthesis	5																						

Ammonia: Haber- Bosch synthesis	3											
Ammonia: hydration of metal nitrides	2											
Ammonia: non- thermal plasma	3											
Ammonia: enzymatic synthesis	1											
Ammonia: solid oxide electrolysis	0											
Ammonia: combined system synthesis	0											
Liquid organic hydrogen carrier (LOHC): toluene	3											
Liquid organic hydrogen carrier (LOHC): dibenzyltoluene	4											
Synthetic methane (compressed or liquid)	7											
Synthetic methane: solid oxide electrolysis	1											
Synthetic methane: combined system synthesis	0											
Methanol	6											
Methanol: solid oxide electrolysis	1											
Methanol: combined system synthesis	1											
Dimethyl ether (DME)	1											
Hydrides: chemical	3											
Hydrides: complex	6											
Hydrides: metal	8											
Electrochemical carbon-based storage: proton batteries	3											

2.1.3 Utilisation

TABLE 3: AUSTRALIAN RESEARCH INSTITUTIONS WITH UTILISATION RD&D CAPABILITY (BLUE = ACTIVE PROJECTS), LAST UPDATED 26/11/2019

	Institution		CSIRO	University of Adelaide	University of NSW	Macquarie University	Monash University	University of Sydney	University of Technology Sydney	Curtin University	Swinburne University	University of Newcastle	Western Sydney University	University of Melbourne	Australian National University	University of WA	Griffith University	RMIT University	Victoria University	Future Fuels CRC	Deakin University	Queensland University of Technology	University of Queensland	Flinders University
Process	Technology	Count											Utilis	ation										
Export	Export demonstration	7																						
	Pipeline materials	4																						
	Appliance testing	5																						
Gas blending	Gas metering	5																						
	Hydrogen gas separation	5																						
	Polymer electrolyte membrane fuel cell (PEMFC)	8																						
	Refuelling station technologies	1																						
Transport	Aviation and UAVs	5																						
	Ammonia internal combustion engine	4																						
	Hydrogen internal combustion engine	3																						
	Steel embrittlement testing	6																						
	Ammonia turbine	1																						
Electricity	Ammonia fuel cells	1																						
	Hydrogen gas turbine	5																						

	Hydrogen fuel cells	11											
	Alkaline anion exchange membrane fuel cell (AEMFC)	3											
	Microbial fuel cell	3											
	Solid oxide fuel cells	4											
	Unitised reversible fuel cell system	1											
	Polymer electrolyte membrane fuel cell (PEMFC)	7											
	Alkaline fuel cell (AFC)	0											
	Molten carbonate fuel cell	1											
	Phosphoric acid fuel cell	0											
	Direct methanol fuel cell	1											
	Steel processing	5											
	Combustion	8											
Industrial Processes	Synthetic fuels	10											
	Methanol production: carbon dioxide reduction	4											
Heat storage	Thermal batteries based on metal hydrides	2											

2.1.4 Cross-Cutting RD&D

TABLE 4: AUSTRALIAN RESEARCH INSTITUTIONS WITH CROSS-CUTTING RD&D CAPABILITY (BLUE = ACTIVE PROJECTS), LAST UPDATED 26/11/2019

Institution				University of Adelaide	University of NSW	Macquarie University	Monash University	University of Sydney	University of Technology Sydney	Curtin University	Swinburne University	University of Newcastle	Western Sydney University	University of Melbourne	Australian National University	University of WA	Griffith University	RMIT University	Victoria University	Future Fuels CRC	Deakin University	Queensland University of Technology	University of Queensland	Flinders University
Process	Technology	Count										Cre	oss-cut	ting RD	&D									
Environmental	Environmental	5																						
Policy and regulation	Provenance	6																						
Social liconco	Social licence	9																						
safety and standards	General safety and standards	7																						
standards	Combustion modelling	4																						
	Modelling (various)	14																						
Modelling	Technical/simulation	12																						
	Pipelines (gas flow, technoeconomics, etc.)	9																						
	Specialised sensors, monitoring devices and other components	7																						
Ancillary technology and services	Technology integration and process improvement	6																						
	Separation materials and technologies	7																						

2.1.5 Institutional contacts

TABLE 5: INSTUTIONAL CONTACT DETAILS

Institution	Listed contacts	Contact
The Australian National	Igor Skryabin	iskryabin@gmail.com
University		
CSIRO	Patrick Hartley	Patrick.Hartley@csiro.au
	Daniel Roberts	Daniel.Roberts@csiro.au
Curtin University	Refer to: https://www.curtin.edu.au/	1
Deakin University	Refer to: https://www.deakin.edu.au	/
The Future Fuels	Klaas van Alphen	klaas.vanalphen@futurefuelscrc.com
Cooperative Research		
Centre		
Griffith University	Evan Gray	e.gray@griffith.edu.au
Macquarie University	Refer to: https://www.mq.edu.au/	
Monash University	Douglas MacFarlane	douglas.macfarlane@monash.edu
	Alexandr Simonov	alexandr.simonov@monash.edu
Queensland University of	lan MacKinnon	ian.mackinnon@qut.edu.au
Technology		
RMIT University	John Andrews	john.andrews@rmit.edu.au
Swinburne University	Ros Hore	rhore@swin.edu.au
The University of Adelaide	Bassam Dally	bassam.dally@adelaide.edu.au
	Greg Metha	greg.metha@adelaide.edu.au
The University of Melbourne	Paul Webley	paul.webley@unimelb.edu.au
The University of Newcastle	Behdad Moghtaderi	behdad.moghtaderi@newcastle.edu.au
The University of	Simon Smart	s.smart@uq.edu.au
Queensland		
The University of Sydney	Dries Verstraete	Dries.Verstraete@sydney.edu.au
	Jeremy Qiu	jeremy.qiu@sydney.edu.au
The University of	Zhenguo Huang	Zhenguo.Huang@uts.edu.au
Technology Sydney		
The University of Western	Dongke Zhang	dongke.zhang@uwa.edu.au
Australia	Eric May	eric.may@uwa.edu.au
The University of New South	Kondo-Francois Aguey-Zinsou	f.aguey@unsw.edu.au
Wales		
Victoria University	Refer to: https://www.vu.edu.au/	
Western Sydney University	Leigh Sheppard	L.Sheppard@westernsydney.edu.au

3 Australian demonstration projects and research infrastructure

A total of 23 hydrogen-specific demonstration projects and research facilities around Australia were found in this study, an increase from the 15 listed in the National Hydrogen Roadmap, published in 2018.² The summaries were created based on publicly available information and consultations conducted across Australia; and aim to provide an easily digestible overview of each project or facility. It is important to note that this sector rapidly evolving, and this list acts only as a snapshot of the current point in time.

This summary has been converted into a digital edition, available at: https://www.csiro.au/en/Showcase/Hydrogen.

Project	State	Location	Organisation(s)	Summary
Clean Energy Innovation Hub ³	WA	Jandakot	ΑΤCΟ	Test bed for hybrid energy solutions, integrating natural gas, solar PV, battery storage and hydrogen production
Renewable Hydrogen for Ammonia production ⁴	WA	Pilbara	Yara, Engie	The goal is to convert the Pilbara ammonia plant from one that relies completely on natural gas for its hydrogen to one where a significant share of its hydrogen comes from renewable power
Hazer Group Facility⁵	WA	Woodman Point	Hazer Group	Using the Hazer process of methane cracking, the facility will convert sewerage biogas into hydrogen and graphite
Australian Resources Research Centre ⁶	WA	Perth	CSIRO & Curtin Uni	Research centre bringing together expertise across industrial and gas processing as well as mining.
Murchison Renewable Hydrogen Project	WA	Kalbarri	Siemens, Hydrogen Renewables Australia	5GW wind and solar project to produce green hydrogen for export to Asia.

TABLE 6: HYDROGEN DEMONSTRATION PROJECTS AND RESEARCH INFRASTRUCTURE

² Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). National Hydrogen Roadmap, CSIRO.

³ ATCO (2019). Clean Energy Innovation Hub, [Online] Available from: https://yourgas.com.au/energy-future/clean-energy-innovation-hub/ Accessed: 19/11/2019

⁴ Yara (2019). Yara and ENGIE to test green hydrogen technology in fertilizer production, [Online] Available from: https://www.yara.com/news-andmedia/news/archive/2019/yara-and-engie-to-test-green-hydrogen-technology-in-fertilizer-production/ Accessed: 19/11/2019

⁵ ARENA (2019). World-first project to turn biogas from sewage into hydrogen and graphite, [Online] Available from:

https://arena.gov.au/news/world-first-project-to-turn-biogas-from-sewage-into-hydrogen-and-graphite/ Accessed: 19/11/2019

Crystal Brook Energy Park ⁷	SA	Crystal Brook	Neoen	Neoen is investigating the construction of a renewable hydrogen production facility. The proposed 50MW Hydrogen Superhub would be the largest co-located wind, solar, battery and hydrogen production facility in the world, producing up to 25,000kg of hydrogen per day.
Hydrogen Park SA (HyP SA) ⁸	SA	Adelaide	AGIG & Siemens	Electrolysis will be used to generate hydrogen using renewable electricity and injected into the natural gas network.
Port Lincoln Green Hydrogen Plant ⁹	SA	Port Lincoln	Hydrogen Utility (H2U), Thyssenkrupp	A 30MW water electrolysis plant, as well as a facility for sustainable ammonia production.
Renewable Hydrogen Microgrid ¹⁰	QLD	Daintree	Daintree Renewable Energy Inc	The proposed microgrid will store energy generated by new and existing solar panels by converting it to hydrogen for use in a fuel cell RAPS.
Gladstone Advanced Biofuels Pilot Plant ¹¹	QLD	Gladstone	Northern Oil & AFC Energy	Hydrogen will be produced from waste through the chemical looping process to support refining. Surplus hydrogen will be used to power a 200-400kw fuel cell.
Renewable Hydrogen Production and Refuelling Project ¹²	QLD	Bulwer	BOC	A 220 KW electrolyser, 100 KW solar array for local hydrogen production and refuelling.
Redlands Research Centre ¹³	QLD	Brisbane	Queensland University of Technology	Renewable hydrogen pilot plan to build knowledge and explore export opportunities.

https://www.esdnews.com.au/gladstone-refinery-to-utilise-hydrogen-power/

⁷ Crystal Brook Energy Park (n.d.). *Neoen awarded funding to investigate hydrogen*, [Online] Available from:

https://crystalbrookenergypark.com.au/neoen-awarded-funding-to-investigate-hydrogen/ Accessed: 19/11/2019

⁸ Australia Gas Infrastructure Group (n.d.). Hydrogen Park South Australia, [Online] Available from: https://www.agig.com.au/hydrogen-park-southaustralia Accessed: 19/11/2019

⁹ RenewablesSA (n.d). Port Lincoln hydrogen and ammonia supply chain demonstrator, [Online] Available from:

http://www.renewablessa.sa.gov.au/topic/hydrogen/hydrogen-projects/hydrogen-green-ammonia-production-facility Accessed: 19/11/2019 ¹⁰ Maisch, M. (2019). Australia's first solar to hydrogen-based microgrid gets nearly \$1 million in federal funding, PV magazine, [Online] Available from: https://www.pv-magazine-australia.com/2019/05/07/australias-first-solar-to-hydrogen-based-microgrid-gets-nearly-1-million-in-federalfunding/

¹¹ Energy Source and Distribution (2018). *Gladstone refinery to utilise hydrogen power*, [Online] Available from:

¹² ARENAWire (2019). Latest hydrogen demonstration launches in Brisbane, [Online] Available from: https://arena.gov.au/blog/boc-hydrogendemonstration/ Accessed: 19/11/2019

¹³ Queensland Cabinet and Ministerial Directory (2019). *Media Statement – Queensland's hydrogen future closer to reality*, [Online] Available from: http://statements.qld.gov.au/Statement/2019/3/28/queenslands-hydrogen-future-closer-to-reality Accessed: 19/11/2019

Sir Samuel Griffith Centre renewable hydrogen microgrid	QLD	Brisbane	Griffith University	University building operating independent of the electricity grid by integrating PV, electrolysis and fuel cells.
Renewable ammonia plant ¹⁴	QLD	Moranbah	Dyno Nobel	Assessing the feasibility of creating the world's largest ammonia plant using a 160MW electrolyser powered by a 210MW solar farm.
National Hydrogen Materials Reference Facility (NHMRF) ¹⁵	QLD	Brisbane	Griffith University	Reference facility focused on characterising the performance of hydrogen storage materials. Capabilities include: measurement of hydrogen absorption, adsorption and desorption, lifetime testing, hydrogen storage testing systems.
Queensland Centre for Advanced Technology (QCAT)	QLD	Brisbane	CSIRO	Internationally-unique facility for studying the gasification behaviour of a range of feedstocks over a range of industrially relevant conditions.
ARC Training Centre for The Global Hydrogen Economy	NSW	Sydney	University of New South Wales	Centre to train and develop hydrogen engineering professionals to meet the demand for hydrogen production, storage and distribution skills.
Jemena's Power to Gas trial ¹⁶	NSW	Western Sydney	Jemena	The trial will convert solar and wind power into hydrogen gas, via electrolysis, which will then be stored for use across the Jemena Gas Network.
Fire and Explosion Testing Services (FETS) ¹⁷	NSW	Newcastle	University of Newcastle	A \$15 million facility, FETS operates an integrated platform that combines a wide range of expertise at the University with one of the most comprehensive and state-of-the-art fire and explosion testing facilities in the country. Testing of

¹⁴ ARENAWire (2019). *Renewable future beckons for Queensland ammonia plants,* [Online] Available from: https://arena.gov.au/blog/renewable-future-beckons-for-queensland-ammonia-plants/ Accessed: 19/11/2019

¹⁵ Griffith University (n.d.). NATIONAL HYDROGEN MATERIALS REFERENCE FACILITY, [Online] Available from:

https://www.griffith.edu.au/queensland-micro-nanotechnology-centre/facilities/national-hydrogen-materials-reference-facility Accessed: 19/11/2019

¹⁶ Jemena (n.d.). Welcome to Jemena's Power to Gas Trial, [Online] Available from: https://jemena.com.au/about/innovation/power-to-gas-trial Accessed: 19/11/2019

¹⁷ Tunra Energy (2017). *Energy technology & safety solutions*, [Online] Available from: https://tunra.com.au/works/tunra-energy/ Accessed: 19/11/2019

				hydrogen is to be included. Comprises of a 30m and 100m detonation tube for explosion measurements and analysis.
Government Fleet and Refuelling station ¹⁸	ACT	Canberra	ActewAGL, Neoen, Megawatt Capital, Hyundai	Public hydrogen refuelling station will open in Canberra to service 20 new FCEV's under order by the ACT government.
Hydrogen Energy Supply Chain (HESC) ¹⁹	VIC	Latrobe valley	Kawasaki Heavy Industries (KHI), J- POWER, Iwatani Corporation, Marubeni Corporation, Shell & AGL	During the pilot phase, brown coal will be gasified in the Latrobe Valley to produce hydrogen-rich syngas which will subsequently be purified, then transported to the Port of Hastings to be liquefied and loaded onto a specialised tanker for transport to Japan.
Toyota Australia Hydrogen Centre ²⁰	VIC	Altona	Toyota Australia	To be built with an electrolyser, commercial refuelling station and education centre for live demonstrations.
Centre for Hybrid Energy Systems (CHES) ²¹	VIC	Melbourne	CSIRO	Showcases expertise and capability in integrating energy storage, renewable energy, hydrogen and fuel cell technologies, fuel processing, systems design and construction.

¹⁸ Brewer, P. (2019). Hydrogen to top up 20 new ACT fleet cars, Canberra Times, [Online] Available from:

https://www.canberratimes.com.au/story/6111531/hydrogen-to-top-up-20-new-act-fleet-cars/ Accessed: 19/11/2019 ¹⁹ https://hydrogenenergysupplychain.com/ Accessed: 19/11/2019

²⁰ Toyota (2019). Toyota's Altona Site to Be Home to Victoria's First Hydrogen Refuelling Station, [Online] Available from: https://www.toyota.com.au/news/toyotas-altona-site-to-be-home-to-victorias-first-hydrogen-refuelling-station Accessed: 19/11/2019
²¹ CSIRO (2019). Centre for Hybrid Energy Systems, [Online] Available from: https://www.csiro.au/en/Dobusiness/Prototyping/CHES?ref=/CSIRO/Website/Research/EF/Areas/Facilities/CHES Accessed: 19/11/2019

4 Technology repository: Introduction

The following is a repository of hydrogen production and storage technologies collected during the

Hydrogen Research, Development and Demonstration: Priorities and Opportunities for Australia study. The technology summaries were created based on a combination of literature reviews, consultation with researchers, and reviews conducted by individuals with relevant expertise.

It is intended that this repository act as the foundation for a 'living document' which is updated over time as developments occur and research priorities change. This document is accompanied by a digital edition of the repository, referred to as the 'hydrogen technology marketplace', which allows navigation through the technical summaries for hydrogen production and storage, and aims to facilitate collaboration between institutions, industry, and government across various hydrogen research areas. This digital repository is available at: https://www.csiro.au/en/Showcase/Hydrogen.

The following technical summary chapters include:

- Production (Part 5): Technical summaries for various hydrogen production methods, organised by process type.
- Storage (Part 6): Technical summaries for various hydrogen production methods, organised by storage type.
- Utilisation (Part 7): Brief technical summaries for various hydrogen and hydrogen carrier utilisation technologies.

While not included in this repository, it should be noted that cross-cutting RD&D areas are equally important in developing a domestic and global hydrogen industry; and are covered in detail in *Hydrogen Research, Development and Demonstration: Priorities and Opportunities for Australia*.

The 'characteristics' box within each summary was created with the intention of providing high-level, strategically relevant information to aid in understanding and comparing technologies. The final edition of the technology repository will also include comparison tables which present these characteristics side-by-side for technologies within the same category.

Note also that while 'direct hydrogen carrier synthesis' is listed under the production taxonomy, the technologies that fall within this category are presented here under the Storage section.

Please note the following limitations of the repository:

- Not all information could be collected on each technology given the early stage of the research and the widely varying characteristics associated with exploratory work. Not all information can be presented with a high level of accuracy due to the wide variations possible within each technology, such as design, materials, conditions, or other factors. Additionally, the repository is not exhaustive of all technologies due to limitations of project scope, time, and availability of information. Further research could be conducted to provide more in-depth information on each technology and ensure a more comprehensive coverage of technologies across all categories.
- 'Active institutions' includes those institutions which have confirmed and approved their activity in current research projects in the given technology area. As mentioned, not all information could be collated regarding the institutional activity in each hydrogen technology area, in part due to the wide range of active research being conducted at a given institution. Note that the project team and individuals consulted have attempted to be as comprehensive as possible, however it is likely that in many cases an institution's active hydrogen research portfolio falls beyond the scope of any individual consulted. Additionally, it should be noted that there will be some institutions with active

hydrogen research that have not been included in this summary, as they were unable to be consulted during the project.

• The repository acts a snapshot of the current state of the technologies included. These key characteristics and RD&D priorities are expected to change significantly in the future. We hope this repository will form part of a living document that is maintained and updated over time, in which case remaining gaps in knowledge could be addressed, and new developments added when they emerge.

5 Technology repository: Production

5.1 Electrolysis

5.1.1 Alkaline electrolysis

What is it?

Water is split into hydrogen and oxygen via the application of an electric current, using a porous diaphragm and an alkaline electrolyte.

Why is it important?

Alkaline electrolysis is an established technology which is already being employed at industrial scale.

	IKL	1	2	3	4	5	6	/	8	9			
Ber • • •	Well e capaci Large s Long-t Low ca Non-n Matur	stablished s ty stack sizes a erm stabilit apital cost oble materi e technolog	upply chain vailable y als y	and manufa	octuring	 RD&D priorities Improve operational flexibility Enable higher temperature operation Improve oxygen evolution Achieve higher pressure operation 							
Lim • • •	High n Limite Corros Large Does r as wel Crossc and re water Low cu	s ninimum loa d dynamic c sive liquid el footprint not accomm l as other el over of gase educed effici 24 urrent densi	nd requireme operation (re ectrolyte ²³ odate varial ectrochemic s leads to lov iency due to ty	ent (20%–40 equires stabl pility of pow cal methods wer degree re-formatic	9%) e load) er supply of purity, on of	Active inst Curtin Monas Queer The Ui The Ui The Ui The Ui	itutions (7) University sh University sland Unive niversity of I niversity of I niversity of I	y ersity of Tecl Adelaide Melbourne New South V Western Aus	nnology Vales stralia				
Cha • • •	Inputs By-pro Opera Energy	stics : Water, ele ducts: Oxyg ting temper y efficiency:	ctricity gen ature: <100° ~69%	с									

 ²² Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:https://doi.org/10.1016/j.ijhydene.2013.01.151
 ²³ Ibid.

²⁴ Ibid.

5.1.2 Anion exchange membrane (AEM) electrolysis

What is it?

Water is split into hydrogen and oxygen via the application of an electric current, using a porous anion exchange membrane diaphragm and an alkaline electrolyte.

Why is it important?

More compact and safer than alkaline electrolysis and could make use of cheaper catalysts than in PEM electrolysis.

TRL ²⁵	1	2	3	4	5	6	7	8	9
									1

Benefits	RD&D priorities
 Greater safety and efficiency compared to traditional alkaline electrolysis²⁶ Potential long system lifetime²⁷ Distilled water or a low concentration of alkaline solution can be used as electrolyte instead of concentrated KOH Non-noble metal catalyst 	 Improve OH- conductivity in polymeric membrane Improve durability of membrane – degradation remains an issue Improve conductivity of electrolyte/membrane
Limitations	Active institutions (5)
 Potentially higher capital cost compared to alkaline electrolysis Unproven technology (membrane) 	 CSIRO Deakin University Monash University Queensland University of Technology The University of Adelaide
Characteristics	
 Inputs: Water, electricity By-products: Oxygen Operating temperature: <100°C 	

 ²⁵ European Commission (2019). New Anion Exchange Membrane Electrolysers, Funding & tender opportunities, [Online] Available from: https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/fch-02-4-2019 Accessed: 19/11/2019
 ²⁶ Cho, M. K., Park, H.-Y., Lee, H. J., Kim, H.-J., Lim, A., Henkensmeier, D., Yoo, S.J., Kim, J.Y., Lee, S.Y., Park, H.S., Jang, J. H. (2018). Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content. Journal of Power Sources, 382, 22-29. doi:https://doi.org/10.1016/j.jpowsour.2018.02.025

²⁷ Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). *Future cost and performance of water electrolysis: An expert elicitation study*. International Journal of Hydrogen Energy, 42(52), 30470-30492. doi:https://doi.org/10.1016/j.ijhydene.2017.10.045

5.1.3 Carbon and hydrocarbon-assisted water electrolysis

What is it?

A variation of an electrochemical system (AE, PEM, SOE) with a portion of the energy input being supplied by the chemical conversion of coal or other carbon sources such as biomass, alcohols or other hydrocarbons. Assisted electrolysis can be either high or low temperature.

_

Why is it important?

The electrical energy input required is reduced due to the energy supplied by the carbon source.

	IKL	T	2	3	4	4 5 0 / 0 7							
Be	nefits					RD&D prio	orities						
• • • •	Requir energy Produc Coal fit Cleane energy Could Could to tho	es 60% less v input in pr ces a pure h ces a separa red power p er and simpl v from carbo use biomass potentially a se achieved	electric inpu ocess ²⁸ ydrogen stru ate CO2 strea olants ²⁹ er process o onaceous fee s carbon achieve curr in PEM	ut, due to ch eam am, as oppo f extracting edstocks ent densitie	emical sed to in chemical s similar	 Improve carbon oxidation kinetics³⁰ Optimise anode catalyst³¹ Optimise operating conditions³² Improve conventional electrolyser technologies and renewables system integration³³ Develop materials to reduce degradation and improve long-term performance Improve current density³⁴ 							
Lin	nitation	S				Active institutions (4)							
•	 Produces carbon dioxide or carbon monoxide (requires CCUS) Build-up of by-products on surfaces and in solution (by-products vary depending on feedstock and electrolysis type) 						 CSIRO Deakin University The University of Newcastle Western Sydney University 						
Cha	aracteri	stics											
 Inputs: Carbon or hydrocarbon, water (as steam), electricity By-products: Carbon dioxide or carbon monoxide Operating temperature: PEM – Low (<100°C), SOE – High (>500°C) Energy efficiency: Varies depending on implementation with PEM or SOE systems 													

²⁸ Giddey, S., Kulkarni, A., & Badwal, S. P. S. (2015). Low emission hydrogen generation through carbon assisted electrolysis. International Journal of Hydrogen Energy, 40(1), 70-74. doi:https://doi.org/10.1016/j.ijhydene.2014.11.033

²⁹ Ibid.

