State of the Climate 2020 is supported by a list of references, made available by CSIRO and the Bureau of Meterology.

General climate information

  • Intergovernmental Panel on Climate Change (IPCC) 2012, ‘Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change’ CB Field, V Barros, TF Stocker, D Qin, DJ Dokken, KL Ebi, MD Mastrandrea, KJ Mach, G-K Plattner, SK Allen, M Tignor, & PM Midgley (eds), Cambridge University Press, https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf .
  • IPCC, 2013, ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V & Midgley, PM (Eds.), Cambridge University Press, pp.1535. http://www.climatechange2013.org/ ; including Summary for Policy-Makers
  • IPCC, 2018: Global warming of 1.5°C. An IPCC Special Report on the impacts of global  warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. https://www.ipcc.ch/sr15/
  • IPCC, 2019: Special Report on the Ocean and Cryosphere in a Changing Climate. [Bindoff, N.L., Cheung, W.W.L., Kairo, J.G., Arístegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Pörtner, H.O., Roberts, D.C., Masson-Delmotte, V. and Zhai, P., 2019] https://www.ipcc.ch/srocc/
  • Jackson, W, Klekociuk, A, Emmerson, K, Keywood, M, Hibberd, M, Cresswell, I, Murphy, H, Coleman, S, Johnston, E, Clark, G, Argent, R, Mackay, RAM, Metcalfe, D, Evans, K, Bax, N, Smith, DC, Wienecke, B, Cochrane, P & Hatton, T 2016, ‘State of the Environment 2016’, https://www.environment.gov.au/science/soe/ .
  • Keenan, T, Cleugh, H, Braganza, K, Power, S, Trewin, B, Arblaster, J, Timbal, B, Hope, P, Frederiksen, C, McBride, J, Jones, D & Plummer, N 2011, ‘Climate Science Update: A Report to the 2011 Garnaut Review’, Melbourne, http://www.cawcr.gov.au/technical-reports/CTR_036.pdf .

Key data sources

  • Coupled Model Intercomparison Project: Taylor, K.E., Stouffer, R.J. and Meehl, G.A. (2012). An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93: 485-498. Datasets: https://cmip.llnl.gov/cmip5/