³⁰ Ibid.

³¹ Ibid. 32 Ibid.

³³ Ju, H., Badwal, S., & Giddey, S. (2018). A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Applied Energy, 231, 502-533. doi:https://doi.org/10.1016/j.apenergy.2018.09.125

³⁴ Giddey, S., Kulkarni, A., & Badwal, S. P. S. (2015). Low emission hydrogen generation through carbon assisted electrolysis. International Journal of Hydrogen Energy, 40(1), 70-74. doi:https://doi.org/10.1016/j.ijhydene.2014.11.033

5.1.4 Polymer electrolyte membrane (PEM) electrolysis

What is it?

Water is split into hydrogen and oxygen via the application of an electric current, using an acidic solid polymer electrolyte membrane.

Why is it important?

Is an established technology with a low footprint, and can accommodate a renewable energy supply.

	TRL	1	2	3	4	5 6 7 8		9			
Ber • •	nefits Enable need f change enable costs ³² Direct High c efficie High p Small, Polym	es differentia or strict pre es in current es low press leveraging o urrent dens ncy perating pro urity hydrog flexible and er membrai	al pressure c ssure contro t for renewa ure oxygen f of PEM fuel o ities (low OF essure gen modular ne allows for	operation – o ols, enables ble integrat for safety an cell advance PEX), ³⁷ and v	eliminates rapid ion, d lower s ³⁶ oltage ctrolyte	 RD&D priorities Improve durability of cell components Develop advanced catalysts to improve efficiency and reduce noble-metal use Develop alternatives to platinum-based components Achieve higher pressure operation, while preventing cross-permeation of gases⁴⁰ Develop low cost and corrosion resistant current collectors and separator plates⁴¹ 					
• Lim •	than a Low ga respor hitation High c Acidic	Ikaline elect as crossover <u>ase times to</u> s ost of memi corrosive er	trolysers ³⁸ leads to hig <u>changes in p</u> prane and no nvironment ⁴	h gas purity power suppl oble metal c 2	and fast y ³⁹ atalyst	Active institutions (8) CSIRO Curtin University Deakin University					
Cha •	aracteri Inputs By-prc	stics : Water, ele ducts: Oxyg	ctricity			 Deaking The Fu Monas Queer The Un The Un 	iture Fuels C sh University island Unive niversity of P niversity of P	Cooperative y crsity of Tech Adelaide New South N	Research Ce nnology Nales	ntre	
•	Opera	ting temper	ature: <100°	с							

⁴⁰ Ibid.

³⁵ Ayers, K., (2011). PEM Electrolysis R&D Webinar, Proton Energy Systems, [Online] Available from:

https://www.energy.gov/sites/prod/files/2014/03/f11/webinarslides052311_pemelectrolysis_ayers.pdf Accessed: 19/11/2019 ³⁶ US DOE (2011). *HYDROGEN PRODUCTION BY PEM ELECTROLYSIS: SPOTLIGHT ON GINER AND PROTON,* [Online] Available from: https://www.energy.gov/sites/prod/files/2014/03/f12/webinarslides052311_pemelectrolysis_overview.pdf Accessed: 19/11/2019 ³⁷ Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). *A comprehensive review on PEM water electrolysis*. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:https://doi.org/10.1016/j.ijhydene.2013.01.151

³⁸ Ibid.

³⁹ Ibid.

⁴¹ Ibid.

5.1.5 Solid oxide electrolysis

What is it?

Solid oxide electrolysis uses thermal energy from heat in combination with electrical energy from an electric current to synthesise hydrogen, using a ceramic solid oxide electrolyte membrane.

Why is it important?

Solid oxide electrolysis makes use of heat to significantly reduce the required electrical energy input for hydrogen production.

Т	RL	1	2	3	4	5	6	7	8	9		
			1			I		1				
Ben	efits					RD&D pric	orities					
•	Higher can ali have b comm High e Non-n Low (p Revers Can be co-ele CO) ⁴³ Reduc therm heat	electrical e ready be ach eeen demon ercial start- nergy efficie oble materi orojected) ca sible operati e used for th ctrolysis of e ed electrica al energy, w	fficiencies c nieved and u strated by R up companie ency als apital cost fc ion as fuel co to as fuel co co2 and H2O l input requi which could b	ompared to p to 10 kw s &D labs as v es or MW scale ell is feasible is of CO ₂ to 0 to syngas (H rement due be sourced fi	AE/PEM systems vell as system CO, or the H ₂ and to use of rom waste	 Improve electrode performance Demonstrate integration with green energy sources at scale Increase lifetime of ceramic materials for ongoing high temperature operation⁴⁴ Understand fundamental reaction mechanism and degradation behaviour⁴⁵ 						
Limi	itation	S				Active inst	itutions (2)					
•	High to be of a tempe Poor li electro issues Limite achiev Ceram howey now co have s deploy	emperature an appropria rature) fetime due odes (crackin d flexibility: e better eff ic materials ver SOFC sys commercial a ufficient sta vment	operation – ate quality (s to mechanic ng), brittle c constant loa iciencies and have low re stem using sa and have bee bility for con	heat suppli sufficiently h ally unstable eramics and ad recomme ad recomme d avoid cell b latively dura ame materia ame materia mmercialisa	ed must igh sealing inded to preakdown ability ⁴⁶ ils are rated to tion and	 CSIRO Deakir 	n University					
Cha • • •	 Characteristics Inputs: Water, heat, electricity, carbon dioxide (optional) By-products: Oxygen, carbon monoxide (if carbon dioxide input) Operating temperature: 700°–800°C⁴⁷ Energy efficiency: (up to 82% system level efficiency claimed to date) 											

⁴³ Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). *A comprehensive review on PEM water electrolysis*. International Journal of Hydrogen Energy, 38(12), 4901-4934. doi:https://doi.org/10.1016/j.ijhydene.2013.01.151

⁴⁴ Ibid.

⁴⁵ Ibid.

⁴⁶ Ibid.

⁴⁷ US DOE (n.d.) *Hydrogen Production: Electrolysis*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogen-productionelectrolysis Accessed: 20/11/2019

5.2 Fossil fuel conversion

5.2.1 Autothermal reforming (dry or steam)

What is it?

A combination of SMR and combustion of the fuel (methane), where steam is added to the oxidation process. The heat from the oxidation component supplies the energy required for the steam reforming process.

Why is it important?

Steam methane reforming and partial oxidation are integrated into a single system, in which heat integration has been incorporated.

TRL	1	2	3	4	5	6	7	8	9		
Benefit Hig Fle sul Les Ca Lov He the res Th int Lov pre Co fos Ra	s s s s s s s s s s s s s s s s s s s	syngas io for syngas action of syn uired than p reagent nperature th mbustion is ent - lower p bustion com single unit formation w d reduces OF small footpri ion methods	s production thetic fuels yrolysis opti nan partial o used to supp arasitic hea nponents are hich minimi PEX nt relative to	a, for ons xidation blement t load as a e ses ses	 RD&D priorities Improve appliance and plant design for greater flexibility in ramping up and ramping down Develop and demonstrate effective means of integrating carbon capture, utilisation and storage (CCUS) to achieve zero-to-low carbon emissions Develop cheap and effective hydrogen separation systems to obtain appropriately pure hydrogen for specific applications Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process Develop burner designs for optimal mixing and catalysts to cope with severe operating conditions 						
Limitat	ions		ined		Active institutions (2)						
● EX1 ● Re	ensive control	system requ vgen	lirea		The U	ustralian Na niversity of I	tional Unive Newcastle	rsity			
Re	quires CCUS to	achieve low	carbon emi	ssions							
Charac	teristics				•						
 Ing By Op En 	outs: Hydrocarb products: CO ₂ erating temper ergy efficiency:	ons, oxygen ature: >500° 60-75% ⁶⁰	, steam, hea C								

5.2.2 Chemical looping water splitting

What is it?

A chemical loop utilises a recyclable metal with water and hydrocarbon feedstocks to produce hydrogen, water and carbon dioxide. The metal is involved in a repeating cycle of reaction steps.⁴⁸

Why is it important?

Hydrogen and carbon dioxide are obtained as separate high-purity gas streams, allowing easier integration of CCUS.

TRL	1	2	3	4	5	6	7	8	9		
Benefits					RD&D priorities						
 Multiple alcohol, reformin biomass Solid oxy supply – and H₂O High pur obtained High fue Heat fro the exot input If using f supply o poly-gen Can be in processe Carbon o effective 	feedstock of hydrocarbo ng], biogas, w , tar and coar /gen carrier fuel is conv , which is ea ity hydroge d as a separa l conversion m exotherm hermic redu fluidised beo f pure separ heration app necorporatec es capture inte	options: fuel ns [when co waste gas), h al eliminates n erted into a asily separate n (99.95-99.) ate gas strea efficiency nic oxidation action to red d reactor: co rated CO ₂ , N lication I with syngas gration has I	gas (includii mbined with eavy bio-cru eed for air a pure stream ed 999%) can b m can be char uce required ntinuous op and H ₂ po s conversion peen shown	ng ude, as oxygen n of CO ₂ e nnelled to d heat eration, otentially a	 Optimise carrier to Evaluate minerals dynamic Improve Improve Improve Demonst long terr Demonst environn 	 Optimise the composition or structure of the oxygen carrier to improve stability Evaluate fuel flexibility and investigate natural minerals as oxygen carriers to improve overall dynamic process characteristics Improve reactor design Improve process development and integration Improve process simulation Demonstrate prototypes and pilot plants (large scale, long term operation) Demonstrate use of oxygen carriers in industrial environment 					
Limitation	s				Active institutions (6)						
 Oxyge utilisat to red 	n carriers re tion of low-(uce the cost	equire replac cost natural	ement over minerals is i	time – mportant	 The Australian National University CSIRO Monash University The University of Adelaide The University of Newcastle The University of Queensland 						
Characteri	stics				L	· · ·					
InputsBy-proOpera	: Hydrocarb oducts: CO ₂ , ting temper	ons / coal / t other hydro ature: 700 to	car. Optiona carbons o 1000°C								

⁴⁸ Luo, M., Yi, Y., Wang, S., Wang, Z., Du, M., Pan, J., & Wang, Q. (2018). *Review of hydrogen production using chemical-looping technology*. Renewable and Sustainable Energy Reviews, 81, 3186-3214. doi:https://doi.org/10.1016/j.rser.2017.07.007

5.2.3 Coal gasification

What is it?

Coal is reacted with controlled amounts of oxygen and/or steam at high temperatures to produce syngas (hydrogen and carbon monoxide) which also contains carbon dioxide, methane and water vapour. Gasification involves four stages: drying, pyrolysis, combustion, and gasification reactions.

Why is it important?

This process is well understood and established at industrial scale.

TRL	1	2	3	4	5	6	7	8	9		
TRL Benefits • Establ • Other produ • Highe compa • Cleand coal p	1 ished indust chemicals g cts r hydrogen p ared to coal er hydrogen yrolysis	2 crial process enerated ca produced pe pyrolysis product tha	3 n be useful l r unit of coa n that obtai	4 Dy- I ned from	 Bar and a second strate of the second strate seco						
					 specific applications Improve reactor design to accommodate highly exothermic or endothermic reactions (e.g. staged introduction of reagents, better designed heat transfer surfaces, process intensification, advanced materials, reaction monitoring/control, pre- troatment of waste streams) 						
Limitation	S				Active institutions (3)						
 Impur Low th Produ Requi Remainatura after (High v 	ities in syng nermal effici ces tar in pr res CCUS to ns a higher al gas-based CCUS is emp vater usage	as require fu iency oduct gas achieve low emitter of ca methods an loyed ⁴⁹ per kilogram	carbon emi carbon emi arbon dioxid d renewable	ation ssions e than e methods produced	 CSIRO Curtin University The University of Adelaide The University of Newcastle 						
Character	stics										
 Inputs: Coal, water, heat By-products: CO₂, carbon, other hydrocarbons (temperature dependent) Operating temperature: >500°C Energy efficiency: ~63%Error! Bookmark not defined. 											

⁴⁹ International Energy Agency (2019). *The Future of Hydrogen: Seizing Today's Opportunities*.

5.2.4 Coal and oil pyrolysis

What is it?

Coal or oil is heated in the absence of oxygen, in order to degrade it into char, pyrolysis oil and syngas.

Why is it important?

This process is well understood, established at industrial scale, and produces other useful by-products alongside hydrogen.

TRL	1	2	3	4	5	6	7	8	9		
					1		1				
Benefits					RD&D priorities						
 Toxic of tempe Establ A rang Can ao No was 	components eratures ished indust ge of useful k ccept varied ter required	are degrade rial process by-products quality of fe	ed by high redstock		 Develop cheap and effective hydrogen separation systems to obtain appropriately pure hydrogen for specific applications Develop and demonstrate effective means of integrating carbon capture, utilisation and storage (CCUS) to achieve zero-to-low carbon emissions Improve appliance and plant design for greater flexibility in ramping up and ramping down Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process Establish environmentally suitable treatment of waste by-products Improve reactor design to accommodate highly exothermic or endothermic reactions (e.g. staged introduction of reagents, better designed heat transfer surfaces, process intensification, advanced materials, reaction monitoring/control, pre- 						
Limitation	S				Active institutions (3)						
 Produ than ii High o Purific the pr By-pro Require 	ces lower que n coal gasific perational c ation system ocess oducts conta res CCUS to	uantities of h cation costs n required to nin high heav achieve low	nydrogen pe o treat flue g vy metal con <u>carbon emis</u>	r unit coal gases from tent ssions	 CSIRO The University of Newcastle The University of Western Australia 						
Characteri	stics										
InputsBy-proOpera	: Heat, coal oducts: CO ₂ , ting temper	or oil ethylene, ac ature: >500°	etylene, car C	bon							

5.2.5 Concentrated solar-thermal methane reforming

What is it?

Thermal energy from concentrated sunlight is used to react natural gas with steam to form syngas (a mixture of hydrogen and carbon dioxide).

Why is it important?

This process allows the use of sunlight to provide heat required for the reforming process. The conventional process (steam methane reforming) is well understood and established at industrial scale.

TRL	1	2	3	4	5	6	7	8	9		
Benefits Well u techn reacti includ Prove Operati therm 	inderstood i ology suppli- on system a ing ammoni n with demo ting temper al storage te hybridised	ndustrially, ers available nd downstre a production onstrations u rature compa echnologies	with a variet for the cata am process n ip to 600kW atible with s	ty of alyst, ies, /t come	 RD&D priorities Developing and demonstrating CCUS technology to minimise CO₂ emissions Develop cheap and effective hydrogen separation systems to obtain appropriately pure hydrogen for specific applications Improve reactor design and materials to accommodate highly endothermic reactions and thermal cycling 						
	-				• Integrate thermal storage for continuous operation						
High c	s arbon dioxid	de emissions	; (requires C	CUS)	 Active institutions (4) The Australian National University CSIRO Flinders University The Future Fuels Cooperative Research Centre 						
Character	istics										

Inputs: Steam reforming - Water, sunlight (concentrated for thermal energy), natural gas

• By-products: CO₂ (resulting from purification step to increase hydrogen production)

• Operating temperature: 700 to 850°C

5.2.6 Natural gas pyrolysis (methane cracking)

What is it?

In the absence of oxygen, methane is decomposed into hydrogen and elemental carbon at high temperatures, usually in the presence of a catalyst.

Why is it important?

Utilises natural gas to produce low-CO₂ hydrogen without the need for CCS whilst also producing a marketable by-product, elemental carbon powder.

	TRL	1	2	3	4	5	6	7	8	9		
					•			•	•	•		
Ве	Benefits						orities					
•	High p product tyres a purific and na compo Hydro powde Zero-to from r No wa	urity carbor ct – these ca ind inks; act ation and m notubes for osites gen gas easi er ⁵⁰ o-low CO ₂ e enewable o ter required	n powder is p an include ca ivated carbo nore exotic fo r use in elect ily separatec missions if n r waste sour	produced as irbon black on used in w orms like gra cronics and I from carbo naking use c rces	a by- used in vater aphene on of heat	 Overcoming carbon deposition leading to clogging of reactor Demonstration at larger scale under industrially relevant reactor conditions Catalyst development Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process 						
Lin	nitation	S				Active institutions (6)						
• During the extraction, processing and use of natural gas, methane can escape to the atmosphere ⁵¹						 CSIRO The Fu The Ur The Ur The Ur The Ur 	uture Fuels C niversity of J niversity of I niversity of C niversity of N	Cooperative Adelaide Newcastle Queensland Western Au	Research Ce stralia	entre		
Ch	aracteri	stics										
•	 Inputs: Natural gas (methane) and heat By-products: High purity carbon (dependent on catalyst type) Operating temperature: >500°C 											

- Energy efficiency: Theoretically achievable value at commercial scale estimated at ~55%⁵²
- The estimated median life cycle emissions of methane pyrolysis are 6.1kg CO₂e/kg H₂. This is lower than steam methane reforming and coal gasification estimates, but higher than electrolysis and biomass gasification methods ⁵³

⁵⁰ EurekAlert! (2018) Innovation award for climate-friendly methane cracking, [Online] Available from:

https://www.eurekalert.org/pub_releases/2018-12/kift-iaf120318.php Accessed: 19/11/2019

⁵¹ Weger, L., Abánades, A., & Butler, T. (2017). *Methane cracking as a bridge technology to the hydrogen economy*. International Journal of Hydrogen Energy, 42(1), 720-731. doi:https://doi.org/10.1016/j.ijhydene.2016.11.029

⁵² Ibid.

⁵³ Parkinson, B., Balcombe, P., Speirs, J. F., Hawkes, A. D., & Hellgardt, K. (2019). *Levelized cost of CO 2 mitigation from hydrogen production routes*. Energy Environ. Sci., 12(1), 19-40. doi:10.1039/c8ee02079e
5.2.7 Partial oxidation: thermal or catalytic

What is it?

A hydrocarbon fuel is partially combusted in a reformer in the presence of a limited amount of oxygen. Incomplete combustion occurs, leading to the formation of hydrogen gas and carbon monoxide. Can either be thermal (high temperature) or catalytic (lower temperature).

Why is it important?

Established industrial process with fast start-up time and yields a syngas ratio ideal for subsequent chemical synthesis.

TRL* 1 2 3 4 5 6 7 8 9	9	
--	---	--

*The TRL for thermal partial oxidation is 9. Catalytic partial oxidation is a much less mature technology, with a TRL of 4-5.

Benefits	RD&D priorities
 Less clean-up required than gasification or pyrolysis options Exothermic reaction therefore does not require a heat exchanger and is more compact⁵⁴ Rapid start-up time⁵⁵ Yields ideal syngas ratio for subsequent chemical synthesis, e.g. methanol production 	 Develop and demonstrate effective means of integrating carbon capture, utilisation and storage (CCUS) to achieve zero-to-low carbon emissions Improve appliance and plant design for greater flexibility in ramping up and ramping down Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process Establish environmentally suitable treatment of waste by-products Develop cheap and effective hydrogen separation systems to obtain appropriately pure hydrogen for specific applications Improve reactor design to accommodate highly exothermic or endothermic reactions (e.g. staged introduction of reagents, better designed heat transfer surfaces, process intensification, advanced materials, reaction monitoring/control, pretreatment of waste streams)
Limitations	Active institutions (3)
 Ideal syngas ration for subsequent chemical synthesis is produced at the expense of lower quantities of hydrogen Soot handling adds process complexity⁵⁶ Requires oxygen Requires CCUS to achieve low carbon emissions 	 The Australian National University CSIRO The University of Adelaide The University of Newcastle
Characteristics	1
 Inputs: Oxygen, heat (only required initially in the cas By-products: CO₂ Operating temperature: High for thermal system (how feedstock), initially high temperature required for cat during ongoing process) 	e of catalytic system), oil or natural gas vever heat comes from combusting hydrocarbon alytic system (subsequently self-sustaining temperature
 Energy efficiency: 60-75%⁵⁷ 	

⁵⁴ Salameh, Z. (2014). *Chapter 4 - Energy Storage*. In Z. Salameh (Ed.), Renewable Energy System Design (pp. 201-298). Boston: Academic Press. ⁵⁵ Ibid.

⁵⁶ Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). *An overview of hydrogen production technologies*. Catalysis Today, 139(4), 244-260. doi:https://doi.org/10.1016/j.cattod.2008.08.039

⁵⁷ Nikolaidis, P., Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews

5.2.8 Steam methane reforming and carbon dioxide reforming

What is it?

Natural gas is mixed with steam (and/or carbon dioxide) in the presence of a catalyst at high temperatures and moderate pressure to produce syngas.

Why is it important?

This process is well understood and established at industrial scale. Most hydrogen today is produced via this method.

TRL	1	2	3	4	5	5 6 7 8						
Benefits Steam syngas produ 	reforming - s product - h	High select higher H ₂ /CC	ivity to hydr ratio for H2 reforming o	ogen in 2 r partial	 RD&D priorities Developing and demonstrating CCUS technology to minimise CO₂ emissions Developing new reactor membranes⁵⁹ 							
oxidat • Less cl • Carbo reager	ion ⁵⁸ ean-up requ n dioxide re nt	uired than p forming - ma	yrolysis optio	ons CO2 as a	 Improve appliance and plant design for greater flexibility in ramping up and ramping down Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process Establish environmentally suitable treatment of waste by-products Develop cheap and effective hydrogen separation systems to obtain appropriately pure hydrogen for specific applications Improve reactor design to accommodate highly exothermic or endothermic reactions (e.g. staged introduction of reagents, better designed heat transfer surfaces, process intensification, advanced materials, reaction monitoring/control, pre- treatment of waste streams) Develop catalysts more tolerant of impurities and 							
Limitation	s				Active institutions (5)							
 High C handli Steam hydrog CO₂ re quanti gas 	CO2 emission ng) reforming - gen produce forming: gro ities of hydr	s (requires (High water ed eater energy ogen produc	CSS or furthe usage per k v demand, lo ced per unit	er ilogram of wer of natural	 CSIRO The University of Newcastle The University of New South Wales The University of Queensland The University of Sydney 							
Characteri	stics											
 Inputs By-pro Opera Energy 	: Steam refo oducts: CO ₂ ting temper y efficiency:	orming - Wa (resulting fro ature: ~750 [°] 74-85% ⁶⁰	ter, heat, na om purificati °C	tural gas. Ca on step to in	arbon dioxid ncrease hyd	e reforming rogen produ	- CO2, heat, iction)	natural gas				

⁵⁸ Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). *An overview of hydrogen production technologies*. Catalysis Today, 139(4), 244-260. doi:https://doi.org/10.1016/j.cattod.2008.08.039

⁵⁹ Shafiee, A., Arab, M., Lai, Z., Liu, Z., & Abbas, A. (2016). *Modelling and sequential simulation of multi-tubular metallic membrane and techno*economics of a hydrogen production process employing thin-layer membrane reactor. International Journal of Hydrogen Energy, 41(42), 19081-19097. doi:https://doi.org/10.1016/j.ijhydene.2016.08.172

⁶⁰ Nikolaidis, P., Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews

5.3 Biomass and waste conversion

5.3.1 Biogas reforming

What is it?

Biogas is mixed with steam in the presence of a catalyst at high temperatures (~750°C) and moderate pressure to produce syngas. Biogas is obtained via the anaerobic digestion of biomass; therefore, this method is considered a composite of biological hydrogen production and biomass conversion.

Why is it important?

Biomass is plentiful, regenerative and removes carbon dioxide from the atmosphere, making this process carbon neutral. Coupling the process with CCUS has the potential to make it carbon negative.

TRL*	1	2	3	4	5	6	7	8	9		

*The TRL for this method varies depending on process.

Ben	efits	RD&D priorities
•	Makes use of biogas obtained from biomass Makes use of similar reforming process as with steam methane reforming Zero-to-low carbon emissions	 Develop CCUS technologies Improve anaerobic digestion process Develop methane/CO₂ separation technologies Optimise operating parameters such as catalyst characteristics, temperature, throughput and concentration⁶¹ Improve reactor and process design for greater energy efficiency⁶² Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process
Limi	itations	Active institutions (3)
•	Operation of steam methane reforming systems to reform biogas is inefficient at small scale	 Macquarie University Queensland University of Technology The University of Newcastle
Cha	racteristics	
• •	Inputs: Water, heat, biogas By-products: CO2 Operating temperature: ~750°C	

⁶¹ Verma, P., & Samanta, S. K. (2016). Overview of Biogas Reforming Technologies for Hydrogen Production: Advantages and Challenges. Paper presented at the Proceedings of the First International Conference on Recent Advances in Bioenergy Research, New Delhi.
⁶² Ibid.

5.3.2 Biomass and waste gasification

What is it?

Biomass gasification for hydrogen production involves the thermochemical conversion of biomass (such as crop and forest residues) with a controlled amount of steam and oxygen, to syngas at temperatures over ~700°C. This is followed by the water-gas shift reaction to increase the yield and concentration of hydrogen.

Why is it important?

Biomass is plentiful, regenerative and removes carbon dioxide from the atmosphere, making this process carbon neutral. Coupling the process with CCUS has the potential to make it carbon negative. Simultaneous treatment of municipal waste is also possible.

TRL	1	2	3	4	5	6	7	8	9

The TRL of this technology varies based on feedstock: TRL 9 for woody biomass, and TRL 6-7 for municipal solid waste.

Benefits	RD&D priorities
 Established industrial process Utilises agricultural/forest waste products 	 Address challenges in understanding characteristics of different biomass feedstocks and in process handling (due to high temperatures required)
	Optimise systems for different biomass feedstocks
	Improve gas purification
	 Intensify process (reduce number of steps) Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process
Limitations	Active institutions (8)
 Slag and tar build up requires additional machinery to be integrated into conventional gasification processes Releases carbon dioxide (CCS or further handling could be employed to make the process carbon negative) – otherwise carbon neutral 	 The Australia National University CSIRO Curtin University Monash University Queensland University of Technology The University of Adelaide The University of Newcastle The University of Queensland
Characteristics	
 Inputs: Biomass, air, oxygen and/or steam By-products: Carbon dioxide Operating temperature: 500 to 1400°C 	

• Energy efficiency: ~52%63

⁶³ Bakhtyari, A., Makarem, M., Rahimpour, M. (2018). *Hydrogen Production Through Pyrolysis*. Encyclopedia of Sustainability Science and Technology.

5.3.3 Biomass and waste pyrolysis

What is it?

Biomass pyrolysis is the thermal decomposition of biomass in a non-oxidising environment to produce predominantly bio-char, pyrolysis liquid, and syngas. The composition is dependent on operating conditions and feedstock type. Catalyst choice alters the hydrogen yield in the gas component at different temperatures. When biomass-derived liquid reforming is employed, addition of steam or oxidation results in steam reforming and produces a stream of syngas.

Why is it important?

Biomass is plentiful, regenerative and removes carbon dioxide from the atmosphere, making this process carbon neutral. Coupling the process with CCUS has the potential to make it carbon negative. Simultaneous treatment of municipal waste is also possible.

TRL*	1	2	3	4	5	6	7	8	9
------	---	---	---	---	---	---	---	---	---

*The TRL of this technology varies based on feedstock: TRL 7-8 for woody biomass, and TRL 5-7 for municipal solid waste.

Ben	efits	RD&D priorities
•	With upgrading and stabilisation, the pyrolysis liquid can be used as a substitute for fossil fuels, or used for biomass-derived liquid reforming Lower temperature requirements Biochar can be used in biomass gasification, or used for fertilising agricultural soil	 Improve modelling and simulations of the heat, mass and momentum effects in conjunction with kinetics⁶⁴ Minimise pyrolysis oil formation and improve H₂ production Process miniaturisation and mobilisation (development of portable units) Integrate renewable energy sources. For example, concentrated solar power can act as a thermal energy source for the process
Limi	tations	Active institutions (8)
•	Low thermal efficiency due to high moisture content of biomass that must be dried ⁶⁵ Produces a significant amount of tar in product gas Significant resource requirements to gather and transport biomass to plant for pyrolysis. ⁶⁶ Produces carbon dioxide (CCUS required)	 CSIRO Curtin University Monash University Queensland University of Technology The University of Adelaide The University of Newcastle The University of Queensland The University of Western Australia
Cha	racteristics	· · · ·
•	Inputs: Biomass, water	

- By-products: Carbon dioxide, solid charcoal (biochar)
- Operating temperature: >500°C
- Energy efficiency: 35-50%⁶⁷

 ⁶⁴ Babu, B. (2008). Biomass pyrolysis: a state-of-the-art review, [Online] Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/bbb.92
 ⁶⁵ Holladay, J. D., Hu, J., King, D. L., & Wang, Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244-260. doi:https://doi.org/10.1016/j.cattod.2008.08.039
 ⁶⁶Ibid.

⁶⁷ Bakhtyari, A., Makarem, M., Rahimpour, M. (2018). *Hydrogen Production Through Pyrolysis*. Encyclopedia of Sustainability Science and Technology.

5.3.4 Plasma-assisted biogas reforming

What is it?

Biogas is reacted with steam and/or CO_2 in a non-thermal plasma reactor integrating with a suitable catalyst to produce hydrogen rich syngas and/or liquid short chain oxygenates (e.g. MeOH). Biogas is obtained via the anaerobic digestion of biomass; therefore, this method is considered a composite of biological hydrogen production and biomass conversion.

Why is it important?

Biomass is plentiful and regenerative and removes carbon dioxide from the atmosphere, making this process carbon neutral. Coupling the process with CCS has the potential to make it carbon negative. Depending on the targeted product, CO₂ can be directly utilised and consumed in the reforming process. Liquid products can be easily transported from remote locations or exported.

TRL	1	2	3	4	5	6	7	8	9	
-----	---	---	---	---	---	---	---	---	---	--

Be	nefits	RD&D priorities
• • • •	Makes use of biogas obtained from biomass and waste streams Zero-to-low carbon emissions Operable at small and medium scales Operates at low temperature and atmospheric pressure Can eliminate tars and VOCs in the biogas as part of the reforming process Responsive and can be used with intermittent electricity sources Can produce liquid fuel/hydrogen carriers	 Develop and demonstrate effective means of integrating carbon capture, utilisation and storage (CCUS) to achieve zero-to-low carbon emissions Improve anaerobic digestion process Develop catalysts tailored for use in a plasma reactor Build fundamental understanding of synergistic plasma catalysis mechanisms Improve selectivity, yield, and energy efficiency of the plasma reactor
Lin	nitations	Active institutions (3)
• • • Ch	Carbon balance depends on electricity source Limited selectivity (depending on desired product) Low yield and energy efficiency CO ₂ may be produced as a by-product (in the case of pure H ₂ production) aracteristics	 Queensland University of Technology The University of Newcastle The University of Western Australia
•	Inputs: Biogas water CO_2 electricity (to generate no	n-thermal plasma)
	Py products: CO	
•		
•	Operating temperature: 200 to 300°C	
•	Energy efficiency: 1-20%	

5.3.5 Plasma-assisted biomass conversion

What is it?

Gasification and pyrolysis processes are supported by thermal (gasification) or non-thermal (pyrolysis) plasma, which either provide energy or induce catalytic decomposition reactions for conversion of biomass or municipal waste into hydrogen and other hydrocarbons as value-added chemical materials.

In the gasification process, thermal plasma can be used to provide sufficient energy (at temperatures greater than 3000K) to break down complex hydrocarbons into simple gases, including CO and H₂.⁶⁸ In the pyrolysis process, input biomass or municipal waste can be converted into a range of output hydrocarbon gases and oils, in addition to solid char. This occurs at much lower temperatures (1000-2000K) than plasma gasification.

Why is it important?

Biomass is plentiful, regenerative and removes carbon dioxide from the atmosphere, making this process carbon neutral. Coupling the process with CCS has the potential to make it carbon negative. Simultaneous treatment of municipal waste is also possible.

TRL	1	2	3	4	5 6 7 8 9						
Benefits Portal Allow conversion Highly Safe e 	ble, small an s variable in rsion of bior selective ca limination o	d low cost puts - Can bo nass or mun ntalyst f toxic produ	e used for th icipal solid v ucts ⁶⁹	ie waste	 RD&D priorities Develop catalysts and optimise their structures to promote H₂ formation Investigate the effects of rapid heating on decomposition of feedstocks Develop CCUS technologies 						
 Limitation Gasifi the pl calcul for co High c 	i s cation – high asma, reduc ated to be 4 nventional g capital cost	n energy req ing efficienc 2% for plasn asification. ⁷	uirement to y. Efficiency na compare	create has been d to 72%	Active inst Queer The Ui The Ui	i tutions (3) Island Unive Niversity of I Niversity of N	ersity of Tecl Newcastle Western Au:	hnology stralia			
Character Input: By-pro Opera Energ 	istics :: Biomass or oducts: Gasif ting temper y efficiency:	r municipal s fication = CC ature: Gasif ~42% for pl	solid waste,), pyrolysis = ication = >3(asma gasific	water, elect hydrocarbo 000°C, pyrol ation	ricity ons, char ysis = ~1000	to 2500°C					

⁶⁸ Favas, J., Monteiro, E., & Rouboa, A. (2017). *Hydrogen production using plasma gasification with steam injection*. International Journal of Hydrogen Energy, 42(16), 10997-11005. doi:https://doi.org/10.1016/j.ijhydene.2017.03.109

⁶⁹ Ojha, A., Reuben, A. C., & Sharma, D. (2012). *Solid Waste Management in Developing Countries through Plasma Arc Gasification- An Alternative Approach*. APCBEE Procedia, 1, 193-198. doi:https://doi.org/10.1016/j.apcbee.2012.03.031

⁷⁰ Favas, J., Monteiro, E., & Rouboa, A. (2017). *Hydrogen production using plasma gasification with steam injection*. International Journal of Hydrogen Energy, 42(16), 10997-11005. doi:https://doi.org/10.1016/j.ijhydene.2017.03.109

5.4 Thermal water splitting

5.4.1 Solar thermochemical water splitting (two-stage)

3

What is it?

TRL⁷¹

Concentrated sunlight is used to heat up transition metal oxides (e.g. cerium oxide), releasing oxygen. The metal oxides are then reacted with water, which splits to re-oxidise the metal oxide as well as produce hydrogen – the cycle then repeats.

Why is it important?

1

2

This process produces hydrogen using only water and sunlight and has the potential to be low-cost due to system simplicity.

4

5

7

6

8

9

Ве	nefits	RD&D priorities						
• • •	Less complex and fewer steps than hybrid thermochemical water splitting Does not require an electrolysis step (therefore no electricity input) ⁷² Zero CO ₂ emissions Make use of concentrated sunlight as heat source	 Improve concentrated solar thermal technologies Improve thermal efficiency Improve long-term stability of reactor materials Conduct fundamental material investigations (e.g. understand mechanism of material melting and sticking) Develop overall large-scale system concents 						
		• Develop overall large-scale system concepts						
Lin	nitations	Active institutions (5)						
•	Requires very high operating temperatures Dependent on solar irradiation	 The Australian National University CSIRO Flinders University The University of Adelaide The University of New South Wales 						
Ch	aracteristics							
•	Inputs: Water and sunlight By-products: Oxygen Operating temperature: ~900 to 1,500°C							

• Energy efficiency: Theoretical greater than 30%. Demonstrated approximately 5%.

⁷¹ Binotti, M., Di Marcoberardino G, Biassoni M, Manzolini G (2017) *Solar Hydrogen Production with Cerium Oxides Thermochemical Cycle* ⁷² US DOE (n.d.). *Hydrogen Production: Thermochemical Water Splitting*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogenproduction-thermochemical-water-splitting Accessed: 20/11/2019

5.4.2 Solar thermochemical water splitting (multi-stage)

3

What is it?

TRL

Concentrated solar is used to generate heat to drive a series of chemical reactions that produce hydrogen. The chemicals used in the process are reused within each cycle, creating a closed loop that consumes only water and produces hydrogen and oxygen. In this 'hybrid' system, multiple steps are required, and electrical input is required for one of the reaction steps.⁷³

Why is it important?

1

2

This multi-stage process has a lower required operating temperature than two-stage solar thermochemical water splitting. This is, however, at the cost of increased system complexity.

5

6

7

8

9

4

Ber	nefits				RD&D pric	orities					
•	Can make use of con source Requires lower temp thermochemical wat	heat e solar	 Investigate efficiency and durability of materials for thermochemical cycling⁷⁴ Develop efficient and durable reactor designs for thermochemical cycling⁷⁵ Improve reactor and electrolyser performance Develop low-cost method for separation of O₂ from SO₂ prior to SO₂ electrolysis⁷⁶ Scale-up SO₂ electrolysis step from the 100-W to the hundreds of kW scale 								
Lim	nitations				Active institutions (3)						
•	 Has an electrolysis step which requires electricity input alongside heat Heavy-metal processing required⁷⁷ Production of toxic or corrosive chemical intermediates⁷⁸ 					 CSIRO Flinders University The University of Adelaide 					
Cha	aracteristics										
•	Inputs: Sunlight, elec By-products: Oxygen Operating temperatu 300-400°C)	ter from medi	um to high (Hybrid sulpl	hur at least	750°C, copp	er chloride l	ower at			

⁷³ US DOE (n.d.). *Hydrogen Production: Thermochemical Water Splitting*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogenproduction-thermochemical-water-splitting Accessed: 20/11/2019

⁷⁴ Ibid. ⁷⁵ Ibid.

⁷⁶ Hinkley, J., Hayward, J., McNaughton, R., Edwards, J., Lovegrove, K. (2016). *Concentrating Solar Fuels Roadmap: Final Report*. Available at https://arena.gov.au/assets/2016/05/Concentrating-Solar-Fuels-Roadmap-Final-Report-CSIRO.pdf

⁷⁷ Rao, C., & Dey, S. (2017). *Solar thermochemical splitting of water to generate hydrogen*. Proceedings of the National Academy of Sciences of the United States of America, 114(51), 13385-13393.

⁷⁸ Ibid.

5.5 Biological hydrogen production

5.5.1 Biophotolysis (direct and indirect)

What is it?

Microorganisms such as green algae and blue-green algae (cyanobacteria) split water into hydrogen and oxygen via direct or indirect bio-photolysis. In direct biophotolysis, hydrogenase in green algae drives hydrogen evolution. In indirect biophotolysis, nitrogenase in blue-green algae drives nitrogen fixation.

Why is it important?

Biophotolysis could be used for producing hydrogen from wastewater with sunlight as an energy source.

	TRL	1	2	3	4	5	6	7	8	9	
Be:	nefits Low-to Could be use Biocat	o-net zero c be used in v ed for drinki alysts are in	arbon vastewater o ng or agricul lexpensive a	or water wh ture nd biodegra	ich cannot dable	 RD&D priorities Improve production rates and conversion efficiency, both of which are currently low^{79,80} Reduce cost of photobioreactors⁸⁴ Develop oxygen resistant hydrogenase⁸¹ Continue materials development,⁸⁴ including characteristics such as increased durability⁸² Investigate immobilisation of microorganism cultures to achieve improvement⁸³ Technology development while sustaining high rate of biohydrogen production 					
Lin	nitation	S				Active inst	itutions (2)				
•	In the produ reaction hydrog H ₂ and Indirec provid dioxid Requir Need to irradia	case of dire ced inhibits on. ⁷⁹ Oxyger gen enzyme I O ₂ are not ct biophotol les low hydr e res large sur to cope with tion supply	ct biophotol the hydrogen that is evol . Separate st obtainable ⁸⁴ lysis: hydrog ogen yield a face area ⁸⁴ n the intermi for the proc	ysis: Oxyger n productio ved destroy treams of hi enase enzyr nd produces ittent nature	n rs the gh purity ne s carbon e of solar	The Ui The Ui	niversity of <i>i</i>	Adelaide Queensland			
Cha • •	aracteri Inputs By-pro	stics : Direct: Wa oducts: Direc	ter, sunlight ct: oxygen. li	. Indirect: C ndirect: carb	arbon monc oon dioxide	oxide, water,	sunlight				

Operating temperature: Ambient

⁸¹ Ibid.

⁸³ Ibid.

⁷⁹ US DOE (n.d.). *Hydrogen Production: Photobiological*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-photobiological Accessed: 20/11/2019

⁸⁰ Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). *Strategies for improving biological hydrogen production*. Bioresource Technology, 110, 1-9. doi:https://doi.org/10.1016/j.biortech.2012.01.103

⁸² Ibid.

⁸⁴ Ibid.

5.5.2 Dark fermentation

What is it?

In the absence of light, microorganisms such as bacteria break down organic matter to produce hydrogen gas through dark fermentation. Bacteria can be engineered in order to increase metabolic activity for a higher hydrogen production rate.

Why is it important?

Dark fermentation allows the production of hydrogen using biomass as a feedstock, without requiring exposure to sunlight. System tanks and cells could be transported for on-site hydrogen generation.

TRL ⁸⁵	1	2	3	4	5	6	7	8	9

The TRL of this technology is 7 for conventional dark fermentation, however lower (TRL 5-6) when incorporating metabolic engineering as part of the system design.

Be	nefits	RD8	kD priorities
• • • •	Smaller footprint than light-dependent methods Can use a variety of waste resources ⁸⁶ No light required for process to occur ⁸⁷ Simple reactor design ⁸⁸ Functions without requiring strict anaerobic conditions Biocatalysts are inexpensive and biodegradable Process occurs at ambient temperature and pressure Can transport systems for on-site hydrogen generation	•	Improve hydrogen yield ⁸⁹ Improve production rate Metabolic engineering of bacteria to improve performance, ⁹⁰ or suppress activity of hydrogen- consuming bacteria Condition optimisation and robustness testing
Lin	litations	Acti	ve institutions (2)
•	Bacteria must be kept within survivable conditions Increasing yield requires very low hydrogen partial pressure to overcome thermodynamic restrictions Hydrogen consuming microbes must be effectively suppressed to ensure harvestable yield of hydrogen can be realised	•	CSIRO Macquarie University
Cha	aracteristics		
•	Inputs: Water, organic matter (biomass)		
•	By-products: Carbon dioxide		
•	Operating temperature: Ambient		

⁸⁵ Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). The environmental biorefinery: state-of-the-art on the production of hydrogen and valueadded biomolecules in mixed-culture fermentation. Green Chemistry, 20(14), 3159-3179. doi:10.1039/C8GC00572A

⁸⁶ Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). *Strategies for improving biological hydrogen production*. Bioresource Technology, 110, 1-9. doi:https://doi.org/10.1016/j.biortech.2012.01.103

⁸⁷ Ibid. ⁸⁸ Ibid.

 ⁸⁹ Lee, H., Vermaas, W., & Rittmann, B. (2010). *Biological hydrogen production: Prospects and challenges*. Trends in Biotechnology, 28(5), 262-271.
 ⁹⁰ Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). *Strategies for improving biological hydrogen production*. Bioresource Technology, 110, 1 ⁹⁰ deliberter (deligners). *Construction*, 2012, 01 102.

^{9.} doi:https://doi.org/10.1016/j.biortech.2012.01.103

5.5.3 Hybrid light and dark fermentation

What is it?

Dark fermentation and photofermentation processes occur sequentially in a series of reactors.

Why is it important?

Hybrid fermentation allows extraction of additional hydrogen from the effluents of the typical dark fermentation process.

TRL ⁹¹	1	2	3	4	5	6	7	8	9

Be	nefits	RD&D priorities
•	Maximises hydrogen yield from source material ⁹² Makes use of untreated dark-fermentation effluents (which would otherwise require further handling or present an environmental hazard) ⁹³	 Improve substrate conversion efficiency⁹⁴ Improve reactor design
•	Biocatalysts are inexpensive and biodegradable	
•	Could use organic waste as substrate	
Lin	nitations	Active institutions (0)
•	Large surface area required for photo-fermentation Operation variability depending on solar irradiation supply for the photofermentation step	(No active institutions found in study)
Ch	aracteristics	
•	Inputs: Organic matter (biomass), water, light for pho By-products: Carbon dioxide Operating temperature: Ambient	to-fermentation step

⁹¹ Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). The environmental biorefinery: state-of-the-art on the production of hydrogen and valueadded biomolecules in mixed-culture fermentation. Green Chemistry, 20(14), 3159-3179. doi:10.1039/C8GC00572A

⁹² Das, D., & Veziroglu, T. N. (2008). Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 33(21), 6046-6057. doi:https://doi.org/10.1016/j.ijhydene.2008.07.098

⁹³ Tao, Y., Chen, Y., Wu, Y., He, Y., & Zhou, Z. (2007). *High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose*. International Journal of Hydrogen Energy, 32(2), 200-206. doi:https://doi.org/10.1016/j.ijhydene.2006.06.034

5.5.4 Microbial electrolysis

What is it?

Electrical energy produced by microbes via breakdown of organic matter are augmented with a small additional current to facilitate proton reduction, forming hydrogen gas. A microbial electrolysis cell (MEC) can have a membrane or be membraneless and operates under anaerobic conditions.⁹⁵

Why is it important?

Microbial electrolysis presents the opportunity to use breakdown or organic matter to reduce the electrical input required for hydrogen production in an electrochemical cell.

Т	RL ⁹⁶	1	2	3	4	5	6	7	8	9		
Ber	nefits					RD&D priorities						
•	Hydrog rates a Could be use No ligh Reduce electro Glucos can als Rates o destru monito Austra in the electro for cor from t photoo form a treatm	genase enzy t thermody be used in v d for drinkin at required f ed electrica olytic metho e or glucose to be conver- of hydrogen ction/ conver- ored via elec- lia has plen- form of win olysis can po overting sur- he establish voltaic techn s hydrogen, ent	vmes functio mamic equili vastewater of ng or agricul for process t l input requi ods e-rich substr rted into hyd production ersion can b ctrical mean tiful supply of d and solar otentially be plus electric otentially be plus electric otentially be plus electric otentially be plus electric otentially be plus electric otentially be plus electric otentially be plus electric	n with high ibrium ⁹⁷ or water wh ture to occur red compare ates such as drogen ⁹⁸ and organic e controlled s of renewable radiation. M a platform t al energy ge bines and o a storable accomplishir	catalytic ich cannot ed to s cellulose and e energy licrobial sechnology merated energy ng waste	 Develor stainle Engine Impro metab Impro Increa Develor conver as metal 	op inexpension ess steel ⁹⁹ eer cells with ve anode ge polic reaction ve production se current d op effective rsion of hydric thane gas	ive cathodes on lower inter ometry, elin on rates and ensities ¹⁰² measures to rogen into o	s such as Nic rnal resistan ninating 'sho g) ¹⁰¹ yields o prevent fur ther compo	kel and ce ¹⁰⁰ ort circuit' ther unds such		
Lim	itation	5				Active institutions (3)						
•	Expens Energy proces	sive preciou losses at se s ¹⁰⁴	s metal cath everal point	odes requir during MEC	ed (Pt) ¹⁰³ s	 CSIRO Queensland University of Technology The University of Queensland 						

⁹⁵ Show, K. Y., Yan, Y. G., & Lee, D.-J. (2019). *Chapter 16 - Biohydrogen Production: Status and Perspectives*. In A. Pandey, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, & C. Larroche (Eds.), Biohydrogen (Second Edition) (pp. 391-411): Elsevier.

⁹⁶ Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). *The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation*. Green Chemistry, 20(14), 3159-3179. doi:10.1039/C8GC00572A

⁹⁷ Caserta, G., Roy, S., Atta, M., Artero, V., & Fontecave, M. (2015). Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Current Opinion in Chemical Biology, 25, 36-47. doi:https://doi.org/10.1016/j.cbpa.2014.12.018

 ⁹⁸ Ditzig, J., Liu, H., & Logan, B. E. (2007). Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (*BEAMR*). International Journal of Hydrogen Energy, 32(13), 2296-2304. doi:https://doi.org/10.1016/j.ijhydene.2007.02.035

⁹⁹ Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). *Strategies for improving biological hydrogen production*. Bioresource Technology, 110, 1-9. doi:https://doi.org/10.1016/j.biortech.2012.01.103

¹⁰⁰ Ibid.

¹⁰¹ Ibid.

¹⁰² Ibid.

¹⁰³ Show, K. Y., Yan, Y. G., & Lee, D.-J. (2019). *Chapter 16 - Biohydrogen Production: Status and Perspectives*. In A. Pandey, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, & C. Larroche (Eds.), Biohydrogen (Second Edition) (pp. 391-411): Elsevier.

¹⁰⁴ Lee, H., Vermaas, W., & Rittmann, B. (2010). Biological hydrogen production: Prospects and challenges. Trends in Biotechnology, 28(5), 262-271.