Australia’s climate

Temperature

  • Alexander, LV, Hope, P, Collins, D, Trewin, B, Lynch, A & Nicholls, N 2007, ‘Trends in Australia’s climate means and extremes: a global context’, Australian Meteorological Magazine, vol. 56, pp. 1–18.
  • Alexander, L V. & Arblaster, JM 2009, ‘Assessing trends in observed and modelled climate extremes over Australia in relation to future projections’, International Journal of Climatology, vol. 29, no. 3, pp. 417–435. https://doi.org/10.1002/joc.1730
  • Arblaster, J.M., Lim, E.-P., Hendon, H.H., Trewin, B.C., Wheeler, M.C., Liu, G., Braganza, K., 2014. Understanding Australia’s hottest spring on record. Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. S37–S41.
  • Ashcroft, L., Karoly, D. and Gergis, J. 2012. Temperature variations of southeastern Australia, 1860-2011. Aust. Met. Oceanogr. J., 62, 227-245. DOI: 10.22499/2.6204.004
  • Ayers G. P. (2019) A comment on temperature measurement at automatic weather stations in Australia. Journal of Southern Hemisphere Earth Systems Science, vol. 69, pp. 172-182. DOI: 10.1071/ES19010
  • Bindoff, NL, Stott, PA, AchutaRao, KM, Allen, MR, Gillett, N, Gutzler, D, Hansingo, K, Hegerl, G, Hu, Y, Jain, S, Mokhov, II, Overland, J, Perlwitz, J, Sebbari, R, Zhang, X, 2013. ‘Detection and Attribution of Climate Change: from Global to Regional’. in: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 867–952. https://www.ipcc.ch/report/ar5/wg1/detection-and-attribution-of-climate-change-from-global-to-regional/
  • Black, M.T., Karoly, D.J., King, A.D., 2015. The contribution of anthropogenic forcing to the Adelaide and Melbourne, Australia, heat waves of January 2014. in: Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. S145–S148. https://doi.org/10.1175/BAMS-D-15-00097.1  
  • Black, M.T. & Karoly, D.J. 2016. Southern Australia’s warmest October on record: the role of ENSO and climate change. [In: “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull. Amer. Met. Soc., 97, S118-S121. https://doi.org/10.1175/BAMS-D-16-0124.1
  • Dittus, A.J., Karoly, D.J., Lewis, S.C. and Alexander, L.V. 2014. An investigation of some unexpected frost day increases in southern Australia. Aust. Met. Oceanogr. J., 64, 261-271. DOI: 10.22499/2.6404.002
  • Dittus, AJ, Karoly, DJ, Lewis, SC & Alexander, LV 2015, ‘A multiregional assessment of observed changes in the areal extent of temperature and precipitation extremes’, Journal of Climate, vol. 28, no. 23, pp. 9206–9220. https://doi.org/10.1175/JCLI-D-14-00753.1
  • Donat, MG, Alexander, L V., Yang, H, Durre, I, Vose, R, Dunn, RJH, Willett, KM, Aguilar, E, Brunet, M, Caesar, J, Hewitson, B, Jack, C, Klein Tank, AMG, Kruger, AC, Marengo, J, Peterson, TC, Renom, M, Oria Rojas, C, Rusticucci, M, Salinger, J, Elrayah, AS, Sekele, SS, Srivastava, AK, Trewin, B, Villarroel, C, Vincent, LA, Zhai, P, Zhang, X & Kitching, S 2013, ‘Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset’, Journal of Geophysical Research: Atmospheres, vol. 118, no. 5, pp. 2098–2118. https://doi.org/10.1002/jgrd.50150
  • Donat, MG, Alexander, LV, Yang, H, Durre, I, Vose, R & Caesar, J 2013, ‘Global land-based datasets for monitoring climatic extremes’, Bulletin of the American Meteorological Society, vol. 94, no. 7, pp. 997–1006. https://doi.org/10.1175/BAMS-D-12-00109.1  
  • Dunn, R.J.H. and coauthors. 2020. Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos., in press, https://doi.org/10.1029/2019JD032263
  • Fawcett, RJB, Trewin, BC, Braganza, K, Smalley, R., Jovanovic, B & Jones, DA 2012, On the sensitivity of Australian temperature trends and variability to analysis methods and observation networks, CAWCR technical report, No 50. Bureau of Meteorology, Melbourne, accessed from http://cawcr.gov.au/technical-reports/CTR_050.pdf .
  • Fawcett, RJ., Trewin, BC, Smalley, R & Braganza, K 2013, ‘On the changing nature of Australian monthly and daily temperature anomalies’, in Sense and sensitivity: understanding our changing weather and climate | 19th Annual National Conference of the Australian Meteorological and Oceanographic Society, Melbourne Convention and Exhibition Centre, Melbourne, Victoria, 11-13 February 2013, p. 317.
  • Fawcett, R. J. B., & Nairn, J. R. (2014). THE HEATWAVES OF THE 2013 / 2014. In The Heatwaves of the 2013/14 Australian Summer (p. 14 pages).
  • Grainger S, Fawcett R, Trewin B, Jones D, Braganza K, Jovanovic B, Martin D, Smalley R, Webb V. 2020. Estimating the uncertainty of Australian area-average temperature anomalies. International Journal of Climatology, Submitted.
  • Grose, M.R., Black, M., Risbey, J.S., Uhe, P., Hope, P.K., Haustein, K. and Mitchell, D. (2018). Severe frosts in Western Australia in September 2016. [In: “Explaining Extreme Events of 2016 from a Climate Perspective”]. Bull. Amer. Met. Soc., 99, S150-S154. https://doi.org/10.1175/BAMS-D-17-0088.1
  • Grose, M.R., Ashcroft, L. and Trewin, B. 2020. How much has Australia warmed since pre-industrial times? 2020 AMOS National Conference, Fremantle, 10-13 February 2020.
  • Hope, P, Lim, E-P, Wang, G, Hendon, HH & Arblaster, JM 2015, ‘Contributors to the Record High Temperatures Across Australia in Late Spring 2014’, Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. S149–S153. https://doi.org/10.1175/BAMS-D-15-00096.1
  • Hope, P, Wang, G, Lim, E-P, Hendon, HH & Arblaster, JM 2016, ‘What caused the record-breaking heat across Australia in October 2015?’, Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. S122–S126. https://doi.org/10.1175/BAMS-D-16-0141.1
  • Karoly, DJ & Braganza, K 2005, ‘Attribution of recent temperature changes in the Australian region’, Journal of Climate, vol. 18, no. 3, pp. 457–464. https://doi.org/10.1175/JCLI-3265.1
  • King, A. D., Lewis, SC, Perkins, SE, Alexander, L V., Donat, MG, Karoly, DJ, Black, MT, Alexander, L V. & Nairn, JR 2012, ‘Increasing frequency, intensity and duration of observed global heatwaves and warm spells’, Geophysical Research Letters, vol. 39, no. 20, pp. 1–5. https://doi.org/10.1029/2012GL053361
  • Lewis, SC & Karoly, DJ 2013, ‘Anthropogenic contributions to Australia’s record summer temperatures of 2013’, Geophysical Research Letters, vol. 40, no. 14, pp. 3708–3709. https://doi.org/10.1002/grl.50673
  • Lewis, S, Karoly, D & Yu, M 2014, ‘Quantitative estimates of anthropogenic contributions to extreme national and State monthly, seasonal and annual average temperatures for Australia’, Australian Meteorological and Oceanographic Journal, vol. 64, no. 3, pp. 215–230. DOI: 10.22499/2.6403.004
  • Pepler, A.S., Ashcroft, L. and Trewin, B. 2018. The relationship between the subtropical ridge and Australian temperatures. J. Sth. Hem. Earth Sys. Sci., 68, 201-214. DOI: 10.22499/3.6801.011
  • Perkins-Kirkpatrick, S. E., White, C. J., Alexander, L. V., Argüeso, D., Boschat, G., Cowan, T., … Purich, A. (2016). Natural hazards in Australia: heatwaves. Climatic Change, 139(1), 101–114. https://doi.org/10.1007/s10584-016-1650-0
  • Rahmstorf, S & Coumou, D 2011, ‘Increase of extreme events in a warming world’, Proceedings of the National Academy of Sciences, vol. 108, no. 44, pp. 17905–17909. https://doi.org/10.1073/pnas.1101766108
  • Trewin, B & Vermont, H 2010, ‘Changes in the frequency of record temperature in Australia, 1957-2009’, Australian Meteorological and Oceanographic Journal, vol. 60, no. 2, pp. 87–90. DOI: 10.22499/2.6002.003
  • Trewin, B 2013, ‘A daily homogenized temperature data set for Australia’, International Journal of Climatology, vol. 33, no. 6, pp. 1510–1529. https://doi.org/10.1002/joc.3530
  • Trewin, B. 2018. 'The Australian Climate Observations Reference Network - Surface Air Temperature (ACORN-SAT) version 2'. Bureau Research Report 30, Bureau of Meteorology.
  • Trewin, B., Braganza, K., Fawcett, R., Grainger, S., Jovanovic, B., Jones, D., Martin, D., Smalley, R. and Webb, V. 2020. An updated long-term homogenized daily temperature data set for Australia. Geosci. Data J., in press.