•	Process efficiencies may vary, depending on the microbial activities	
•	The use of membrane separating the anode and the cathode in a MEC may result in pH splitting problems	
٠	Effective management of pH condition within the	
	MEC may be required to ensure stable microbial	
	activity	
Ch	aracteristics	
•	Inputs: Water, organic matter; electricity; a suitable so	ource of electrochemically active microbes

- By-products: Carbon dioxide; valuable chemicals (depending on the type of substrates and the biodegradation pathways taking place)
- Operating temperature: Near ambient, up to 40°C commonly tested¹⁰⁵

¹⁰⁵ Cotterill, S., Heidrich, E., & Curtis, T. (2016). *9 - Microbial electrolysis cells for hydrogen production*. In K. Scott & E. H. Yu (Eds.), Microbial Electrochemical and Fuel Cells (pp. 287-319). Boston: Woodhead Publishing.

5.5.5 Photofermentation

What is it?

....

Photosynthetic microbes use sunlight to break down organic matter via fermentation.

Why is it important?

Photo-fermentation could be used for producing hydrogen from wastewater or other organic waste with sunlight as an energy source.

TRL	1	2	3	4	5	6	/	8	9	
Benefits				RD&D p	RD&D priorities					
 Low-t Could used 1 Conve Nearl biohy Can e ferme 	p-net zero cark be used in wa or drinking or rts organic sub complete sub trogen ¹⁰⁹ tract addition ntation effluer s	oon ¹⁰⁷ stewater or agriculture ¹⁰ ostrate strate conve al hydrogen ats	water whicl ® ersion into from dark	 Dev Stra eng Inve hyd Ove Ove Red 	 Develop inexpensive photobioreactors Strain improvement through metabolic engineering¹¹⁰ Investigate replacement of nitrogenase with hydrogenase enzyme Overcome low hydrogen production rate¹¹¹ Overcome low solar-to-hydrogen efficiency¹¹² Reduce cost of photobioreactors 					
 Large Oxyge Opera suppl Less f of sul It is u into a H2 pr 	surface areas in n inhibits hydr tion variability exible than da strate. ¹¹⁵ ually necessar mixture of car pduction by ph	equired ¹¹³ ogen produ depending rk fermenta y to convert boxylic acid otoferment	ction ¹¹⁴ on solar irra tion regard complex su s and alcohe ation. ¹¹⁶	• The	Australian I	National Un	iversity			
 Character Input: By-pri Operation Energing 	stics : Organic matt ducts: Carbon ting temperat v efficiency: <1	er (hydroca dioxide ure: Ambien 0% ¹¹⁷	rbons), wat t							

¹⁰⁶ Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). *The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation*. Green Chemistry, 20(14), 3159-3179. doi:10.1039/C8GC00572A

¹¹⁰ Ibid.

¹¹² Ibid.

¹¹⁴ Ibid.

116 Ibid.

117 Ibid.

¹⁰⁷ US DOE (n.d.). *Hydrogen Production: Photobiological*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-photobiological Accessed: 20/11/2019

¹⁰⁸ Ibid.

¹⁰⁹ Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). *Strategies for improving biological hydrogen production*. Bioresource Technology, 110, 1-9. doi:https://doi.org/10.1016/j.biortech.2012.01.103

¹¹¹ US DOE (n.d.). *Hydrogen Production: Photobiological*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-photobiological Accessed: 20/11/2019

¹¹³ Hallenbeck, P. C., Abo-Hashesh, M., & Ghosh, D. (2012). *Strategies for improving biological hydrogen production*. Bioresource Technology, 110, 1-9. doi:https://doi.org/10.1016/j.biortech.2012.01.103

¹¹⁵ Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). The environmental biorefinery: state-of-the-art on the production of hydrogen and valueadded biomolecules in mixed-culture fermentation. Green Chemistry, 20(14), 3159-3179. doi:10.1039/C8GC00572A

5.5.6 Dark fermentation followed by anaerobic digestion of biomass

What is it?

TRL

Biomass is processed via dark fermentation, followed by anaerobic digestion, which leads to the production of hydrogen and methane.¹¹⁸ Methane can then be processed to produce further hydrogen, if required, via processes such as reforming or pyrolysis.

Why is it important?

1

2

3

Two-stage anaerobic digestion of biomass presents an opportunity to produce additional methane and hydrogen from biomass following dark fermentation.

5

7

8

9

6

4

Benefits					RD&D prio	rities					
 Low-t Can b Highe comp More 	o-net zero ca e carried out r theoretical ared to one- effective for	arbon : at high org; energy yield stage dark fo treatment o	anic loading d achievable ermentatior of slurry tha	rates ¹¹⁹ I n pyrolysis	 Utilise biochar from biomass to enhance yield. Biochar can act as a buffer to maintain optimal pH conditions, and supply carbon, nutrients and minerals that support high bacterial growth¹²⁰ Optimise operating temperature and pH of the system Ontimise biomass pre-treatment 						
Limitation	S				Active institutions (5)						
Bacteria must be kept within survivable conditions					 CSIRO Griffith Queen The Ur Victori 	n University sland Unive niversity of N a University	rsity of Tech Western Aus	nnology stralia			
Character	istics					-					
 Inputs By-pressure 	:: Biomass, v oducts: Meth	vater Jane, carbor	n dioxide								

• Operating temperature: Ambient, or elevated to approximately 50 to 70°C if thermophilic microbes are used

¹¹⁸ Moscoviz, R., Trably, E., Bernet, N., & Carrère, H. (2018). *The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation*. Green Chemistry, 20(14), 3159-3179. doi:10.1039/C8GC00572A ¹¹⁹ Ibid.

¹²⁰ Jang, H. M., Choi, Y.-K., & Kan, E. (2018). *Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure*. Bioresource Technology, 250, 927-931. doi:https://doi.org/10.1016/j.biortech.2017.11.074

5.6 Photochemical and photocatalytic processes

5.6.1 Photocatalytic water splitting

What is it?

Makes use of photocatalyst materials, usually as single particles or nanostructured sheets, which uses sunlight to split water to produce hydrogen and oxygen gas. These types of systems do not have any external wiring or additional components.

Why is it important?

No membrane or electrical input is required to produce hydrogen.

	TRL	1	2	3	4	5 6 7 8 9									
Bei	nefits					RD&D priorities									
• • •	Techni to ope No me config Low ca photol Flexibl In som treatm	ically very si rate embrane rec uration) apital cost co biological m e reactor siz ne cases, cou nent of wast	mple and th quired (depe ompared to ethods ¹²¹ ze uld be used f rewater ¹²²	erefore inex nding on sys thermocher	pensive stem nical and eous	 Develop photocatalyst materials¹²³ Develop co-catalyst materials (cheaper alternatives) Develop photocatalysts for one-step excitation, Z-scheme, and two-step excitation Improve surface engineering approaches for cocatalyst loading, surface morphology control, surface modification, and surface phase junction strategies Improve system design for large scale hydrogen production including reactor design and particle immobilisation schemes 									
Lim	nitation	s				Active institutions (13)									
•	Need a oxyger	additional e 1 ¹²⁴	ffort to sepa	rate hydrog	en from	 The Au CSIRO Curtin Flinde The Fu Griffitl Queer The Ui Weste 	ustralian Nat University rs University iture Fuels C h University osland Unive niversity of P niversity of P niversity of P niversity of C ern Sydney U	tional Unive Cooperative Adelaide Melbourne Newcastle New South N Queensland Iniversity	rsity Research Ce nnology Wales	ntre					
Cha	aracteri	STICS													
•	Inputs	: Water (in s	some cases (could be low	[,] purity), sur	nlight									

- By-products: Oxygen
- Operating temperature: Ambient

¹²¹ Jafari, T., Moharreri, E., Amin, A., Miao, R., Song, W., & Suib, S. (2016). *Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances*. Molecules, 21(7), 900.

¹²² Kim, J., & Choi, W. (2010). *Hydrogen producing water treatment through solar photocatalysis*. Energy & Environmental Science, 3(8), 1042-1045. ¹²³ Ahmad, H., Kamarudin, S. K., Minggu, L. J., & Kassim, M. (2015). *Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews*, 43, 599-610. doi:https://doi.org/10.1016/j.rser.2014.10.101

¹²⁴ Kim, J., Hansora, D., Sharma, P., Jang, J., & Lee, J. (2019). *Toward practical solar hydrogen production an artificial photosynthetic leaf-to-farm challenge.* Chemical Society Reviews, 48(7), 1908-1971.

5.6.2 Photoelectrochemical water splitting

2

3

What is it?

Sunlight irradiates one or more photovoltaic components, which can generate electricity. One or more photovoltaic components can be integrated with catalysts to create photoelectrodes or can be electrically connected to standard catalyst-coated electrodes. Hydrogen and oxygen are produced at different (photo)electrodes, separated by a membrane.

Why is it important?

1

TRL

Photoelectrochemical water splitting makes use of sunlight to convert water to hydrogen, with the option of supplementing the process with some electrical energy.

5

6

7

8

9

4

Benefits	6				RD&D pric	orities			
 Integrated solar capture and hydrogen production Uses sunlight as primary energy source In some designs, additional electrical energy input can be applied Separation of H₂ and O₂ Zero-to-low carbon emissions Can leverage existing solar cell and electrocatalyst technologies Limitations				 Continue materials development¹²⁵ Develop low-cost, stable catalyst and co-catalysts materials¹²⁶ Develop low-cost, high-efficiency photoelectrode materials¹²⁷ Improve long term stability of photoelectrodes Improve system integration and design¹²⁸ Improve membrane and electrode durability Conduct technoeconomic analysis of PEC based solar hydrogen systems versus PV-electrolysis systems¹²⁹ 					
Limitati	ons				Active inst	itutions (11)		
• Pho sun	toelectrodes a light ¹³⁰	bsorb a limi	ted range of		The AuMacquMonasQueer	ustralian Nat uarie Univer sh University usland Unive	tional Unive sity / rsity of Tecl	rsity nnology	
					 RMIT The Ui The Ui The Ui The Ui The Ui The Ui Weste 	University niversity of 7 niversity of 1 niversity of 1 niversity of 6 niversity of 6 rn Sydney U	Adelaide Melbourne New South N Newcastle Queensland Iniversity	Nales	

• Inputs: Water, sunlight, electricity (optional in some designs)

• By-products: Oxygen

¹²⁵ Alfaifi, B., Ullah, H., Alfaifi, S., Tahir, A., & Mallick, T. (2018). *Photoelectrochemical solar water splitting: From basic principles to advanced devices.* Veruscript Functional Nanomaterials, 2, BDJOC3. doi:10.22261/FNAN.BDJOC3

¹²⁶ Montoya, J. H., Seitz, L. C., Chakthranont, P., Vojvodic, A., Jaramillo, T. F., & Nørskov, J. K. (2017). *Materials for solar fuels and chemicals*. Nature Materials, 16(1), 70-81. doi:10.1038/nmat4778

¹²⁷ Montoya, J. H., Seitz, L. C., Chakthranont, P., Vojvodic, A., Jaramillo, T. F., & Nørskov, J. K. (2017). *Materials for solar fuels and chemicals*. Nature Materials, 16(1), 70-81. doi:10.1038/nmat4778

¹²⁸ Beck, F. J. (2019). *Rational Integration of Photovoltaics for Solar Hydrogen Generation*. ACS Applied Energy Materials, 2(9), 6395-6403. doi:10.1021/acsaem.9b01030

¹²⁹ Shaner, M., Atwater, H., Lewis, N., & McFarland, E. (2016). A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science, 7, 2354-2371. doi: 10.1039/c5ee02573g

¹³⁰ Ahmed, M., & Dincer, I. (2019). A review on photoelectrochemical hydrogen production systems: Challenges and future directions. International Journal of Hydrogen Energy, 44(5), 2474-2507. doi:https://doi.org/10.1016/j.ijhydene.2018.12.037

• Operating temperature: Ambient

 Energy efficiency: Low (however uses direct sunlight). Efficiencies of 10-30% have been demonstrated for stand-alone (no added electricity) lab-based systems. DOE have set target STH > 20%¹³¹ using low cost materials

¹³¹ US DOE (n.d.). *DOE Technical Targets for Hydrogen Production from Photoelectrochemical Water Splitting*, [Online] Available from: https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-photoelectrochemical-water-splitting Accessed: 21/11/2019

6 Technology repository: Storage

6.1 Compression and liquefaction

6.1.1 Compression: Electrochemical

What is it?

A compressor in which hydrogen is supplied at the anode and then driven through a polymer exchange membrane to the cathode via the application of an electric current, where it is collected in a compressed form on the other side.

Why is it important?

Electrochemical compression has the potential to displace mechanical compression by operating at higher efficiencies (70-80%), with a smaller footprint and the benefit of no moving parts. This can result in lower maintenance costs, reduce stack costs, and noiseless operation.

TRL ¹³² 1 2 3 4 5 6 7 8 9	9	
--	---	--

Ве	nefits	RD	0&D priorities
• • • •	Hydrogen product easily extracted Solid state membrane No moving parts – lower maintenance costs and noiseless operation Higher efficiencies than traditional mechanical compression Output compressed hydrogen pressures of approximately 1000 bar have so far been reached with this technology.	• • •	Improve compressor reliability Fabricate new membranes Reduce electro-osmotic drag (EOD) Maintain stack seals at higher operating pressures Reduce stack costs
•	Can operate from very low pressure		
Lin	nitations	AC	tive institutions (1)
•	High capital cost	•	CSIRO
•	Lifetime and sensitivity to impurities such as reactive gas species		
•	Reverse permeability leads to movement of hydrogen gas back into non-pressurised side of system		
Ch	aracteristics		
•	Gravimetric hydrogen density: N/A Storage conditions: High pressure (up to 1000 bar) Compression efficiency: 70-80%		

¹³² Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). National Hydrogen Roadmap, CSIRO.

6.1.2 Compression: Metal hydrides

What is it?

TRL

Hydrogen is absorbed at low pressure into the metal hydride material, and subsequently released as a high-pressure gas via the application of heat.

5

6

7

8

9

Why is it important?

1

2

3

Metal hydride compressors present the possibility to use waste heat in place of electricity to drive compression.

4

Benefits	RD&D priorities					
 Simple design and operation¹³³ Minimal ongoing maintenance required¹³⁴ Potential to use waste heat in place of electricity to drive compression 	 Optimise hydride-forming alloys Enable long-term reliable operation Improve kinetics of hydrogen absorption/release at high efficiency Improve stability to hydrogen impurities (e.g. water, CO₂) Improve system design and thermal management 					
Limitations	Active institutions (5)					
 Requires elevated temperatures to release hydrogen from metal hydride material Low efficiency High capital cost 	 CSIRO Curtin University Deakin University Griffith University The University of New South Wales 					
Characteristics						

• Gravimetric hydrogen density: N/A

• Storage conditions: High pressure (approaching 700 bar depending on application), ambient pressure storage, high temperatures required for hydrogen release

 ¹³³ Lototskyy, M. V., Yartys, V. A., Pollet, B. G., & Bowman, R. C. (2014). *Metal hydride hydrogen compressors: A review*. International Journal of Hydrogen Energy, 39(11), 5818-5851. doi:https://doi.org/10.1016/j.ijhydene.2014.01.158
 ¹³⁴ Ibid.

6.1.3 Compression: Ionic liquids

~

What is it?

Ionic compressors make use of ionic liquids instead of a piston to compress hydrogen gas. Ionic compressors are currently in use in several hydrogen refuelling stations to reach the required pressures for hydrogen FCEVs.

Why is it important?

.

Potentially lower-cost compression. As with other mechanical compressors, could be effective for large-scale compression of hydrogen.

	IKL	T	2	3	4	5	b	/	8	9
						_				
Be	nefits					RD&D pric	orities			
 Potential to yield energy saving of 40% over standard mechanical compressors Do not require bearings and seals, which are the most common sources of failure in mechanical compressors¹³⁵ Limitations Potelop low-cost ionic liquids Develop high performance ionic liquids (lower viscosity, improved operating temperature range) 								ower e range)		
Lin	Limitations Active institutions (0)									
•	Low vo	olumetric er	nergy density	ý		• (No ac	tive institut	ions found i	n study)	
•	Energy	intensive p	orocess							
•	High cost of ionic liquids									
Cha	Characteristics									
•	Gravimetric hydrogen density: N/A									
•	Storag	e condition	s: Up to 100	0 bar pressu	ire demonst	trated ¹³⁶				

¹³⁵ US DOE (n.d.). Gaseous Hydrogen Compression, [Online] Available from: https://www.energy.gov/eere/fuelcells/gaseous-hydrogen-compression Accessed: 21/11/2019

¹³⁶ The Linde Group (n.d.) *Hydrogen technologies. The ionic compressor IC90 (90MPa) – Datasheet*. [Online] Available from: https://www.boconline.co.uk/en/images/Datasheet_Ionic%20Fueler%20IC90_tcm410-410855.pdf Accessed: 21/11/2019

6.1.4 Liquid hydrogen: Cryo-compression

What is it?

Hydrogen is cooled to cryogenic temperatures and compressed to pressures approaching 300 bar into a supercritical fluid. The cryo-compressed hydrogen can be further compressed to pressures up to 700 bar.

Why is it important?

More financially viable where high density hydrogen storage is required under limited space, or where a larger roundtrip distance is involved.

TRL	1	2	3	4	5	6	7	8	9	
Benefits					RD&D prio	rities				
 Higher vogas Fewer ev typical cc Cryo-com hydroger liquid or j 	 Higher volumetric storage capacity than compressed gas Fewer evaporation losses (boil off losses) than in typical compression mechanisms or liquid hydrogen¹³⁷ Cryo-compressed can be denser than liquid hydrogen¹³⁸ – cryo-compressed hydrogen can be in liquid or gaseous state. The dormancy is greatly extended as the allowable procure incide the voccel increased. 					 Reduce boil-off (i.e. vaporisation) rates Improve engineering, insulation, heat exchangers, and coolants Create larger and better insulated storage tanks Increase loss-free dormancy time (time before hydrogen will need to be vented from the tank) Reduce material costs and improve durability for increased 				
pressure	 The dormancy is greatly extended as the allowable pressure inside the vessel increases 							,,		
Limitations					Active inst	itutions (1)				
 Requires advanced and more expensive storage material 					• The University of Western Australia					
Characteris	stics				-					
Volume	etric hydrog	en density:	49.6 kg H ₂ /r	n³ at 700 ba	r, 50.9 kg H ₂	/m³ at 350 l	bar ¹³⁹			

• Gravimetric hydrogen density: 7.0% at 700 bar, 10.0% at 350 bar¹⁴⁰

• Storage conditions: Commonly 250 to 350 bar, 23 to 35K. 78K at 700 bar, 66K at 350 bar also recorded¹⁴¹

• Well-to-tank efficiency range: 40-45%. The energy required to liquify the hydrogen is 6-8 kW/kg H₂. Well-totank efficiency includes from the feedstock natural gas consumed to the low heating value of H₂ delivered to tank.

 ¹³⁷ Petitpas, G., Bénard, P., Klebanoff, L. E., Xiao, J., & Aceves, S. (2014). A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods. International Journal of Hydrogen Energy, 39(20), 10564-10584. doi:https://doi.org/10.1016/j.ijhydene.2014.04.200
 ¹³⁸ Barthelemy, H., Weber, M., & Barbier, F. (2017). Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 42(11), 7254-7262. doi:https://doi.org/10.1016/j.ijhydene.2016.03.178

¹³⁹ Ahluwalia, R. K., Peng, J. K., Roh, H. S., Hua, T. Q., Houchins, C., & James, B. D. (2018). *Supercritical cryo-compressed hydrogen storage for fuel cell electric buses*. International Journal of Hydrogen Energy, 43(22), 10215-10231. doi:https://doi.org/10.1016/j.ijhydene.2018.04.113 ¹⁴⁰ lbid.

¹⁴¹ Ibid.

6.1.5 Liquid hydrogen: Cryogenic tanks

What is it?

Hydrogen is liquefied and stored at -253°C, at ambient-moderate pressures, in cryogenic tanks through a multi-stage process of compression and cooling.

Why is it important?

More financially viable where high density hydrogen storage is required under limited space, or where a larger roundtrip distance is involved.

TRL	1	2	3	4	5	6	7	8	9
Benefits					RD&D pric	orities			
• Higher v	olumetric st	orage capac	ity than con	npressed	 Reduce boil-off (i.e. vaporisation) rates 				
 gas Fewer evaporation losses than typical compression mechanisms 					 Improve coolants 	engineering	g, insulation	, heat excha	ngers and
					 Improve to achiev 	insulation n ve larger sca	naterial con le and bette	struction tee r insulated t	chniques tanks
					Improve	hydrogen co	ompression	technology	
					 Study and analyse the effects of vessel shape designs, stratification, and thermal overfill 				
					 Conduct thermal-fluid dynamical analysis on the effects of flashing during the transport of liquid hydrogen from bulk storage to atmospheric on-site storage 				
					 Develop conversi capabilit 	low cost cat on, and orth y, to reduce	talysts for in no-para ratic boil off rate	nproved ort o measurem e ¹⁴²	ho-para ent
					 Conduct producti 	studies of ir on ¹⁴³	npurity free	ze-out in H ₂	!
Limitation	s				Active inst	itutions (6)			
 Requires advanced and more expensive storage 				• CSIRO					
material Liquefaction requires complex technical plant¹⁴⁴ 					 Monash 	University			
					Queensl	and Univers	ity of Techn	ology	
Liquefier	a nyarogen i	ncurs boil-o	TT IOSSES	f	• The Univ	versity of Ne	w South Wa	ales	
 To be liq hvdroge 	n is required	0 40% ot en 1 ¹⁴⁵	ergy conten	t of	• The Univ	versity of Syd	dney		
					• The Univ	versity of We	estern Austr	alia	

 ¹⁴² May, E.F., Johns, M.L., Stajduhar, J., Al Ghafri, S.Z.S, Metaxas, P.J., Connolly, P.R.J., Sampson, C.C. (2019). *Research & Development Needs for Australia's H2 Export Industry*, University of Western Australia.
 ¹⁴³ Ibid.

 ¹⁴⁴ Hydrogen Europe (2017). *Hydrogen Storage*, [Online] Available from: https://hydrogeneurope.eu/hydrogen-storage Accessed: 21/11/2019
 ¹⁴⁵ Dagdougui, H., Sacile, R., Bersani, C., & Ouammi, A. (2018). *Chapter 4 - Hydrogen Storage and Distribution: Implementation Scenarios*. In H. Dagdougui, R. Sacile, C. Bersani, & A. Ouammi (Eds.), Hydrogen Infrastructure for Energy Applications (pp. 37-52): Academic Press.

Characteristics

- Volumetric hydrogen density: 70.85 kg H₂/m^{3 146} at 1 bar
- Storage conditions: 2-10 bar, 20K
- Well-to-tank efficiency range: 20-25%. The energy required to liquify the hydrogen is 6-8 kW/kg H₂. Well-totank efficiency includes from the feedstock natural gas consumed to the low heating value of H₂ delivered to tank.

¹⁴⁶ NIST (2018). Saturation Properties for Hydrogen — Pressure Increments, [Online] Available from:

https://webbook.nist.gov/cgi/fluid.cgi?Action=Load&ID=C1333740&Type=SatT&Digits=5&PLow=.5&PHigh=1.5&PInc=.1&RefState=DEF&TUnit=K&PUnit=atm&DUnit=kg/m3&HUnit=kJ/mol&WUnit=m/s&VisUnit=uPa*s&STUnit=N/m Accessed: 21/11/2019

6.1.6 Metal-composite pressurised vessels

What is it?

Hydrogen is stored at high pressures (approaching 800 bar) in steel or carbon fibre composite tanks via mechanical compression.

Why is it important?

Well established and commonly used storage technology; currently the standard storage method.

TRL	1	2	3	4	5	6	7	8	9
		1	1						
Benefits					RD&D pric	orities			
Established technology					Develop higher efficiency compression technologies				
Simp	e compressi	on process							
Ambient temperature storage									
Limitations Active institutions (2)									
Energy intensive process					CSIRO				
Low volumetric hydrogen density Curtin University									
Characte	Characteristics								
• Stora	ge condition	s: High press	sure (350-80	0 bar), amb	ient temper	ature			

6.1.7 Underground storage

What is it?

Hydrogen gas is compressed and injected via wells into subsurface formations. Apart from pure hydrogen, there are also options to store natural gas that is lean in hydrogen, or rich hydrogen mixtures with methane, carbon dioxide and carbon monoxide (syngas or town gas). This parallels the underground storage of natural gas, which is used extensively around the world, including in Australia. The options for subsurface storage include salt caverns (which are excavated and shaped by injecting fresh water into existing rock salt formations), depleted gas or oil fields, or saline aquifers. The hydrogen is then extracted back from the formation via the wells when required.

Why is it important?

The underground storage approach allows large volumes of hydrogen to be stored and therefore potentially cope with seasonal variation in demand, not just peak load cycling. Subsurface storage will have much lower costs per mass of hydrogen stored than options at the surface, as it makes use of existing formations and is much safer.

	TRL	1	2	3	4	5	6	7	8	9	
--	-----	---	---	---	---	---	---	---	---	---	--

The TRL of hydrogen storage in underground formations varies depending on the local geology. Pure hydrogen storage in salt cavern storage is already commercial but not widespread (TRL 8). Storage in depleted fields and saline aquifers has been done for some hydrogen mixtures but needs development (TRL 5).

Benefits	RD&D priorities
 High volume at lower pressure and cost 	 Develop methodology for assessing sites
 Allows seasonal storage as well as peak load 	Develop simulation technology for subsurface
 Very large feasible scale of storage 	mixtures of hydrogen and other gases.
	 Identify candidate sites for storage near hydrogen production
	 Investigate potential interactions of hydrogen with rocks, fluid and subsurface bacteria
Limitations	Active institutions (4)
 Cannot be used for transport of hydrogen 	 CSIRO (related CO₂ and natural gas storage research)
 Specific geological requirements 	Curtin University
	The Future Fuels Cooperative Research Centre
	The University of Melbourne
Characteristics	

Gravimetric hydrogen density: ~100% (not taking into account underground cavern mass)

• Storage conditions: High pressure (~50-200 bar) and moderate temperature (30-80°C)

6.2 Chemical storage

6.2.1 Ammonia

What is it?

Ammonia is synthesised from hydrogen and nitrogen via one of a variety of methods. Ammonia can then be transported, and the hydrogen extracted again at the point of use via a thermal decomposition and separation process.

Why is it important?

Ammonia can be transported under mild conditions and be utilised directly or converted back into hydrogen for use.

TRL* 1 2 3 4 5 6 7 8 9	
--	--

*Various ammonia technologies in development cover the whole TRL scale.

Benefits	RD&D priorities
 Cracking leads to formation of nitrogen gas, which is innocuous and can be released back into the atmosphere 	 Develop higher efficiency and lower cost synthesis methods
 Can be stored at mild temperature and pressure for transport 	
 Can leverage existing ammonia handling and transport infrastructure 	
• High Gravimetric hydrogen density: 17.8% by mass ¹⁴⁷	
 High Volumetric hydrogen density -10.7kg H₂ / 100L at 10 bar and 25°C¹⁴⁸ 	
Limitations	Active institutions (8)
 Requires cracking at point of use to extract hydrogen See limitations for each synthesis method High toxicity of ammonia vapours¹⁴⁹ 	 The Australian National University CSIRO Monash University The University of Adelaide The University of Newcastle The University of Sydney The University of Technology Sydney The University of Western Australia
Characteristics	· · ·
• Volumetric hydrogen density: High (107 kg H ₂ /m ³ at 1	0 bar and 25°C ¹⁵⁰)

- Gravimetric hydrogen density: High (17.8 % by mass¹⁵¹)
- Storage conditions: Liquid at ambient temperature, 10-11 bar pressure

¹⁴⁷ Kojima, Y. (2014). *Liquid Ammonia for Hydrogen Storage*, NH3 Fuel Association, [Online] Available from:

http://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019 ¹⁴⁸ Ibid.

¹⁴⁹ Thomas, G., Parks, G. (2006). *Potential roles of ammonia in a hydrogen economy*. U.S. Department of Energy. [Online] Available from:

https://www.energy.gov/sites/prod/files/2015/01/f19/fcto_nh3_h2_storage_white_paper_2006.pdf

¹⁵⁰ Kojima, Y. (2014). Liquid Ammonia for Hydrogen Storage, NH3 Fuel Association, [Online] Available from:

 $http://nh3 fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/\ Accessed:\ 21/11/2019$

¹⁵¹ Ibid.

• Energy efficiency: Varies depending on synthesis approach. See Haber-Bosch synthesis method for conventional synthesis

6.2.2 Ammonia: Dense-metal membrane-based synthesis

What is it?

Membrane based ammonia synthesis is a method in which hydrogen gas is supplied on one side of a dense metallic membrane and nitrogen gas on the other. The structure of the membrane allows individual hydrogen atoms to pass through to the nitrogen gas side and react to form ammonia. Why is it important?

Membrane based ammonia synthesis offers a near-term opportunity to achieve significant reductions in operating costs and carbon emissions compared to the traditional Haber-Bosch process.

TRL	1	2	3	4	5	6	7	8	9
Benefits					RD&D prio	orities			

 Low pressure ammonia synthesis – allows direct coupling of reactor to electrolyser and air separation unit Less capital intensive than Haber-Bosch synthesis Highest non-Haber-Bosch synthesis rate achieved Fast switch-on/off times can accommodate intermittent energy sources Centralised or decentralised ammonia production possible 	 Improve conversion efficiency to ~15% (from ~4%) Demonstrate use of lower-cost membranes Improve production rate Utilise lower-cost catalysts 					
Does not allow direct synthesis of ammonia from nitrogen and water	CSIRO					
Characteristics						
 Volumetric hydrogen density: High (107 kg H₂/m³ at 10 bar and 25°C.¹⁵²) Gravimetric hydrogen density: High (17.8 % by mass¹⁵³) Storage conditions: Liquid at ambient temperature, 10-11 bar pressure 						

¹⁵² Kojima, Y. (2014). Liquid Ammonia for Hydrogen Storage, NH3 Fuel Association, [Online] Available from: http://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019 ¹⁵³ Ibid.

6.2.3 Ammonia: Electrochemical synthesis

What is it?

Electrochemical ammonia synthesis describes a group of methods that can make use of either a hydrogen gas or water feedstock to produce ammonia with nitrogen.

Why is it important?

TRI 1 2

Electrochemical ammonia synthesis presents a long-term opportunity to create ammonia for export directly if water and nitrogen are used as the feedstocks, skipping the hydrogen feedstock production step which is currently required. This could facilitate reductions in operating costs and balance of plant compared to the traditional Haber-Bosch process.

TRL	1	2	3	4	5	6	7	8	9		
					· · · · · · · · · · · · · · · · · · ·						
Benefits					RD&D prio	orities					
 Synthesi hydroge Operate Bosch sy Could perform or alcoh Lower of tradition Could the bydrogen 	s of ammon n gas) is pos s at milder o rathesis (ten otentially ma ol inputs perating cos nal Haber-Bo coretically yie	ia directly fr ssible conditions th nperatures t ake use of w its and balar osch process Id energy sav	om water (i nan traditior pelow 100°C aste water, nce of plant	nstead of aal Haber- possible) sea water, than	 Improve cost competitive ammonia production rate (highest achieved so far is two orders of magnitude lower than required) and conversion efficiency Improve high ratio of ammonia to hydrogen generation Optimise reactor materials and reaction conditions 						
Limitation	s				Active institutions (5)						
 Low to Energy 	emperature y intensive ł	kinetics nydrogen ge	neration		 CSIRO Monash Queensla The Univ The Univ 	University and Univers versity of Ad versity of Teo	ity of Techn elaide chnology Sy	ology dney			
Characteri	stics				1						
 Volumetric hydrogen density: High (107 kg H₂/m³ at 10 bar and 25°C.¹⁵⁴) Gravimetric hydrogen density: High (17.8 % by mass¹⁵⁵) Storage conditions: Liquid at ambient temperature, 10-11 bar pressure 											

З

٦

¹⁵⁴ Kojima, Y. (2014). *Liquid Ammonia for Hydrogen Storage*, NH3 Fuel Association, [Online] Available from: http://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019 155 Ibid.

6.2.4 Ammonia: Enzymatic synthesis

What is it?

An electric current is supplied to isolated nitrogenase enzymes, which reduce nitrogen gas (N_2) and water to form ammonia, whilst also producing hydrogen.

Why is it important?

Ammonia can be synthesised under ambient conditions via the application of an electric current.

TRL	1	2	3	4	5	6	7	8	9		
Benefits					RD&D priorities						
 Occurs a Less ene Occurs a 	t ambient to rgy intensiv t neutral pH	emperature e than Habe 1 ¹⁵⁷	and pressur	e ¹⁵⁶	 Develop alternative redox mediator to methyl viologen (which is highly poisonous) Improve transport of electrons from solar panels Test carrier protein as a means of electron transport Stabilise enzyme using MOFs Conduct pilot scale experiments Develop an isolated anaerobic environment to prevent exposure of enzyme to oxygen 						
 Limitation Separati producti 	s on of ammo on	onia and hyd	rogen requi	red after	Active inst CSIRO 	itutions (1)					
 Biologica Metallo- negated 	protein is o by biology	difficult to c xygen sensit	ontrol ive and usua	ally							
 Volumetric hydrogen density: High (107kg H₂/m³ at 10 bar and 25°C.¹⁵⁸) Gravimetric hydrogen density: High (17.8 % by mass¹⁵⁹) Storage conditions: Liquid at ambient temperature. 10-11 bar pressure 											

¹⁵⁶ Milton, R., Abdellaoui, S., Khadka, N., Dean, D., Leech, D., Seefeldt, L., & Minteer, S. (2016). *Nitrogenase bioelectrocatalysis: Heterogeneous ammonia and hydrogen production by MoFe protein*. Energy & Environmental Science, 9(8), 2550-2554.
¹⁵⁷ Ibid.

¹⁵⁸ Kojima, Y. (2014). *Liquid Ammonia for Hydrogen Storage*, NH3 Fuel Association, [Online] Available from:

http://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019

¹⁵⁹ Ibid.

6.2.5 Ammonia: Haber-Bosch synthesis

What is it?

Ammonia is synthesised by reacting hydrogen with nitrogen gas at high temperatures and pressures.

Why is it important?

Haber-Bosch synthesis is a well-established industrial process that has been optimised for hydrogen production.

TRL	1	2	3	4	5	6	7	8	9

Benefits	RD&D priorities					
Established industrial process	 Improve catalyst development Integrate with renewable sources of hydrogen 					
Limitations	Active institutions (2)					
Limitations	Active institutions (3)					
 High operating temperature and pressures, highly 	The Australian National University					
energy-intensive	 The University of New South Wales 					
 Generates large amounts of carbon dioxide 	The University of Western Australia					
Diminishing returns expected from improvements to						
this synthesis method ¹⁶⁰						
Characteristics						
 Volumetric hydrogen density: High (107 kg H₂/m³ at 1 	0 bar and 25°C ¹⁶¹)					
• Gravimetric hydrogen density: High (17.8 % by mass ¹⁶	52)					
 Storage conditions: Liquid at ambient temperature, 10-11 bar pressure 						
Synthesis energy efficiency: Production of hydrogen v	ia SMR paired with Haber-Bosch synthesis has an overall					
energy efficiency of approximately 61-66% ¹⁶³	· · · ·					

 ¹⁶⁰ Brown, T. (2018). Innovations in Ammonia. Presentation at US Department of Energy H2@Scale R&D Consortium Kick-Off Meeting. Chicago IL
 ¹⁶¹ Kojima, Y. (2014). Liquid Ammonia for Hydrogen Storage, NH3 Fuel Association, [Online] Available from: https://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019
 ¹⁶² Ibid.

¹⁶³ Soloveichik, G., (2017). FUTURE OF AMMONIA PRODUCTION: IMPROVEMENT OF HABER-BOSCH PROCESS OR ELECTROCHEMICAL SYNTHESIS?, US DOE, [Online] Available from: http://nh3fuelassociation.org/wp-content/uploads/2017/11/NH3-Energy-2017-Grigorii-Soloveichik.pdf

6.2.6 Ammonia: Hydration of metal nitrides

What is it?

Ammonia is synthesised via the hydration (hydrolysis) of a metal nitride (a metal bonded with nitrogen). Water is reacted with the metal nitride to produce ammonia at ambient to moderate (200+°C) temperatures.¹⁶⁴

Why is it important?

Ammonia can be synthesised directly from water, without requiring formation of hydrogen.

D (*)										
TRL	1	2	3	4	5	6	7	8	9	

Benefits	RD&D priorities					
 Direct ammonia synthesis from water Can make use of waste or solar heat to generate required temperature 	 Improve efficient regeneration of metal nitride for reuse Improve long term stability of metal nitride catalysts¹⁶⁵ 					
Limitations	Active institutions (2)					
 Metal nitride needs to be regenerated to complete chemical loop 	 Monash University The University of Western Australia 					
Characteristics						
• Volumetric hydrogen density: High (107 kg H ₂ /m ³ at 10 bar and 25°C. ¹⁶⁶)						
 Gravimetric hydrogen density: High (17.8 % by mass¹⁶⁷) 						
Storage conditions: Liquid at ambient temperature, 10-11 bar pressure						

¹⁶⁶ Kojima, Y. (2014). *Liquid Ammonia for Hydrogen Storage*, NH3 Fuel Association, [Online] Available from:

https://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019 ¹⁶⁷ Ibid.

¹⁶⁴ Jain, A., Miyaoka, H., Kumar, S., Ichikawa, T., & Kojima, Y. (2017). *A new synthesis route of ammonia production through hydrolysis of metal* – *Nitrides*. International Journal of Hydrogen Energy, 42(39), 24897-24903.

¹⁶⁵ Michalsky, R., Avram, A. M., Peterson, B. A., Pfromm, P. H., & Peterson, A. A. (2015). *Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage*. Chemical Science, 6(7), 3965-3974.
6.2.7 Ammonia: Non-thermal plasma synthesis

2

3

What is it?

TRL

Hydrogen and nitrogen are reacted via the use of non-thermal plasma, which provides sufficient energy for reaction and conversion to ammonia.

Why is it important?

1

Non-thermal plasma could facilitate the synthesis of ammonia at temperature and pressure ranges much lower than those required for the traditional Haber-Bosch process.

5

Furthermore, plasma processes are likely to be suitable for small-scale on-site ammonia production.¹⁶⁸

4

			_		_	-		_	_		
Benefits					RD&D pric	orities					
• Low tem	perature ar	d pressure a	ammonia sy	vnthesis	Develop	cheaper cat	alyst alterna	atives			
• Fast swit	ch-on/off ti	mes can acc	ommodate		 Increase 	production	rate				
intermit	tent energy	sources			Develop	improved u	nderstandin	ng of fundan	nental		
• Decentra	alised ammo	onia product	ion possible	e ¹⁶⁹	interactions and reaction mechanism						
					 Increase 	process effi	ciency ¹⁷⁰				
Limitation	s				Active inst	itutions (3)					
• Does no	t allow dired	t synthesis o	of ammonia	1	Queensland University of Technology						
• High-cos	t ruthenium	catalyst			• The University of Adelaide						
					• The Univ	versity of We	estern Austr	alia			
Characteri	stics										

- Volumetric hydrogen density: High (107 kg H₂/m³ at 10 bar and 25°C.¹⁷¹)
- Gravimetric hydrogen density: High (17.8 % by mass¹⁷²)
- Storage conditions: Liquid at ambient temperature, 10-11 bar pressure
- Synthesis efficiency: Assumed efficiency ~10 times lower than Haber-Bosch process

7

8

9

6

¹⁶⁸ Hong, J. B., Murphy, A., & Prawer, S. (2018). *Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress*. ACS Sustainable Chemistry and Engineering, 6(1), 15-31

¹⁶⁹ Ibid. ¹⁷⁰ Ibid.

¹⁷¹ Kojima, Y. (2014). *Liquid Ammonia for Hydrogen Storage*, NH3 Fuel Association, [Online] Available from:

https://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019

¹⁷² Ibid.

6.2.8 Ammonia: combined system synthesis

2

3

What is it?

TRL

Hydrogen is produced via solid oxide electrolysis, then fed into a second reactor in which it is used as an input for ammonia synthesis. The heat from the ammonia production step is then fed back to the solid oxide electrolysis cell for further hydrogen production.

Why is it important?

1

Integrated hydrogen production and ammonia synthesis presents an opportunity to make use of the heat generated from ammonia synthesis step, reducing the amount of input energy required for the solid oxide electrolysis step.

5

6

7

8

9

4

Benefits	RD&D priorities					
Downstream process well established	Develop means to economically manufacture and					
Heat integration makes use of heat from exothermic	implement cells at scale					
downstream reaction, supplies it back to hydrogen	Prevent degradation of solid oxide electrolysers					
No air conaration unit required to provide a nitrogen	 Develop system integration concepts to engineer a complete integrated system 					
input for ammonia synthesis						
•	Reduce system capital cost					
Limitations	Active institutions (0)					
 Limitations largely dependent on type of ammonia 	 (No active institutions found in study) 					
synthesis method employed. Conventional synthesis is						
carried out via the Haber-Bosch process, which would						
necessitate an intermediate compression of hydrogen						
between steps						
Characteristics						
• Volumetric hydrogen density: High (107 kg H ₂ /m ³ at 1	0 bar and 25°C ¹⁷³)					
• Gravimetric hydrogen density: High (17.8 % by mass ¹⁷	4)					
 Storage conditions: Liquid at ambient temperature, 10-11 bar pressure 						

¹⁷³ Kojima, Y. (2014). Liquid Ammonia for Hydrogen Storage, NH3 Fuel Association, [Online] Available from: https://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019 ¹⁷⁴ Ibid.

6.2.9 Ammonia: solid oxide electrolysis

What is it?

Ammonia is synthesised directly from steam and nitrogen in a solid oxide electrolysis cell at elevated temperatures.

Why is it important?

Ammonia can be synthesised directly from water and nitrogen, without requiring a precursory hydrogen production step. This reduces system complexity and could yield energy savings.

TRL	1	2	3	4	5	6	7	8	9
					-				
Benefits					RD&D pric	orities			
• Single re	actor mean	s reduced sy	/stem comp	lexity and	Improve	catalyst sel	ectivity		
lower as	sociated cap	pital costs			Develop	cell designs	and electro	lytes capabl	e of
• Allows ir	ntegration o	f waste hea [.]	t streams, re	educing	operating at thermodynamically favourable conditions				
the requ	ired energy	input			Understand fundamental reaction mechanisms				
 Makes u 	se of carbor	n dioxide as	a process in	put					
Limitation	s				Active institutions (0)				
Balancin	g reactor te	mperature i	s a challeng	e.	 (No active institutions found in study) 				
Ammoni	a product d	ecompositic	on occurs at	typical					
solid oxi	de cell oper	ating tempe	rature						
Characteri	Characteristics								
• Volum	etric hydrog	gen density:	High (107 k	g H ₂ /m ³ at 1	0 bar and 25	5°C ¹⁷⁵)			
Gravin	 Gravimetric hydrogen density: High (17.8 % by mass¹⁷⁶) 								
 Storag 	e condition	s: Liquid at a	ambient tem	0-11 bar pre	ssure				

¹⁷⁵ Kojima, Y. (2014). Liquid Ammonia for Hydrogen Storage, NH3 Fuel Association, [Online] Available from: https://nh3fuelassociation.org/2014/09/06/liquid-ammonia-for-hydrogen-storage/ Accessed: 21/11/2019 ¹⁷⁶ Ibid.

6.2.10 Dimethyl ether (DME)

What is it?

DME is the simplest of the ethers and the dehydration product of methanol. A gas at room temperature, it has physical properties very similar to LPG and can be easily compressed to a liquid. As for methanol, renewable DME can be synthesised from syngas derived from a renewable source or by the direct hydrogenation of CO₂. Also like methanol, DME can be converted back into hydrogen when needed or utilised directly in a number of applications. DME can be synthesised directly from CO₂ or produced via methanol. The direct synthesis of DME is more efficient than the synthesis of methanol.

Why is it important?

DME can be blended with LPG and used without changes to storage and transportation infrastructure or end use technologies when blended up to 10%. With minor modification to seals and elastomers, DME can completely replace LPG. DME is a better fuel for compression ignition engines than diesel, with a higher cetane rating and producing very low particulate and Sox emissions on combustion. Ironically, a major initiative in Japan to develop DME as a replacement for diesel in the 1990s was apparently halted due to the "success" of the diesel particle filter.

TRL*	1	2	3	4	5	6	7	8	9

*The TRL for DME is dependent on the feedstock employed for its synthesis. For natural gas, coal or biomass the TRL is very high (8-9), whereas from CO_2 it is somewhat lower (5-6). The direct synthesis of DME from CO_2 (not via methanol) is lower again (3-4).

Benefits	RD&D priorities					
Very low toxicity	• Develop direct synthesis from CO ₂ :					
 Does not pollute ground water or marine 	 Process development 					
environments	 Catalyst development 					
 Excellent fuel for CI or SI engines 	 Reactor development 					
• Compatible with existing LPG storage and distribution	 Develop reforming process to produce H₂ from DME 					
infrastructure	 Develop DME compression ignition engine 					
 Better chemical/hydrocarbon fuel intermediate than methanol 	 Modify compression ignition engine for DME use 					
 More efficient production than methanol 						
Limitations	Active institutions (1)					
 Approximately half the energy density of diesel 	The Australian National University					
 Diesel engines require modification for use (not a 						
drop-in fuel for CI engines)						
 Minor modifications required for use in LPG 						
infrastructure if to be used at high concentrations						
Characteristics						
• Volumetric hydrogen density: ~95 kg H ₂ /m ³ (liquid at)	-25°C)					
 Gravimetric hydrogen density: ~13 % by mass 						
Storage conditions: Liquid at ambient temperature and 4 bar pressure.						

6.2.11 Electrochemical carbon-based storage: proton batteries

What is it?

Proton battery – A proton battery is a reversible PEM fuel cell, or a hybrid between a fuel cell and batterybased system, that allows solid-state storage and extraction of hydrogen in atomic form.¹⁷⁷ During charging, protons produced by water splitting on the oxygen-side electrode of the reversible cell pass through the membrane and are neutralised by excess electrons on the solid negatively-charged storage electrode. A metallic electrode was first used, in which case hydrogen is stored as a metal hydride¹⁷⁸. Later work employed a porous activated carbon electrode, with the hydrogen stored by a weak bond to the carbon surfaces within pores¹⁷⁹. During discharging, protons are directly released back into the membrane as electrons flow in the external circuit, with the usual water formation reaction on the oxygen-side electrode driving the electricity-generation process.

Why is it important?

Proton batteries allow the solid-state storage of atomic hydrogen, without requiring the formation or splitting of hydrogen gas, thus potentially increasing the roundtrip energy efficiency of the standard electrolyser–hydrogen gas storage–fuel cell system.

TRL	1	2	3	4	5	6	7	8	9
					1				
Benefits ¹⁸⁰)				RD&D pric	orities			
 Hydrogen atoms are generated directly from water and stored in atomic form, avoiding energy losses in hydrogen gas formation, compression, and H₂ splitting in fuel-cell mode High roundtrip energy efficiency Near atmospheric pressure operation High level of safety, since no high-pressure flammable hydrogen gas Carbon is abundant and lightweight, and therefore storage electrodes are cheap and have high internal surface area 					 Select ar synthesi graphen Increase discharg Test mul Understand carb Increase to neare 	nd test hydro sed for this a e and carbon current den ing ltiple cycles and reaction oon surfaces volumetric ar theoretical	ogen storag application n-nitride ma asities durin as between and gravimo I maximum	e electrodes from layered aterials g charging a hydronium/ etric energy	specially 1 nd protons densities
• Can be r	echarged di	rectly with e	electricity						
Limitation	s				Active inst	itutions (3)			
• Does r	not store hy	drogen gas;	makes use c	of water	 Deakin L 	Jniversity			
feedst	ock only. ¹⁸¹	Cannot be u	ised to prod	uce a	• RMIT Un	niversity			
gaseor	us nyul ogen	υτραι			The University of Technology Sydney				
Characteri	stics								
• Volum	etric energy o Theo	v density: ¹⁸² pretical uppe	er ranges						

- electrode material: 0.9 1.9 kWhe/L (assuming 0.7 nm spacing between graphene layers, and 1 H stored per 2C or 1C)
 - system density to be determined
- Gravimetric energy density:
 - Theoretical upper ranges

¹⁷⁷ Heidari, S., Seif Mohammadi, S., Oberoi, A., & Andrews, J. (2018). Technical feasibility of a proton battery with an activated carbon electrode. International Journal of Hydrogen Energy, 43(12), 6197-6209.

¹⁷⁸ Andrews, J., & Seif Mohammadi, S. (2014). *Towards a 'proton flow battery': Investigation of a reversible PEM fuel cell with integrated metalhydride hydrogen storage*. International Journal of Hydrogen Energy, 39(4), 1740-1751.