Fire weather

  • Canadell, J.G., Haverd, V.E., Smith, B., Cuntz, M., Mikaloff-Fletcher, S., Farquhar, G.D., Woodgate, W., Briggs, P. and Trudinger, C.M., 2018, December. Higher than expected CO2 fertilisation inferred from leaf to global observations. In AGU Fall Meeting Abstracts https://doi.org/10.1111/gcb.14950
  • Clarke, H, Lucas, C & Smith, P 2013, ‘Changes in Australian fire weather between 1973 and 2010’, International Journal of Climatology, vol. 33, no. 4, pp. 931–944. https://doi.org/10.1002/joc.3480
  • Clarke, H., Pitman, A. J., Kala, J., Carouge, C., Haverd, V. & Evans, J. (2016). An investigation of future fuel load and fire weather in Australia. Climatic Change: an interdisciplinary, international journal devoted to the description, causes and implications of climatic change, 139 (3), 591-605. http://dx.doi.org/10.1007/s10584-016-1808-9
  • Di Virgilio, G., Evans, J.P., Blake, S.A., Armstrong, M., Dowdy, A.J., Sharples, J. and McRae, R. (2019). Climate change increases the potential for extreme wildfires. Geophysical Research Letters, 46(14), pp.8517-8526. https://doi.org/10.1029/2019GL083699
  • Dowdy, A. J., & Mills, G. A. (2012). Characteristics of lightning-attributed wildland fires in south-east Australia. International Journal of Wildland Fire, 21(5), 521–524. https://doi.org/10.1071/WF10145
  • Dowdy, A. J., & Mills, G. A. (2012). Atmospheric and fuel moisture characteristics associated with lightning-attributed fires. Journal of Applied Meteorology and Climatology, 51(11), 2025–2037. https://doi.org/10.1175/JAMC-D-11-0219.1
  • Dowdy, A. J., Fromm, M. D., & McCarthy, N. (2017). Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. Journal of Geophysical Research, 122(14), 7342–7354. https://doi.org/10.1002/2017JD026577
  • Dowdy, A. J., & Pepler, A. (2018). Pyroconvection Risk in Australia: Climatological Changes in Atmospheric Stability and Surface Fire Weather Conditions. Geophysical Research Letters, 45(4), 2005–2013. https://doi.org/10.1002/2017GL076654
  • Dowdy, A.J. Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Climate Dynamics, 54, 3041–3052 (2020).
  • Harris Sarah, Nicholls Neville, Tapper Nigel, Mills Graham (2019) The sensitivity of fire activity to interannual climate variability in Victoria, Australia. Journal of Southern Hemisphere Earth Systems Science, vol. 69, pp. 146-160. DOI: 10.1071/ES19008
  • Hasson, A.E.A., Mills, G.A., Timbal, B. and Walsh, K., 2009. Assessing the impact of climate change on extreme fire weather events over southeastern Australia. Climate Research39(2), pp.159-172. DOI:
  • Hope, P., Black, M.T., Lim, E.P., Dowdy, A., Wang, G., Fawcett, R.J. and Pepler, A.S., 2019. On Determining the Impact of Increasing Atmospheric CO2 on the Record Fire Weather in Eastern Australia in February 2017. Bulletin of the American Meteorological Society, 100(1), pp. S111-S117. https://doi.org/10.1175/BAMS-D-18-0135.1
  • Lewis, S.C., Blake, S.A., Trewin, B., Black, M.T., Dowdy, A.J., Perkins-Kirkpatrick, S.E., King, A.D. and Sharples, J.J., 2019. Deconstructing factors contributing to the 2018 fire weather in Queensland, Australia. Bulletin of the American Meteorological Society, 101 (1): S115–S122. https://doi.org/10.1175/BAMS-D-19-0144.1
  • Lucas, C 2010, ‘On developing a historical fire weather data-set for Australia’, Australian Meteorological and Oceanographic Journal, vol. 60, pp. 1–14. DOI: 10.22499/2.6001.001