¹⁷⁹ Heidari, S., Seif Mohammadi, S., Oberoi, A., & Andrews, J. (2018). *Technical feasibility of a proton battery with an activated carbon electrode*. International Journal of Hydrogen Energy, 43(12), 6197-6209.

¹⁸⁰ Ibid. ¹⁸¹ Ibid.

¹⁸² Sourced from research consultation - Assumes an efficiency in fuel-cell (electricity supply) mode of 50%.

- electrode material: 4.0 -7.7 wt%H, or 0.8 -1.5 kWhe/kg¹ (corresponding to 1 H stored per 2C or 1C atoms)
- system density to be determined
- Storage conditions: ambient temperature and pressure
- Roundtrip Energy efficiency: similar in theory to that of a lithium-ion battery

6.2.12 Hydrides: chemical

What is it?

Chemical hydrides, or chemical hydrogen, refers to hydrogen bonded to a compound in solid or liquid form. These compounds generally have high hydrogen densities.¹⁸³ The hydrogen can be extracted via reaction with water or application of heat. Examples include Ammonia borane, sodium borohydride, and alane compounds.

Why is it important?

Chemical hydrides have high hydrogen densities and can be transported at ambient temperatures.

TRL*	1	2	3	4	5	6	7	8	9

*The TRL for 'on-off' utilisation of chemical hydrides that cannot be regenerated is 5-7.

Benefits	RD&D priorities				
 Some chemical hydrides offer high volumetric hydrogen density, depending on system configuration¹⁸⁴ 	 Improve overall 'wells-to-power plant' efficiency¹⁸⁶ Improve carrier chemical regeneration efficiency¹⁸⁷ 				
 Typically lighter weight than metal hydrides¹⁸⁵ 					
 Can transport at ambient temperatures 					
Limitations	Active institutions (3)				
 Regeneration of the chemical required to be able to use it again for hydrogen storage.¹⁸⁸ This considerably increases the well-to-powerplant fuel cost¹⁸⁹ Need to utilise or return carrier chemical if transported¹⁹⁰ Some liquids can solidify while hydrogen is not bonded, requiring further handling¹⁹¹ 	 Curtin University The University of New South Wales The University of Sydney 				
Characteristics					
 Volumetric hydrogen density: ~90 to 150 kg H₂/m^{3 192} Gravimetric hydrogen density: 7.5 to 25 % by mass Storage conditions: Ambient Extraction conditions - ~25-200°C¹⁹³ if not hydrolysed. Hydrolysis allows release at ambient conditions Roundtrip Energy efficiency: N/A – system is irreversible 					

¹⁸³ US DOE (n.d.). *Chemical Hydrogen Storage Materials*, [Online] Available from: https://www.energy.gov/eere/fuelcells/chemical-hydrogenstorage-materials Accessed: 21/11/2019

International Journal of Hydrogen Energy, 37(19), 14382-14392. doi:https://doi.org/10.1016/j.ijhydene.2012.07.013

¹⁹⁰ Ibid. ¹⁹¹ Ibid.

¹⁸⁴ Kojima, Y., Miyaoka, H., & Ichikawa, T. (2013) Hydrogen storage materials. In Suib, S.L. (Ed.), *New and Future Developments in Catalysis Batteries, Hydrogen Storage and Fuel Cells,* Elsevier B.V.

¹⁸⁵ Smythe, N. C., & Gordon, J. (2010). Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. European Journal of Inorganic Chemistry, 2010(4), 509-521.

¹⁸⁶ US DOE (n.d.). *Hydrogen Storage Engineering Center of Excellence*, [Online] Available from: https://www.energy.gov/eere/fuelcells/hydrogenstorage-engineering-center-excellence#graphs Accessed: 21/11/2019

¹⁸⁷ Hua, T. Q., & Ahluwalia, R. K. (2012). Off-board regeneration of ammonia borane for use as a hydrogen carrier for automotive fuel cells.

¹⁸⁸ Kojima, Y., Miyaoka, H., & Ichikawa, T. (2013) Hydrogen storage materials. In Suib, S.L. (Ed.), *New and Future Developments in Catalysis Batteries, Hydrogen Storage and Fuel Cells,* Elsevier B.V.

¹⁸⁹ US DOE (n.d.). Chemical Hydrogen Storage Materials, [Online] Available from: https://www.energy.gov/eere/fuelcells/chemical-hydrogenstorage-materials Accessed: 21/11/2019

¹⁹² Moller, K. T., Jensen, T. R., Akiba, E., Li, H. (2017) *Hydrogen – A sustainable energy carrier*, Progress in Natural Science, 27(1), doi:10.1016/j.pnsc.2016.12.014

¹⁹³ US DOE (n.d.). *Chemical Hydrogen Storage Materials*, [Online] Available from: https://www.energy.gov/eere/fuelcells/chemical-hydrogenstorage-materials Accessed: 21/11/2019

6.2.13 Hydrides: complex

What is it?

Complex metal hydrides are salts in which the anion contains hydrides (negatively charged hydrogen atoms). Hydrogen chemically bonds with complex molecules such as LiBH₄ and LiAlH₄, allowing the complex hydride to act as a storage mechanism for the hydrogen. When the hydrogen is required after transport, the hydrogen can be released via application of heat.

Why is it important?

Complex hydrides offer storage at moderate pressure, retrieval at safe temperatures, and a higher hydrogen storage density than pressurised or liquefied hydrogen. Shipping and handling a powdered solid-state complex hydride is advantageous compared to liquids and gases.

TRL ¹⁹⁴	1	2	3	4	5	6	7	8	9
Benefits					RD&D priorities				
 Typically volumet 	/ have highe ric densities	r gravimetri than metall	c capacities lic or alloy h	and ydrides ¹⁹⁵	 Develop storage/ 	new catalys retrieval of l	sts to improv hydrogen	ve kinetics fo	or
 Higher h liquefied 	iydrogen-sto 1 hydrogen ²⁰	orage density	y than press	urised or	 Develop of comp 	fundamenta lex hydrides	al understar with hydro	nding of the gen and hyd	reaction rogen
• Solid sta	te powders	for ease of t	ransport		diffusion	in complex	hydrides		
 Hydroge reducing Lower p 	en release is g risk of accio ressures tha	endothermi dental explo n pressurise	c and self-re sion d gas and m	egulated, nore	 Develop thermod achieve 	novel appro lynamics for full hydroge	baches to co hydrogen r n reversibly	ntrol the elease/upta under mode	ke to erate
moderat	te temperat	ures than liq	uefied hydr	ogen,		understand	ing of the in	togration /t	andation
leading	to increased	safety 196			 Develop of the hy 	understand /drides into	ing of the in full vessels/	tanks delive	ring
 Negligib 	le self-disch	arge			hydrogen against delivery/uptake targets				
					 Achieve long cycling life > 10,000 hydrogen uptake and release cycles 				
					 Improve off-board regeneration of complex hydrides (re-hydrogenation) 				
Limitation	S				Active institutions (6)				
• Kineti	cs and thern	nodynamics	of complex	metal	Curtin University				
hydric	les mean tha	at hydrogen	storage and	release	• Griffith l	Jniversity			
must o 100°C	to 800°C ¹⁹⁷	ated tempe	ratures, ran	ging from	 Monash 	University			
 Hydro 	gen release	is often not	reversible u	nder	• The Univ	versity of Ne	wcastle		
mode	rate conditio	ons			• The Univ	versity of Ne	w South Wa	ales	
 Developing 	oping a cost-	-effective co	mplex hydri	de system	• The Univ	versity of Teo	chnology Sy	dney	
 Achiev 	ing the reve	ersible uptak	e and releas	se of					
hydro	gen with hig	h efficiency	close to the	ambient					
and u	nder modera	ate hydrogei	n pressure is	5					
challe	nging								
 Sensit 	ive to air								

 ¹⁹⁴ Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). National Hydrogen Roadmap, CSIRO.
 ¹⁹⁵ Abdin, Z., & Khalilpour, K. R. (2019). Chapter 4 - Single and Polystorage Technologies for Renewable-Based Hybrid Energy Systems. In K. R.
 Khalilpour (Ed.), Polygeneration with Polystorage for Chemical and Energy Hubs (pp. 77-131): Academic Press.

¹⁹⁶ Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). *Metal hydride materials for solid hydrogen storage: A review*. International Journal of Hydrogen Energy, 32(9), 1121-1140. doi:https://doi.org/10.1016/j.ijhydene.2006.11.022

¹⁹⁷ Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). National Hydrogen Roadmap, CSIRO.

Characteristics

- Volumetric hydrogen density: 80 to 150 kg H₂/m³
- Gravimetric hydrogen density: 8 to 18.5 % by mass
- Hydrogenation conditions: 100°C to 800°C
- Storage conditions: Room temperature, sealed container due to air sensitivity. Pressure at ~1-100 bar¹⁹⁸
- Extraction conditions: 100°C to 800°C
- Roundtrip energy efficiency: Varies widely depending on complex hydride material and if the system is reversible (i.e. temperature and pressure needed to achieve reversible hydrogen cycling)

¹⁹⁸ Lai, Q., Sun, Y., Wang, T., Modi, P., Cazorla, C., Demirci, U., Fernandez, J., Leardini, F., Aguey-Zinsou, K. (2019). *How to Design Hydrogen Storage Materials?* Fundamentals, Synthesis, and Storage Tanks. Advanced Sustainable Systems, 3(9), N/a.

6.2.14 Hydrides: metal

What is it?

Metals, such as magnesium, chemically bond with hydrogen gas to be transported as a metal hydride. When the hydrogen is required, heat is applied to release it from the metal. Intermetallic hydrides are a variation in which transition metals are present instead of main group metals.

Why is it important?

Metal hydrides offer storage at moderate pressure, retrieval at safe temperatures, and a higher hydrogen storage density than pressurised or liquefied hydrogen.

TRL*199 1 2 3 4 5 6 7 8 9

*Hydrides of very high hydrogen storage capacity (e.g. aluminium hydride, AlH₃) are low TRL as they are not reversible for hydrogen storage. Room temperature hydrides of lower hydrogen capacity (< 2 wt% H₂) are high TRL.

Benefits	RD&D priorities				
 Hydrogen release is endothermic and self-regulated, reducing risk of accidental explosion 	• For high temperature hydrides, improve hydrogen sorption kinetics for fast and effective dissociation of				
 Lower pressures than pressurised gas and more moderate temperatures than liquefied hydrogen, leading to increased safety²⁰⁰ 	 hydrogen molecules²⁰² Improve energy density, cycle life and operating temperature²⁰³ 				
 Higher hydrogen-storage density than pressurised or liquefied hydrogen²⁰¹ 	 Improve gravimetric hydrogen density 				
 Low temperature hydrides have near-ambient operating pressure and temperature 					
 For room temperature hydrides, extremely long cycle life, up to 20,000 cycles in some cases 					
Negligible self-discharge					
 90% round trip efficiency for room temperature hydrides 					
 Can be readily scaled to very large capacities for grid storage 					
 Suitable for hydrogen transport to fuelling stations 					
Limitations	Active institutions (8)				
• For high temperature hydrides, hydrogenation and	The Australian National University				
hydrogen release occur at elevated temperatures,	• CSIRO				
hydrides require high temperatures for rapid	Curtin University				
hydrogen release	Deakin University				

¹⁹⁹ Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). *National Hydrogen Roadmap*, CSIRO. ²⁰⁰ Sakintuna, B., Lamari-Darkrim, F., & Hirscher, M. (2007). *Metal hydride materials for solid hydrogen storage: A review*. International Journal of Hydrogen Energy, 32(9), 1121-1140. doi:https://doi.org/10.1016/j.ijhydene.2006.11.022

²⁰¹ Ibid.

²⁰² Ibid.

²⁰³ Niaz, S., Manzoor, T., & Pandith, A. H. (2015). *Hydrogen storage: Materials, methods and perspectives.* Renewable and Sustainable Energy Reviews, 50, 457-469. doi:https://doi.org/10.1016/j.rser.2015.05.011

²⁰⁴ US DOE (n.d.). *Materials-Based Hydrogen Storage*, [Online] Available from: https://www.energy.gov/eere/fuelcells/materials-based-hydrogenstorage Accessed: 21/11/2019

•	High temperature hydrides require higher operating	Griffith UniversityThe University of New South Wales						
•	temperatures and are not reversible in some cases							
•	some cases Low gravimetric hydrogen density ²⁰⁵ for current generation of low temperature metal hydrides. Many intermetallics with favourable	The University of QueenslandThe University of Technology Sydney						
	and/or poor cycling capacity							
•	Sensitive to air and humidity							
Cha	aracteristics – high temperature hydrides							
•	Volumetric hydrogen density: >100 kg H ₂ /m ³ Gravimetric hydrogen density: Moderate to high (7 to 10 % by mass) Hydrogenation and extraction conditions: ~100 to 500°C, or above to achieve hydrogen reversibility Storage conditions: Reversibility in some cases occurs only under high temperature and pressure conditions, e.g. Mg/MgH ₂ is 20 bar and 300°C but AlH ₃ is >100 C and > 1000 bar H ₂ pressure Hydrogenation/dehydrogenation energy efficiency: 80% ²⁰⁶							
Cha	aracteristics – low temperature hydrides							

- Volumetric hydrogen density: >100 kg H₂/m³
- Gravimetric hydrogen density: Low (< 2 % by mass)
- Hydrogenation and extraction conditions: -10 to 50°C
- Storage conditions: Reversible at room temperature and reasonable hydrogen pressure conditions (e.g. TiFe and LaNi₅ can absorb hydrogen at 30 bar and 25°C)
- Hydrogenation/dehydrogenation energy efficiency: 90%

 ²⁰⁵ Abdin, Z., & Khalilpour, K. R. (2019). *Chapter 4 - Single and Polystorage Technologies for Renewable-Based Hybrid Energy Systems*. In K. R.
 Khalilpour (Ed.), Polygeneration with Polystorage for Chemical and Energy Hubs (pp. 77-131): Academic Press.
 ²⁰⁶ Lototskyy, M., Nyallang Nyamsi, S., Pasupathi, S., Wærnhus, I., Vik, A., Ilea, C., & Yartys, V. (2018). *A concept of combined cooling, heating and*

power system utilising solar power and based on reversible solid oxide fuel cell and metal hydrides. International Journal of Hydrogen Energy, 43(40), 18650-18663. doi:https://doi.org/10.1016/j.ijhydene.2018.05.075

6.2.15 Liquid organic hydrogen carrier: Dibenzyl toluene

What is it?

Hydrogen is reacted with dibenzyltoluene (DBT), resulting in a hydrogenated form of the DBT, a compound that can be transported at ambient temperature and pressure. The hydrogen can be extracted after transport via the application of heat or catalysis.

Why is it important?

Hydrogenated DBT can carry hydrogen in liquid form at ambient temperature and pressure.

TRL ²⁰⁷	1	2	3	4	5	6	7	8	9		
Benefits					RD&D priorities						
 Safer an toluene/ often a s Lower te than tolu Can utili storage s Stays in 	d easier to h 'methylcyclo ignificant co mperature uene ze existing o and transpo liquid state	andle than ohexane, ²⁰⁸ H omponent in requirement il and chem rtation ²⁰⁹ under ambie	nowever, to petrol t for hydrog ical infrastru ent tempera	luene is enation ucture for ture and	 Develop catalysts for improved conversion efficiency Improve process efficiency through heat and pressure management Demonstrate hydrogen release at mild reaction conditions²¹⁰ Demonstrate system durability over long-term use 						
pressure			·								
Limitation	s				Active inst	itutions (4)					
 Need 1 High to and de 	to return car emperature ehydrogenat	rrier if expor required for cion ²¹¹	ted r both hydro	genation	 The Aust CSIRO The Univ The Univ 	tralian Natio versity of Ne versity of Teo	nal Universi wcastle chnology Sy	ity dney			
Characteri	stics										
 Volumetric hydrogen density: 58 kg H₂/m³²¹² Gravimetric hydrogen density: 6.2 % by mass²¹³ Storage conditions: Ambient storage, should be kept below 30°C. Container should be carefully sealed to prevent exposure to sunlight, heat and humidity Roundtrip Energy efficiency: ~43% 								d to			

 ²⁰⁷ Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). *National Hydrogen Roadmap*, CSIRO.
 ²⁰⁸ Hydrogenious Technologies (2018). *Hydrogen – stored as an oil*, [Online] Available from: http://www.energiewende-erlangen.de/wp-content/uploads/2018/02/0_HydrogeniousTechnologies.pdf

 ²⁰⁹ Kurosaki, D., (2018). Introduction of Liquid Organic Hydrogen Carrier and the Global Hydrogen Supply Chain Project, Chiyoda Corporation,
 [Online] Available from: https://www.energy.gov/sites/prod/files/2018/10/f56/fcto-infrastructure-workshop-2018-32-kurosaki.pdf

²¹⁰ Aakko-Saksa, P. T., Cook, C., Kiviaho, J., & Repo, T. (2018). *Liquid organic hydrogen carriers for transportation and storing of renewable energy* – *Review and discussion*. Journal of Power Sources, 396, 803-823. doi:https://doi.org/10.1016/j.jpowsour.2018.04.011

²¹¹ Hydrogenious Technologies (2018). *Hydrogen – stored as an oil*, [Online] Available from: http://www.energiewende-erlangen.de/wp-content/uploads/2018/02/0_HydrogeniousTechnologies.pdf

²¹² Preuster, P., Alekseev, A., & Wasserscheid, P. (2017). *Hydrogen Storage Technologies for Future Energy Systems*. Annual Review of Chemical and Biomolecular Engineering, 8(1), 445-471. doi:10.1146/annurev-chembioeng-060816-101334

6.2.16 Liquid organic hydrogen carrier: Toluene/methylcyclohexane

1 2 2

What is it?

Hydrogen is reacted with toluene to form methylcyclohexane (MCH), a compound that can be transported at ambient temperature and pressure. The hydrogen can be extracted after transport via the application of heat or catalysis.

А Г

c

7

~

Т

~

Why is it important?

TDI 214

Hydrogenated toluene can carry hydrogen in liquid form at ambient temperature and pressure.

IKL	T	Z	5	4	5	б	/	ð	9	
							·	·		
Benefits					RD&D priorities					
 Stays in pressure Minor lo 	liquid state	under ambie -term stora	ent tempera ge and trans	ture and	 Lower the hydrogenation and dehydrogenation temperature and pressure Develop catalysts using cheap elements and with 					
• Can utili	ze existing o	il and chem	- ical infrastru	ucture for	improv	ved efficiend	су			
storage	and transpo	rtation ²¹⁷								
Limitation	S				Active institutions (3)					
 Both toluene and MCH are toxic substances Purification requirements Need to return carrier if exported High temperature required for both hydrogenation and dehydrogenation 					CSIROQueenThe Ur	island Unive niversity of N	ersity of Tecl Western Aus	nnology stralia		
Characteri	stics									
 Volum Gravir Storag prever Round 	etric hydrog netric hydro e conditions nt exposure trip Energy	gen density: gen density s: Ambient s to sunlight, efficiency: <	47 kg H ₂ /m ³ : 6.1 % by m torage, shou heat and hu 50%	ass ²¹⁹ ass ²¹⁹ uld be kept l imidity	pelow 30°C.	Container sl	hould be car	refully sealed	d to	

 ²¹⁴ Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D., Hartley, P. (2018). *National Hydrogen Roadmap*, CSIRO.
 ²¹⁵ Kurosaki, D., (2018). Introduction of Liquid Organic Hydrogen Carrier and the Global Hydrogen Supply Chain Project, Chiyoda Corporation, [Online] Available from: https://www.energy.gov/sites/prod/files/2018/10/f56/fcto-infrastructure-workshop-2018-32-kurosaki.pdf
 ²¹⁶ Ibid.

²¹⁷ Ibid.

²¹⁸ Preuster, P., Alekseev, A., & Wasserscheid, P. (2017). Hydrogen Storage Technologies for Future Energy Systems. Annual Review of Chemical and Biomolecular Engineering, 8(1), 445-471. doi:10.1146/annurev-chembioeng-060816-101334
²¹⁹ Ibid.

6.2.17 Methanol

What is it?

Methanol is conventionally synthesised at large scale from synthesis gas (or syngas), a mixture of hydrogen and carbon monoxide typically at an H₂/CO ratio of ~1.8-2.2, derived through steam reforming of natural gas or steam gasification of coal. Renewable methanol can also be synthesised from syngas derived from a renewable source such as biomass or direct hydrogenation of CO_2 .²²⁰ Methanol can be converted back into hydrogen when needed or utilised directly in a number of applications.

Why is it important?

Methanol can be stored and transported in liquid form at ambient temperatures. It can be converted to yield high purity hydrogen or utilised directly in a number of applications in the energy and chemical sectors.

TRL ²²¹	1	2	3	4	5	6	7	8	9

The TRL for this technology varies based on the synthesis method. Conventional synthesis from syngas has a TRL of 9. Direct hydrogenation of CO_2 has a TRL of 6-7.²²² Integrated biomass pyrolysis with methanol synthesis has a TRL of 3. Photocatalytic conversion of CO_2 and water into methanol has a TRL of 2-4.²²³ Methanol produced via solid oxide electrolysis has a TRL of 1.

• Greater volumetric energy density than hydrogen gas	• Improve methanol synthesis via hydrogenation of CO ₂
 In CO₂ hydrogenation method - Makes use of CO₂ as a feedstock. This can be sourced from waste streams or direct air capture Can leverage existing methanol handling and transport infrastructure Liquid under ambient conditions²²⁴ Flexibility in its production, storage, transport and end uses. It can be dissociated to yield high purity hydrogen or used directly as a fuel for methanol fuel cells, conventional liquid transport fuel for internal combustion engines and as an intermediate for chemical manufacturing and other purposes 	 with hydrogen (this method is less mature than the incumbent syngas conversion process) Develop catalysts and test Process intensification and miniaturisation of conventional methanol synthesis to match distributed nature of renewable biomass resources Improve energy efficient extraction of hydrogen from methanol after transport
 Limitations Poisonous to humans, requires similar precautions as petrol and diesel²²⁵ If converted back into hydrogen, releases CO₂ 	 Active institutions (6) CSIRO The University of Adelaide The University of Melbourne The University of New South Wales The University of Sydney The University of Western Australia

²²⁰ Badwal, S., Giddey, S., & Munnings, C. (2018). *Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production.* Wiley Interdisciplinary Reviews: Energy and Environment, 7(3).

https://www.dti.dk/_/media/41868_Methanol%20and%20hydrogen%20UK.pdf

 ²²¹ Jarvis, S. M., & Samsatli, S. (2018). *Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis*. Renewable and Sustainable Energy Reviews, 85, 46-68. doi:https://doi.org/10.1016/j.rser.2018.01.007
 ²²² Ibid.

²²³ Ibid.

 ²²⁴ Plass L., Bertau M., Linicus M., Heyde R., Weingart E. (2014) *Methanol as a Hydrogen and Energy Carrier*. In: Bertau M., Offermanns H., Plass L.,
 Schmidt F., Wernicke HJ. (eds) Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer, Berlin, Heidelberg
 ²²⁵ Danish Technological Institute (n.d.) *Methanol and hydrogen*, [Online] Available from:

Characteristics

- Volumetric hydrogen density: 100 kg H₂/m³ at ambient conditions²²⁶
- Gravimetric hydrogen density: 12.5% by mass²²⁷
- Storage conditions: Liquid at ambient conditions

²²⁶ Makepeace, J. W., He, T., Weidenthaler, C., Jensen, T. R., Chang, F., Vegge, T., Peter, N., Kojima, Y., Jongh, P, Chen, P., David, W. I. F. (2019). *Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress*. International Journal of Hydrogen Energy, 44(15), 7746-7767. doi:https://doi.org/10.1016/j.ijhydene.2019.01.144

²²⁷ Taylor, C. E., Howard, B. H., & Myers, C. R. (2007). *Methanol Conversion for the Production of Hydrogen*. Industrial & Engineering Chemistry Research, 46(26), 8906-8909. doi:10.1021/ie061307v

6.2.18 Methanol: combined system synthesis

2

3

What is it?

TRL

Hydrogen is produced via solid oxide electrolysis, then fed into a second reactor in which it is combined with carbon dioxide to produced methanol. The heat from the methanol production step is then fed back to the solid oxide electrolysis cell for further hydrogen production.

Why is it important?

1

Integrated hydrogen production and methanol synthesis presents an opportunity to make use of the heat generated from methanol synthesis step, reducing the amount of input energy required for the solid oxide electrolysis step.

5

6

7

8

9

4

Benefits	RD&D priorities						
 Downstream process well established Heat integration makes use of heat from exothermic downstream reaction, supplies it back to hydrogen generation reaction Makes use of carbon dioxide as a process input 	 Develop means to economically manufacture and implement cells at scale Prevent degradation of solid oxide electrolysers Develop system integration concepts to engineer a complete integrated system Reduce system capital cost 						
Limitations	Active institutions (1)						
 If converted back into hydrogen, releases CO₂ Higher system complexity than solid oxide electrolysis method 	• The University of Adelaide						
Characteristics							
 Volumetric hydrogen density: 100kg H₂/m³ at ambient conditions²²⁸ Gravimetric hydrogen density: 12.5% by mass²²⁹ Storage conditions: Liquid at ambient conditions 							

²²⁸ Makepeace, J. W., He, T., Weidenthaler, C., Jensen, T. R., Chang, F., Vegge, T., Peter, N., Kojima, Y., Jongh, P, Chen, P., David, W. I. F. (2019). *Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress*. International Journal of Hydrogen Energy, 44(15), 7746-7767. doi:https://doi.org/10.1016/j.ijhydene.2019.01.144

²²⁹ Taylor, C. E., Howard, B. H., & Myers, C. R. (2007). *Methanol Conversion for the Production of Hydrogen*. Industrial & Engineering Chemistry Research, 46(26), 8906-8909. doi:10.1021/ie061307v

6.2.19 Methanol: solid oxide electrolysis

What is it?

Methanol is synthesised directly from steam and carbon dioxide gas in a solid oxide electrolysis cell at elevated temperatures.

Why is it important?

Methanol can be synthesised directly from water and carbon dioxide, without requiring a precursory hydrogen production step. This reduces system complexity and could yield energy savings.

TRL	1	2	3	4	5	6	7	8	9	
 Benefits Single relower as Allows in the required 	eactor mean sociated cap ntegration o lired energy	s reduced sy pital costs f waste heat input	stem comp streams, re	lexity and educing	 RD&D priorities Improve catalyst selectivity Develop cell designs and electrolytes capable of operating at thermodynamically favourable conditions Understand fundamental reaction mechanisms 					
• Makes u	se of carbor	n dioxide as	a process in	put	Validate proof of concept					
Limitation	S				Active institutions (1)					
 Balancin Methan solid oxi 	ng reactor te ol product d de cell oper	mperature is ecompositio ating tempe	s a challeng n occurs at rature	e. typical	• CSIRO					
Character	istics									
 Volumetric hydrogen density: 100kg H₂/m³ at ambient Gravimetric hydrogen density: 12.5% by mass²³¹ Storage conditions: Liquid at ambient conditions 						230				

²³⁰ Makepeace, J. W., He, T., Weidenthaler, C., Jensen, T. R., Chang, F., Vegge, T., Peter, N., Kojima, Y., Jongh, P, Chen, P., David, W. I. F. (2019). Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy, 44(15), 7746-7767. doi:https://doi.org/10.1016/j.ijhydene.2019.01.144

²³¹ Taylor, C. E., Howard, B. H., & Myers, C. R. (2007). Methanol Conversion for the Production of Hydrogen. Industrial & Engineering Chemistry Research, 46(26), 8906-8909. doi:10.1021/ie061307v

6.2.20 Physisorption: Metal organic frameworks (MOFs)

2

1

3

What is it?

Hydrogen physisorption involves hydrogen physically adsorbing to either the surface of a molecule or within pores. Metal organic frameworks are composed of inorganic metal clusters and organic linkers that act as highly selective networks of pores and channels providing a high surface area. Physisorption is driven by forces acting between the hydrogen molecules and the surface of the adsorbent material.**Error! Bookmark not defined.**

Why is it important?

TRL

Physisorption presents a lightweight, safe and fully reversible route for storage and transport of hydrogen.

5

6

7

8

9

4

Benefits					RD&D pric	orities			
 Lightwei Release ignition Hydroge Fully rev 	ght materia of hydrogen n can be ad: ersible proc	Is ²³² is endother sorbed and i ess	mic, negatir released qui	ng risk of ckly	 Demonstrate tank prototypes that can operate at reduced by not cryogenic conditions. Enhance the binding energy between the H₂ molecules and adsorbents to increase hydrogen uptake Investigate the effects of dopants, catalysts, and 				
					substitution to improve hydrogen uptake				
Limitations				Active institutions (9)					
Requir	es low temp	perature or l	nigh pressur	e	The Australian National University				
• Weak	interaction	with H ₂ limit	s applicabili	ty	• CSIRO				
					Curtin University				
					• Griffith l	Jniversity			
					Queensl	and Univers	ity of Techn	ology	
					• The Univ	versity of Ad	elaide		
					The University of Queensland				
					The University of Technology Sydney				
					The University of Western Australia				
Characteri	stics				L				

- Volumetric hydrogen density: ~40-50 kg H₂/m³ demonstrated²³³
- Gravimetric hydrogen density: varies widely, ~2-20% by weight demonstrated²³⁴
- Storage conditions: Low temperatures (~-196°C)

²³² Gregorie Padro, C. E., Putsche, V., (1999). *Survey of the Economics of Hydrogen Technologies*, NREL, [Online] Available from: https://www.nrel.gov/docs/fy99osti/27079.pdf

²³³ Lai, Q., Paskevicius, M., Sheppard, D., Buckley, C., Thornton, A., Hill, M., Gu, Q., Mao, J., Huang, Z., Liu, H., Guo, Z., Banerjee, A., Chakraborty, S., Ahuja, R., Aguey-Zinsou, K. (2015). *Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.* ChemSusChem, 8(17), 2789-2825.

²³⁴ Ibid.

6.2.21 Synthetic methane (compressed gas or liquid)

What is it?

Carbon dioxide (from waste or from direct air capture) is reacted with clean or renewable hydrogen to produce methane, which is then liquefied for transport (note that this should not include hydrogen sourced from methane, as this would involve unnecessary conversions). Given the synthetic production routes (i.e. thermal catalysis, electrocatalysis or photocatalysis), methane produced may sometimes be referred to as synthetic natural gas (as opposed to fossil natural gas). Hydrogen can then be extracted from the synthetic methane at the point of use via cracking or steam reforming combined with CCUS. If CO₂ is sourced from direct air capture, methane combustion becomes carbon-neutral.

Why is it important?

TDI 235 1 2

Synthetic methane presents an opportunity to make use of carbon dioxide (from direct air capture or waste streams) with hydrogen to produce methane, which can be used as either a fuel, hydrogen transport carrier, or fed into existing gas pipelines.

TRL ²³⁵	1	2	3	4	5	6	7	8	9			
 TRL²³⁵ Benefits Can be r infrastru Existing could be Carbon of 	1 nixed with t icture can b methane m e supplied dioxide can	2 craditional L e leveraged arket for wh be sourced	3 NG – existin nich synthet from carbor	g ic methane n emitting	5 RD&D pr • Improv thermo reduce • Develo be inte	 RD&D priorities Improve catalyst and reactor technologies for both thermocatalytic and electrocatalytic processes to reduce costs of synthetic methane production chain Develop carbon capture from the atmosphere,²³⁷ to be integrated as a reactant Energy integration to use the "exothermicity" of the second s						
 Carbon dioxide can be sourced from carbon emitting processes, enabling reductions in life cycle emissionsError! Bookmark not defined. It can accommodate emerging direct CO₂ air capture technologies to utilise CO₂ Volumetric energy density approximately 3 times that of hydrogen²³⁶ Can be synthesised at lower pressures than conventional methanol synthesis Existing HSE practices and standards 						 Energy integration to use the "exothermicity" of the reaction to drive other aspects of the chemical process (energy integration/management) Integrate renewable H₂ production Integrate renewable energy sources to drive the process where required Develop mechanisms/technologies to cope with the intermittent nature of renewable energy which may drive such processes 						
 Reaction released energy in 	is exothermi to be used fo tegration	c, presenting or other chem	an opportun nical process o	ity for heat or plant								
Limitation	S				Active in	stitutions (7	7)					
• Source in orde	of hydrogen er to avoid un	cannot be st inecessary ch	eam methan emical conve	e reforming, rsions								
 Heat mature 	nanagement of the reacti	required, give on	en the highly	exothermic								
 Needs up pro down down down down down down down down	high tempera cess, and the due to exothe	atures (appro system requ ermicity	oximately 300 ires subseque	°C) to start ent cooling								

²³⁵ Blanco, H., Nijs, W., Ruf, J., & Faaij, A. (2018). Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization. Applied Energy, 232, 323-340. doi:https://doi.org/10.1016/j.apenergy.2018.08.027

²³⁶ Plass L., Bertau M., Linicus M., Heyde R., Weingart E. (2014) Methanol as a Hydrogen and Energy Carrier. In: Bertau M., Offermanns H., Plass L., Schmidt F., Wernicke HJ. (eds) Methanol: The Basic Chemical and Energy Feedstock of the Future. Springer, Berlin, Heidelberg 237 ARENA (2019). Methane Fuel Carrier Research and Development, [Online] Available from: https://arena.gov.au/projects/methane-fuel-carrier/ Accessed: 21/11/2019

 Half of the input hydrogen used is converted to water instead of methane 	 CSIRO The Future Fuels Cooperative Research Centre The University of Adelaide The University of Melbourne The University of Neurostle 					
	The University of Technology Sydney					
	• The University of Western Australia					
Characteristics						
 Volumetric hydrogen density: Liquid state = ~100 kg H₂/ 0.7946g/100L 	m ³ . At standard temperature and pressure =					
 Gravimetric hydrogen density: ~25% H₂ by weight²³⁸ 						
 Storage conditions: 90 to 120 bar 						

• Storage conditions: 90 to 120 bar

²³⁸ Møller, K., Jensen, T., Akiba, E., & Hai-Wen, L. (2017). Hydrogen - A sustainable energy carrier. Progress in Natural Science: Materials International, 27. doi:10.1016/j.pnsc.2016.12.014

6.2.22 Synthetic methane: combined system synthesis

What is it?

Hydrogen is produced via solid oxide electrolysis, then fed into a second reactor in which it is combined with carbon dioxide to produced methane. The heat from the methane production step is then fed back to the solid oxide electrolysis cell for further hydrogen production.

Why is it important?

Integrated hydrogen production and methane synthesis presents an opportunity to make use of the heat generated from methane synthesis step, reducing the amount of input energy required for the solid oxide electrolysis step.

TRL	1	2	3	4	5	6	7	8	9

Benefits	RD&D priorities						
 Downstream process well established Heat integration makes use of heat from exothermic downstream reaction, supplies it back to hydrogen generation reaction 	 Develop means to economically manufacture and implement cells at scale Prevent degradation of solid oxide electrolysers Develop system integration concepts to engineer a complete integrated system Reduce system capital cost 						
Limitations	Active institutions (0)						
 Higher system complexity than solid oxide electrolysis method 	 (No active institutions found in study) 						
Characteristics							
 Volumetric hydrogen density: Liquid state = ~100 kg H₂/m³. At standard temperature and pressure = 0.7946g/100L Gravimetric hydrogen density: ~25% H₂ by weight²³⁹ 							
Storage conditions: 90 to 120 bar							

²³⁹ Møller, K., Jensen, T., Akiba, E., & Hai-Wen, L. (2017). *Hydrogen - A sustainable energy carrier*. Progress in Natural Science: Materials International, 27. doi:10.1016/j.pnsc.2016.12.014

6.2.23 Synthetic methane: solid oxide electrolysis

What is it?

Methane is synthesised directly from steam and carbon dioxide gas in a solid oxide electrolysis cell at elevated temperatures.

Why is it important?

Methane can be synthesised directly from water and carbon dioxide, without requiring a precursory hydrogen production step. This reduces system complexity and could yield energy savings.

TRL	1	2	3	4	5	6	7	8	9

- •		
Benefits	RD&D priorities	
 Single reactor means reduced system complexity and lower associated capital costs 	 Improve catalyst selectivity Develop cell designs and electrolytes capable of 	
Allows integration of waste heat streams, reducing	operating at thermodynamically favourable conditions	
the required energy input	 Understand fundamental reaction mechanisms 	
 Makes use of carbon dioxide as a process input 		
Limitations	Active institutions (1)	
 Balancing reactor temperature is a challenge 	• CSIRO	
Methane product decomposition occurs at typical		
solid oxide cell operating temperature		
Characteristics		
 Volumetric hydrogen density: Liquid state = ~100 kg kg 	$\frac{1}{2}$ /m ³ . At standard temperature and pressure =	
0.7946g/100L		
 Gravimetric hydrogen density: ~25% H₂ by weight²⁴⁰ 		
• Storage conditions: 90 to 120 bar		

²⁴⁰ Møller, K., Jensen, T., Akiba, E., & Hai-Wen, L. (2017). *Hydrogen - A sustainable energy carrier*. Progress in Natural Science: Materials International, 27. doi:10.1016/j.pnsc.2016.12.014

7 Technology repository: Utilisation

This section differs in format in depth from the hydrogen production and hydrogen storage and distribution sections. It should be noted that this section does not comprehensively cover all hydrogen and hydrogen carrier utilisation technologies. Further work could be conducted to cover this area in greater detail, including the variations of each technology which exist.

Technology	Description	TRL	Potential for disruption
Hydrogen gas turbines ²⁴¹	Likely to be used in IGCC power plants. These are turbines that can run off hydrogen or a hydrogen-rich syngas mixture. There are technical challenges associated with the high combustion temperature of hydrogen ²⁴² . Burning gas mixtures with hydrogen concentrations of up 5- 60% is possible in certain gas turbines, depending on the degree to which they have been modified.	6-7	A carbon free turbine technology with potential for larger scale electricity production as compared with fuel cells.
Ammonia turbines	Involves the combustion of ammonia, a methane mixture or ammonia mixed with hydrogen. NOx emissions from the combustion of ammonia need to be removed which creates additional costs ²⁴³ . Still in early development.	3	Possible to utilise domestic ammonia production to burn green ammonia resulting in carbon-free power generation. Development of the turbine could open up additional demand for ammonia.
Alkaline Anion Exchange Membrane FC (AEMFC)	Similar design to a PEM FC, but AEMFC's membrane is solid alkaline instead of acidic. Instead of protons, OH ⁻ anions are transported from anode to cathode providing certain advantages, such as the potential for non-precious metal catalysts ²⁴⁴ .	4	Offers the potential for cheaper catalysts and polymers. Can also accept a wider range of fuels but has low oxidation reaction rates and unstable conducting materials.
Direct ammonia FC ²⁴⁵	A number of ammonia fuel cell types exist, including low-temperature direct ammonia fuel cells, solid oxide	NA	Possible to utilise ammonia directly in fuel cells, without requiring conversion to hydrogen gas. Development of the fuel cell could create additional demand for ammonia.

TABLE 7: EMERGING FUEL CELL AND TURBINE TECHNOLOGIES

²⁴¹ Mitsubishi Hitachi Power Systems (2018). Insight of Large-scale hydrogen gas turbine Developer, [Online] Available from:

https://www.mhps.com/special/hydrogen/article_1/index.html Accessed: 18/11/2019

 ²⁴² Kraftwerk Forshung (2016). Hydrogen gas turbines. [Online] Available from: http://kraftwerkforschung.info/en/hydrogen-gas-turbines/
 ²⁴³ Valera-Medina, A., Marsh, R., Runyon, J., Pugh, D., Beasley, P., Hughes, T., & Bowen, P. (2017). Ammonia–methane combustion in tangential swirl

burners for gas turbine power generation. Applied Energy, 185, 1362-1371. doi:https://doi.org/10.1016/j.apenergy.2016.02.073 ²⁴⁴ Dekel, D. R. (2018). *Review of cell performance in anion exchange membrane fuel cells*. Journal of Power Sources, 375, 158-169. doi:https://doi.org/10.1016/j.jpowsour.2017.07.117

²⁴⁵ Adli, N., Zhang, H., Mukherjee, S., & Wu, G. (2018). *Review-Ammonia Oxidation Electrocatalysis for Hydrogen Generation and Fuel Cells*. Journal Of The Electrochemical Society, 165(15), J3130-J3147.

	fuel cells, and protonic ceramic fuel cells. ²⁴⁶		
Microbial FC	Microorganisms are used to oxidize fuel, such as glucose or biomass, and transfer acquired electrons to the anode. This oxidation has at extremely low rates, limiting application. Wastewater as a fuel is also being explored	3- 4 ²⁴⁷	Fuel is cheap, safe and plentiful but these systems currently have a low power density
Unitised Regenerative Fuel Cell System	A fuel cell, capable of producing hydrogen and oxygen when in regenerative mode and delivering electricity when in fuel cell mode. Providing a system with operating conditions optimal for both modes is an engineering challenge, for example one reaction is exothermic and the other, endothermic. PEM and solid oxide are two reversible technologies under development currently.	2-5	Opportunity to combine the electrolysis and fuel cell process into a single system
Direct dimethyl ether fuel cell (DDMEFCs) ²⁴⁸	In the fuel cell, dimethyl ether (CH ₃ OCH ₃) is oxidised to produce proton, electrons, and CO ₂ . In some cases, Nafion is utilised as an electrolyte, with Pt anodes and cathodes. There is currently minimal recent literature exploring DDMEFCs.	NA	DDMEFCs are often compared to DMFCs. Dimethyl ether has a higher density than methanol and is non-toxic. One molecule if DME releases 12 electrons in the reaction, leading reduced theoretical fuel consumption compared to Direct Methanol FCs.
Direct formic acid fuel cell (DFAFCs) ²⁴⁹	Formic acid oxidation takes place at the anode on a catalyst layer, where CO_2 is formed. Protons pass through polymer membrane to react with O_2 on a catalyst coated cathode.	NA	Similar to DDMEFCs, DFAFCs are seen as a potential competitor to DMFCs in portable applications due to lower toxicity and high energy density.

²⁴⁶ Zhao, Y., Setzler, B.P., Wang, J., Nash, J., Wang, T., Xu, B., & Yan, Y. (2019). An Efficient Direct Ammonia Fuel Cell for Affordable Carbon-Neutral Transportation. Joule, 3(10), 2472-2484.

²⁴⁷ Tender, L. M. (2014). *Microbial Fuel Cells for Powering Navy Devices*, Naval Research Laboratory.

²⁴⁸ Mench, M., Chance, H., & Wang, C. (2004). *Direct dimethyl ether polymer electrolyte fuel cells for portable applications*. Journal of the Electrochemical Society, 151(1), A144-A150.

²⁴⁹ El-Nagar, G., Hassan, M., Lauermann, I., & Roth, C. (2017). *Efficient Direct Formic Acid Fuel Cells (DFAFCs) Anode Derived from Seafood waste: Migration Mechanism.* Sci Rep, 7(1), 17818.

TABLE 8: MATURE FUEL CELLS (TRL 9)

TECHNOLOGY	DESCRIPTION ²⁵⁰	ADVANTAGES AND DISADVANTAGES	TYPICAL STACK SIZE ²⁵¹	USES ²⁵²
Polymer electrolyte membrane (PEM) FC	Also known as a proton exchange membrane fuel cell. Hydrogen is catalytically split into protons which permeate through the membrane from the anode to the cathode to create an electrical current.	+ Low operating temperature + Low noise + High power density + Quick start-up + Small size - Expensive catalyst - Sensitive to impurities	<1-100kW	Backup power, portable power, distributed generation, transportation and specialty vehicles
Alkaline FC (AFC)	Uses a liquid potassium hydroxide electrolyte and can utilise non-precious catalysts. Suitable for small scale (<100 kW) applications. It has a low cost, low temperature and short start up time.	 + Low temperature + Quick start up + Lower cost components - Sensitive to CO₂ in fuel and air 	1-100kW	Military, space, back- up power, transportation
Solid oxide FC (SOFC)	Fuel cell that uses a solid oxide or ceramic electrolyte and high temperatures (up to 1000°C), negating the need for a catalyst. It is suitable for both industrial and residential applications and can run using fuels other than hydrogen (i.e. syngas, ammonia). However, it has a long start time and therefore needs to be run continuously.	 + High efficiency + Fuel flexibility + Suitable for Combined heat and power - High operating temperatures - Corrosion - Long start-up time - Limited number of shutdowns 	1-2000kW	Auxiliary power, electric utility, distributed generation
Molten carbonate FC	Use a molten carbonate electrolyte and runs at high temperatures, so non- precious catalysts can be used. It does not require hydrogen or a reformer (i.e.it can run off natural gas and CO ₂). It is suitable for industrial and grid scale applications (i.e. tens of MW). It is also relatively low cost but has a short lifespan and low power density.	 + High efficiency + Fuel flexibility + Suitable for CHP - High operating temperatures - Low durability, susceptible to corrosion - Long start-up time - Low power density 	300-3000kW (300kW modules)	Electric utility, distributed generation
Phosphoric acid FC	Uses a liquid phosphoric acid electrolyte and has typically been applied in commercial, combined-heat power systems. It requires a temperature of between 150-200°C to operate, has a long start time and relies on expensive catalysts.	 + Increased tolerance to fuel impurities + Suitable for CHP - Expensive catalysts - Long start-up time Sulphur sensitivity 	5-400kW	Distributed generation
Direct methanol FC	Instead of methanol being reformed within the system, methanol is fed directly to the anode. DMFCs suffer from low efficiency and power density and are most likely to be used for small portable applications. Runs at operating temperatures of 50-120°C.	 + Fuel is cheap and easy to transport - Expensive catalysts - Low efficiency - Low power density - Toxic vapours - Produces CO₂ 	<1kW	Small scale portable power ²⁵³

²⁵⁰ Kirubakaran, A., Jain, S., & Nema, R. (2009). A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 13(9), 2430-2440.

²⁵¹ US DOE (2016). *Comparison of Fuel Cell Technologies*, [Online] Available from:

https://www.energy.gov/sites/prod/files/2016/06/f32/fcto_fuel_cells_comparison_chart_apr2016.pdf ²⁵² lbid.

²⁵³ Kamarudin, S., Achmad, F., & Daud, W. (2009). *Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices*. International Journal of Hydrogen Energy, 34(16), 6902-6916.

8 Publications search strategy

8.1 Bibliometric Methodology

The bibliometric analysis presented within this report was conducted according to the following methodology.

8.2 Data Sources

Data was drawn from the following two related data sources.

8.2.1 Web of Science (WoS)

The *Web of Science* (WoS) is the publication and citation index from Clarivate. It indexes around 20,000 peer reviewed journals each year as well as a selection of conference proceedings, datasets and books. The journals are divided into four indices – the core journals in the Science (SCI), Social Science (SSCI) and Arts & Humanities (AHCI), along with the Emerging Sources Citation Index (ESCI). This latest index includes newer journals that have yet to establish a reputation. This index was excluded from the analysis.

Publication metadata is indexed at an article level, making it possible to analyse publication and citation counts by a range of fields, such as subject area, institution, publication type, author, country and year.

WoS is divided into 250 subject areas, allowing for highly granular reporting. Allocation to subject areas takes place at a journal, rather than publication, level. A journal may appear in multiple WoS categories; this means that when WoS subjects are compared, publications can be counted multiple times. In some subjects – such as Veterinary Sciences, Energy & Fuels and Plant Sciences – this level is still arguably insufficiently granular. No single subject encapsulated hydrogen research.

Limited-scale tests have shown that WoS has a good level of data quality and a reliable citation matching algorithm. Coverage is highly variable by subject area, with fields such as Medicine including over 80% of global published materials and Social Sciences less than 50%. While this is clearly far from ideal, the subjects in which CSIRO publishes heavily tend to be very well covered. The inclusion of the Conference Proceedings Citation Index allows some Business Units, such as Data61, which publishes a higher proportion of conference papers, to have a more representative analysis of their publication output.

8.2.2 InCites

InCites aggregates WoS data into an online reporting tool and is primarily used for organisation benchmarking, country and world-level reporting. Advantages of InCites include the obviation of data collection and processing; detailed analysis of national peer performance; and the option to analyse data at a range of levels. The data available in InCites differs slightly to WoS in that the Book Citation Index is not included in InCites, and indexation into InCites lags that going into WoS by 1-2 months. Therefore, publication counts between InCites and WoS should not be directly compared, but comparisons of data from a single data source have been shown to be valid.

8.3 Dataset Filters

Both datasets were filtered to the following publication types for all analyses:

Articles, Reviews, and Proceedings Papers.

8.4 Publication Metrics

The following metrics were used in the analysis.

8.4.1 Publication Count

This is a measure of output volume and represents the number of publications in the given data source for the stated organisation or country in the stated year range. The criteria by which the publication count and all associated citation statistics were acquired are usually stated in figure headings or a note under the table, as appropriate. Please note that most bibliometric analyses look only at articles, reviews and, where the necessary citation data exist for them, conference proceedings, and omit smaller documents that do not tend to contain research output, such as book reviews and editorials.

8.4.2 Normalised Citation Impact (NCI)

This is a measure of citation impact relative to a world average of 1.00; a result of 1.2 indicates 20% more citation than the global average and 0.8 indicates 20% less citation. Each publication has a baseline, calculated from the average citations received by publications from the same subject area(s), year and type. The number of citations the publication actually receives is divided by this baseline, to give a measure of relative citation. This takes account of any fluctuations in the annual number of publications produced either by the unit of analysis or globally and removes from comparison any skew based on the age of a publication, its subject area or its type.

This is one of the most robust metrics available and is used by ERA, the UK's REF, the global Snowball Metrics Project and leading bibliometric institutions like the CWTS in Leiden and the Karolinska Institute. However, it is not without issues. Article-level ratios might undervalue particularly strong publications - for example, the benefit of an article receiving 200 citations against a baseline of 50 would be eliminated by three publications from the most recent year receiving 0 citations against a baseline of 1. More importantly, it is important to understand that the most recent 1-2 years can provide misleading results; this is because articles that are cited rapidly (i.e. within the first year or two after publication) are not necessarily the ones that ultimately are cited most. The most recent five-year window thus combines two elements - high citation (strong research) and rapid citation ("hot" research). From CSIRO's perspective, both of these attributes are desirable and there is therefore no issue with using the metric.

The baselines used also rely on the mean citation counts for a year and subject; this makes them (and indeed the ratios used for calculation) very prone to outliers, given the highly skewed nature of citation distributions. Broadly, this means one should never calculate the NCI for fewer than 50 publications and should be cautious with means based on samples of up to 100 publications. Within this analysis, 200 publications have been required for robust rankings. NCI for organisations with 100-200 publications have been reported but recommended to be treated with caution. NCI for organisations with < 100 publications has not been reported.

Production		Stora	age	Utilisation	
Country	NCI	Country	NCI	Country	NC
Singapore	3.12	Australia	1.58	Australia	
Saudi Arabia	2.42	USA	1.56	Saudi Arabia	
Australia	2.13	Germany	1.52	Switzerland	
Hong Kong	2.01	China	1.39	USA	
Switzerland	1.97	England	1.35	China	
Denmark	1.93	Canada	1.31	Sweden	
China	1.91	Italy	1.27	Germany	
USA	1.70	South Korea	1.25	Italy	
Greece	1.65	Iran	1.22	England	
England	1.61	Japan	1.13	Denmark	

Utilisation		
Country	NCI	
Australia	2.04	
Saudi Arabia	1.95	
Switzerland	1.55	
USA	1.54	
China	1.44	
Sweden	1.36	
Germany	1.32	
Italy	1.30	
England	1.23	
Denmark	1.21	

Overall		
Country	NCI	
Singapore	2.88	
Saudi Arabia	2.23	
Australia	2.01	
Hong Kong	1.98	
Israel	1.97	
Switzerland	1.83	
China	1.70	
USA	1.64	
Denmark	1.48	
Scotland	1.44	

2014-2018 NCI for Top 20 Countries

8.5 Search Strategy

A search strategy was developed to determine the publications to include within the analysis of hydrogen research. The strategy consisted generally of a list of topic keyword combinations to include and exclude, as well as a list of WoS subject areas to exclude that were clearly irrelevant. Topic keywords are matched against article title, abstract text, author provided keywords, and Keywords Plus (keywords determined by Clarivate by an algorithm). A keyword-based strategy was required as there was no clear WoS subject area definition that included hydrogen and only hydrogen research.

The search strategy began with lists of keywords developed by subject matter experts on hydrogen production, hydrogen storage, and hydrogen utilisation. These keywords were queried against the WoS database and the returned articles were spot checked manually to determine whether the results were relevant to the topic. When irrelevant papers were found, other keywords were determined to exclude them, and then searches were performed to ensure these exclusions did not remove any important publications. An example of this was hydrogen peroxide production research appearing within the hydrogen production set. This wasn't relevant to hydrogen fuel production, so "hydrogen peroxide" was added to the excluded keywords. This process was iterative and is no way expected to be perfect, but the numbers of false positives and false negatives were minimised as much as was practical.

Finally, the overlap between the production, storage and utilisation sets was determined, and the keywords were modified to try and reduce this overlap. This was particularly difficult as the end-use (utilisation) is often mentioned within the abstract of production and storage publications. While the separation of publications into each of the three categories may not have been performed perfectly by the final search strategies, the three categories were also combined and analysed as a whole, which should be reasonably representative.

The final search strategies are outlined in the table below.

KEY: TS = Topic; WC = WoS Subject Area

Торіс	Search String
Production	TS=(Hydrogen AND produc* AND ("water split*" OR ("water oxid*" AND catal*) OR WOC or WOCs OR electrolysis OR biomass OR photo* OR biological OR alkaline OR gasif* OR "balance of plant" OR stack OR "chemical looping" OR "methane crack*" OR "concentrating solar" OR "power to gas" OR reform OR biogas OR fermentation OR "solid oxid*" OR "proton exchange" OR thermo* OR autothermal OR pyrolysis OR "steam methane" OR "partial oxid*" OR PEC OR CCS OR "Carbon captur*" OR "Hydrogen evolution reaction*" OR "oxygen evolution reaction*" OR "water reduc*"
	NOT ("fuel cell*" OR wine OR "alcoholic ferm*" OR drug OR "hydrogen bond*" OR "hydrogen peroxide" OR shale OR angiogen* OR "hydrogen sulfide" OR "hydrogen sulphide" OR deuterium)
	OR (("hydrogen sulfide" OR "hydrogen sulphide") AND produc* AND biogas))
	NOT WC=(Astronomy Astrophysics OR Toxicology OR Oceanography OR Agronomy OR Medicine Research Experimental OR Genetics Heredity OR Agriculture Dairy Animal Science OR Gastroenterology OR Hepatology OR Quantum Science Technology OR Pharmacology Pharmacy Or Radiology Nuclear Medicine Medical Imaging OR Endocrinology Metabolism OR Veterinary Sciences OR Chemistry Medicinal OR Telecommunications OR Nutrition Dietetics OR Forestry OR Food Science Technology)
Storage	TS=(Hydrogen AND stor* AND (ammonia OR hydride OR liquef* OR compres* OR "liquid organic" OR "line pack*" OR cryo* OR distribution OR electrochem* OR physisorption OR "physical adsorption" OR "thermal energ*" OR "proton batter*" OR "synthetic methane" OR underground

Торіс	Search String
	OR cavern OR reservoir OR tank OR "ammonia crack*" OR embrittlement OR bioalcohol* OR bioacid* OR absorption OR "nitrogen reduc*" OR "techno-economic" OR model*)
	NOT ("fuel cell*" OR wine OR "alcoholic ferm*" OR drug OR "hydrogen bond*" OR "hydrogen peroxide" OR shale OR angiogen* OR "hydrogen sulfide" OR "hydrogen sulphide"))
	NOT WC=(Astronomy Astrophysics OR Toxicology OR Oceanography OR Agronomy OR Medicine Research Experimental OR Genetics Heredity OR Agriculture Dairy Animal Science OR Gastroenterology OR Hepatology OR Quantum Science Technology OR Pharmacology Pharmacy Or Radiology Nuclear Medicine Medical Imaging OR Endocrinology Metabolism OR Veterinary Sciences OR Chemistry Medicinal OR Telecommunications OR Nutrition Dietetics OR Forestry OR Food Science Technology)
Utilisation	TS=(Hydrogen AND ("fuel cell*" OR turbine* OR vehicle* OR regenerative OR reversible OR dispens* OR "synthetic fuel produc*" OR "direct reduction" OR refuel* OR refuell* OR biofuel* OR biocrude OR steelmak* OR hydrocrack* OR "grid firm*" OR "remote area power" OR "material* hand*" OR hydrotreat* OR "stationary power" OR export OR "residential heat*" OR appliance* OR "commercial heat*" OR PEM OR ammonia OR fertiliser OR syngas)
	NOT (electrolysis OR wine OR "alcoholic ferm*" OR drug OR "hydrogen bond*" OR "hydrogen peroxide" OR shale OR croplands OR angiogen* OR "hydrogen sulfide" OR "hydrogen sulphide" OR "plant grow*" OR "ammonia crack*" OR (produc* AND (syngas OR "Carbon captur*" OR "Hydrogen evolution reaction*" OR "oxygen evolution reaction*" OR "dry reform*")))
	OR (("hydrogen sulfide" OR "hydrogen sulphide") AND ("fuel cell*" OR syngas)) OR (hydrogen AND "plant grow*" AND (biofuel OR "fuel cell*" OR biogas)))
	NOT WC=(Astronomy Astrophysics OR Toxicology OR Oceanography OR Agronomy OR Medicine Research Experimental OR Genetics Heredity OR Agriculture Dairy Animal Science OR Gastroenterology OR Hepatology OR Quantum Science Technology OR Pharmacology Pharmacy Or Radiology Nuclear Medicine Medical Imaging OR Endocrinology Metabolism OR Veterinary Sciences OR Chemistry Medicinal OR Telecommunications OR Nutrition Dietetics OR Forestry OR Food Science Technology)

8.6 Publication Data

2014-2018 Australia's most frequent collaborator countries

Production		Storage	
Country	Publications	Country	Publications
China	302	China	108
USA	98	USA	36
England	50	Germany	22
Germany	35	Denmark	17
Japan	31	England	14
India	25	Japan	12
Malaysia	19	India	12
Switzerland	18	South Korea	10
Hong Kong	17	France	9
France	16	Singapore	8

Utilisation		
Country	Publications	
China	199	
USA	41	
Germany	23	
England	20	
Malaysia	17	
India	16	
Japan	15	
Singapore	10	
Saudi Arabia	9	
Iran	9	

Overall			
Country	Publications		
China	534		
USA	153		
England	75		
Germany	72		
Japan	52		
India	43		
Malaysia	38		
Switzerland	30		
France	28		
Denmark	27		

9 Patent landscape search

9.1 Details of relevant IPCs and / or CPCs covered by the search strategy

9.1.1 Production

C01 INORGANIC CHEMISTRY C01B NON-METALLIC ELEMENTS; COMPOUNDS THEREOF ... C01B3/00 Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures ... C01B2203/00 Integrated processes for the production of hydrogen or synthesis gas ...

C25 ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR

C25B ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR (anodic or cathodic protection C23F13/00; single-crystal growth C30B) C25B1/00 Electrolytic production of inorganic compounds or non-metals C25B1/02 • of hydrogen or oxygen C25B1/04 • • by electrolysis of water C25B1/06 • • in cells with flat or platelike electrodes C25B1/08 • • • of the filter-press type C25B1/10 • • in diaphragm cells C25B1/12 • • in pressure cells

C25B9/00 Cells or assemblies of cells; Constructional parts of cells ... C25B11/00 Electrodes; Manufacture thereof not otherwise provided for C25B13/00 Diaphragms; Spacing elements

Y02 TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE Y02E REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION

Y02E60/00 Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation Y02E60/30 • Hydrogen technology

Y02E60/36 • • Hydrogen production from non-carbon containing sources

Y02E60/362 • • • by chemical reaction with metal hydrides, e.g. hydrolysis of metal borohydrides

Y02E60/364 • • • by decomposition of inorganic compounds, e.g. splitting of water other than electrolysis, ammonia borane, ammonia

Y02E60/366 • • • by electrolysis of water

Y02E60/368 • • • • by photo-electrolysis

9.1.2 Storage

C01 INORGANIC CHEMISTRY C01B NON-METALLIC ELEMENTS; COMPOUNDS THEREOF ... C01B3/00 Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures ...

C01C AMMONIA; CYANOGEN; COMPOUNDS

C01C1/00 Ammonia; Compounds thereof { (C01C3/08, C01C3/14, C01C3/16, C01C3/20 take precedence)} C01C1/02 • Preparation, {purification} or separation of ammonia C01C1/04 • • Preparation of ammonia by synthesis ... C01C1/0405 • • • {from N2 and H2 in presence of a catalyst} C01C1/0411 • • • • {characterised by the catalyst} C01C1/0417 • • • • {characterised by the synthesis reactor ...

F17 STORING OR DISTRIBUTING GASES OR LIQUIDS

F17B GAS-HOLDERS OF VARIABLE CAPACITY ...

F17C VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES ...

F17D PIPE-LINE SYSTEMS; PIPE-LINES

F25 REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES F25J LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS {OR LIQUEFIED GASEOUS} MIXTURES BY PRESSURE AND COLD TREATMENT ...

F25J1/00 Processes or apparatus for liquefying or solidifying gases or gaseous mixtures

Y02 TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE Y02E REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION

Y02E60/00 Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation Y02E60/30 • Hydrogen technology

Y02E60/32 • • hydrogen storage

Y02E60/321 • • • Storage of liquefied, solidified, or compressed hydrogen in containers

Y02E60/322 • • • Storage in caverns

Y02E60/324 • • • Reversible uptake of hydrogen by an appropriate medium

Y02E60/325 • • • • the medium being carbon

Y02E60/327 • • • • the medium being a metal or rare earth metal, an intermetallic compound or a metal alloy

Y02E60/328 • • • • the medium being an organic compound or a solution thereof

9.1.3 Utilisation

B60 VEHICLES IN GENERAL B61 RAILWAYS B62 LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS

C10 PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT

C10G CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES ...

C10G45/00 Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds

C10G47/00 Cracking of hydrocarbon oils in the presence of hydrogen or hydrogen generating compounds, to obtain lower boiling fractions ...

C10G49/00 Treatment of hydrocarbon oils in the presence of hydrogen or hydrogen-generating compounds ... C10G50/00 Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons ...

C10G50/00 Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons ...

C21 METALLURGY OF IRON C21C PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL ...

F02 COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS F02C GAS-TURBINE PLANTS ...

H02 GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER H02J CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER ...

H01 BASIC ELECTRIC ELEMENTS H01M PROCESSES OR MEANS ... H01M8/00 Fuel cells; Manufacture thereof H01M8/22 • Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen ...

Y02 TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE Y02E REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION Y02E50/00 Technologies for the production of fuel of non-fossil origin Y02E50/10 • Biofuels

Y02E60/00 Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Y02E60/50 • Fuel cells

9.2 Search strategy

Orbit FAMPAT Database; TI/AB = Title and Abstract.

Search Step	Result(s)	Query
1	5414	(((HYDROGEN OR H2) 30D (PRODUC+ OR MANUFACTUR+ OR GENERAT+)) 30D (ELECTROCHEMIC+ OR (ELECTRO+ W CHEMIC+) OR ((ELECTROLYSIS+ OR ELECTROLYTIC+ OR ELECTROLYSER+ OR ELECTROLYZER+) 3D (WATER OR H2O OR STEAM+)) OR (ALKALIN+ W ELECTROL+) OR (PROTON+ W EXCH+ W MEMBRANE+ W ELECTROL+) OR (PEM W ELECTROL+) OR (POLYMER+ W ELECTROL+ W MEMBRANE+) OR ((HIGH+ W TEMP+) 3D ELECTROL+) OR (SOLID+ W OXID+ W ELECTROL+) OR (ELECTROL+ W STACK+)))/TI/AB
2	3014	(((HYDROGEN OR H2) 30D (PRODUC+ OR MANUFACTUR+ OR GENERAT+)) 30D (THERMOCHEMIC+ OR (THERMO+ W CHEMIC+) OR ((METHANE OR CH4) 3D REFORM+) OR ((COAL+ OR BIOMAS+) 3D GASIFICAT+) OR BIOGAS+ OR AUTOTHERMAL+ OR (AUTO+ W THERMAL+) OR PYROLYSIS+ OR (PARTIAL+ W OXID+) OR (CHEMIC+ W LOOP+)))/TI/AB
3	603	(((HYDROGEN OR H2) 30D (PRODUC+ OR MANUFACTUR+ OR GENERAT+)) 30D (PHOTOCHEMIC+ OR (PHOTO+ W CHEMIC+) OR PHOTOSYNTH+ OR (PHOTO+ W SYNTH+) OR PHOTOBIOLOG+ OR (PHOTO+ W BIOLOG+) OR (BIOLOGY+ 3D ALGAE+) OR (FERMENT+ 3D CONVER+) OR BIOHYDROGEN+ OR (BIO+ HYDROGEN+) OR (BIO+ W H2)))/TI/AB
4	924	(((HYDROGEN OR H2) 30D (PRODUC+ OR MANUFACTUR+ OR GENERAT+)) 30D ((METHAN+ 3D CRACK+) OR (CH4 3D CRACK+) OR (POWER 3D GAS+) OR (CONCENTRAT+ 3D SOLAR+) OR (CONCENTRAT+ 3D SUN+) OR (BALANC+ 3D PLANT+)))/TI/AB
5	19502	(((HYDROGEN OR H2) 30D (PRODUC+ OR MANUFACTUR+ OR GENERAT+))/TI/AB) AND (C01B-003+/IPC/CPC)
6	11609	(C01B-2203+)/CPC
7	515	((((HYDROGEN OR H2) AND ((ALKALIN+ W ELECTROL+) OR (PROTON+ W EXCH+ W MEMBRANE+ W ELECTROL+) OR (PEM W ELECTROL+) OR (POLYMER+ W ELECTROL+ W MEMBRANE+) OR ((HIGH+ W TEMP+) 3D ELECTROL+) OR (SOLID+ W OXID+ W ELECTROL+) OR (ELECTROL+ W STACK+)))/TI/AB) AND (C25B-001/02 OR C25B-001/04 OR C25B-001/06 OR C25B-001/08 OR C25B-001/10 OR C25B-001/12 OR C25B-009+ OR C25B-011+ OR C25B- 013+)/IPC/CPC)

8	15388	(PRODUC+ OR MANUFACTUR+ OR GENERAT+)/TI/AB AND (Y02E-060/3+)/CPC
9	15660	(Y02E-060/36+)/CPC
10	44200	1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9
11	15505	((((HYDROGEN OR H2) 30D (STORE+ OR STORING OR STORAG+ OR HOLD+ OR HELD+ OR CONTAIN+)) 30D (COMPRESS+ OR LIQUEF+ OR SOLIDIF+ OR (REVERS+ 3D UPTAK+) OR SYNTHES+ OR AMMONIA OR NH3 OR PHYSISORP+ OR (PHYSI+ W SORP+) OR (METAL+ 3D HYDRID+) OR (ORGANIC+ 3D COMPOUND+) OR (ORGANIC+ 3D SOLUTION+) OR (ORGANIC+ 3D LIQUID+) OR METHANE+ OR CH4 OR (PROTON+ W BATTER+))))/TI/AB
12	7517	((((HYDROGEN OR H2) 30D (STORE+ OR STORING OR STORAG+ OR HOLD+ OR HELD+ OR CONTAIN+)) 30D (EMBRITTL+ OR (LINE+ W PACK+) OR UNDERGROUND+ OR (UNDER+ W GROUND+) OR CAVERN+ OR CANISTER+ OR TANK+ OR CYLINDER+)))/TI/AB
13	11715	(((HYDROGEN OR H2) 30D (STORE+ OR STORING OR STORAG+ OR HOLD+ OR HELD+ OR CONTAIN+))/TI/AB) AND (C01B-003+/IPC/CPC)
14	335	(((HYDROGEN OR H2) 30D (STORE+ OR STORING OR STORAG+ OR HOLD+ OR HELD+ OR CONTAIN+)))/TI/AB AND (C01C-001/04+)/IPC/CPC
15	4555	(HYDROGEN OR H2)/TI/AB AND (F17B+ OR F17C+ OR F17D+)/IPC/CPC
16	171	(((HYDROGEN OR H2) 30D (STORE+ OR STORING OR STORAG+ OR HOLD+ OR HELD+ OR CONTAIN+)))/TI/AB AND (F25J-001+)/IPC/CPC
17	12291	(STORE+ OR STORING OR STORAG+ OR HOLD+ OR HELD+ OR CONTAIN+)/TI/AB AND (Y02E- 060/3+)/CPC
18	9124	(Y02E-060/32+)/CPC
19	39482	11 OR 12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18
20	14749	((HYDROGEN OR H2) 30D (FUEL+ 3D CELL+))/TI/AB
21	2770	((HYDROGEN OR H2) 30D (FUEL+ 30D (TRANSPORT+ OR VEHICLE+ OR CAR OR CARS OR TRUCK+ OR TRAIN+)))/TI/AB
22	1136	((HYDROGEN OR H2) 30D ((SYNTHETIC+ 3D FUEL+) OR BIOFUEL+ OR (BIO+ W FUEL+) OR SYNGAS+ OR BIOCRUDE+ OR (BIO+ W CRUDE+)))/TI/AB
23	5784	((HYDROGEN OR H2) 30D (((INDUST+ OR COMMERCIAL+ OR DOMESTIC+) 30D ELECTR+) OR ((INDUST+ OR COMMERCIAL+ OR DOMESTIC+) 30D (HEAT+ OR AIRCONDITION+ OR (AIR W CONDITION+))) OR (ELECTR+ 3D GRID+ 3D (STABILITY OR STABLE)) OR (REMOTE+ 3D AREA+ 3D (POWER+ OR ELECTR+)) OR ((POWER+ OR FUEL+) 3D TURBINE+) OR (INDUST+ 3D (FEEDSTOCK+ OR (FEED+ W STOCK+))) OR (STEEL+ 3D (MAK+ OR MANUFACTUR+ OR PRODUCT+)) OR HYDROTREAT+ OR (HYDRO+ W TREAT+) OR HYDROCRACK+ OR (HYDRO+ W CRACK+)))/TI/AB

24 23420 (HYDROGEN OR H2)/TI/AB AND (H01M-008+ OR Y02E-060/50+)/IPC/CPC

25	7199	(HYDROGEN OR H2)/TI/AB AND (B60+ OR B61+ OR B62+)/IPC/CPC
26	2897	(HYDROGEN OR H2)/TI/AB AND (Y02E-050+)/CPC
27	1324	(HYDROGEN OR H2)/TI/AB AND (F02C+)/IPC/CPC
28	1867	(HYDROGEN OR H2)/TI/AB AND (H02J+)/IPC/CPC
29	7711	(HYDROGEN OR H2)/TI/AB AND (C10G-045+ OR C10G-047+ OR C10G-049+ OR C10G- 050+)/IPC/CPC
30	1232	(HYDROGEN OR H2)/TI/AB AND (C21C+)/IPC/CPC
31	49430	20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29 OR 30
32	24548450	PD >= 2010
33	25598	10 AND 32
34	19785	19 AND 32
35	25220	31 AND 32
36	52871	33 OR 34 OR 35
37	335528	(AU)/PR
38	280	36 AND 37

Results of Search Steps 33 to 36 and 38 were analysed.

9.3 Copyright, search limitations and disclaimers

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2019. To the extent permitted by law, all rights are reserved, and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Patent search limitations

There are several limitations relating to patent searching that make it impossible to conduct an exhaustive patent search and hence guarantee that all relevant patents have been located. The following are three examples of these limitations:

- A patent search strategy will include the use of keywords and/or patent classifications. It is not possible to conceive and use every possible keyword variation in the search strategy. It is also not possible to guarantee that all relevant classifications will be discovered and searched or that patents will be correctly classified.
- The search strategy will be implemented in an appropriate database. Each database has respective limitations as to its patent coverage and the level of information available for patent records. There is no single database that has complete coverage of all patent data. The same key word search in one particular database will not necessarily provide the same results in another database.
- Irrespective of the database used, patent information is not published in databases when a patent is first filed (i.e., at the priority date). The first publication of information for a patent may not occur for at least 18

months in most cases. Therefore, it is likely that any searching results for more recent years do not yet include all patent applications.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on patent information research. The reader is advised and needs to be aware that such information may be incomplete for reasons such as the abovementioned patent search limitations, or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

As Australia's national science agency and innovation catalyst, CSIRO is solving the greatest challenges through innovative science and technology.

CSIRO. Unlocking a better future for everyone.

Contact us

1300 363 400 +61 3 9545 2176 csiroenquiries@csiro.au csiro.au

For further information

CSIRO Energy Patrick Hartley +61 3 9545 2595 patrick.hartley@csiro.au csiro.au/energy

CSIRO Futures

James Deverell +61 2 9490 8456 james.deverell@csiro.au csiro.au/futures