Rainfall

  • Arblaster, JM & Meehl, GA 2006, ‘Contributions of external forcings to southern annular mode trends’, Journal of Climate, vol. 19, no. 12, pp. 2896–2905. https://doi.org/10.1175/JCLI3774.1
  • Brown, JR, Moise, AF, Colman, R & Zhang, H 2016, ‘Will a Warmer World Mean a Wetter or Drier Australian Monsoon?’, Journal of Climate, vol. 29, no. 12, pp. 4577–4596. https://doi.org/10.1175/JCLI-D-15-0695.1
  • Cai, W & Cowan, T 2006, ‘SAM and regional rainfall in IPCC AR4 models: Can anthropogenic forcing account for southwest Western Australian winter rainfall reduction?’, Geophysical Research Letters, vol. 33, no. 24, pp. 1–5. https://doi.org/10.1029/2006GL028037
  • Cai, W & Cowan, T 2008, ‘Dynamics of late autumn rainfall reduction over south-eastern Australia’, Geophysical Research Letters, vol. 35, no. 9, pp. 1–5. https://doi.org/10.1029/2008GL033727
  • Dey R, Lewis SC, Arblaster JM, Abram NJ. 2019. A review of past and projected changes in Australia’s rainfall. WIREs Climate Change, vol. 10, no. 3, pp. 577-599. https://doi.org/10.1002/wcc.577
  • Dowdy, AJ, Grose, MR, Timbal, B, Moise, A, Ekstrom, M, Bhend, J & Wilson, L 2015, ‘Rainfall in Australia’s eastern seaboard: a review of confidence in projections based on observations and physical processes’, Australian Meteorological and Oceanographic Journal, vol. 65, no. 1, pp. 107–126. DOI: 10.22499/2.6501.008
  • Dowdy, A. J., Pepler, A., Di Luca, A., Cavicchia, L., Mills, G., Evans, J., et al. (2019). Review of Australian east coast low pressure systems and associated extremes. Climate Dynamics, 53, 4887. https://doi.org/10.1007/s00382-019-04836-8
  • Drosdowsky, W 2005, ‘The latitude of the subtropical ridge over eastern Australia: The L index revisited’, International Journal of Climatology, vol. 25, no. 10, pp. 1291–1299. https://doi.org/10.1002/joc.1196
  • Durack, PJ, Wijffels, SE & Matear, RJ 2012, ‘Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000’, Science, vol. 336, no. 6080, pp. 455–458. https://doi.org/10.1126/science.1212222
  • Frederiksen, CS, Frederiksen, JS, Janice, M & Osbrough, SL 2011, ‘Australian winter circulation and rainfall changes and projections’, International Journal of Climate Change Strategies and Management, vol. 3, no. 2, pp. 170–188. https://doi.org/10.1108/17568691111129002
  • Frederiksen CS, Zheng X, Grainger S. 2014. Teleconnections and predictive characteristics of Australian seasonal rainfall. Climate Dynamics, vol. 43, no. 5, pp. 1381–1408. https://doi.org/10.1007/s00382-013-1952-0
  • Frederiksen, CS & Grainger, S 2015, ‘The role of external forcing in prolonged trends in Australian rainfall’, Climate Dynamics, vol. 45, no. 9-10, pp. 2455–2468. https://doi.org/10.1007/s00382-015-2482-8
  • Frederiksen CS, Frederiksen JS, Sisson JM & Osbrough SL. 2017, 'Trends and projections of Southern Hemisphere baroclinicity: the role of external forcing and impact on Australian rainfall', Climate Dynamics, vol. 48, no. 9-10, pp. 3261–3282. https://doi.org/10.1007/s00382-016-3263-8
  • Grose MR, Risbey JS, Black MT, Karoly DJ 2015, ‘Attribution of exceptional mean sea level pressure anomalies south of Australia in August 2014’, Bulletin of the American Meteorological Society, vol. 96, no. 12, pp. S158-62. https://doi.org/10.1175/BAMS-D-15-00116.1
  • Grose Michael R., Black Mitchell T., Wang Guomin, King Andrew D., Hope Pandora, Karoly David J. (2019) The warm and extremely dry spring in 2015 in Tasmania contained the fingerprint of human influence on the climate. Journal of Southern Hemisphere Earth Systems Science , vol. 69, pp. 183-195. DOI: 10.1071/ES19011
  • Hope, P, Grose, MR, Timbal, B, Dowdy, AJ, Bhend, J, Katzfey, JJ, Bedin, T, Wilson, L & Whetton, PH 2015, ‘Seasonal and regional signature of the projected southern Australian rainfall reduction’, Australian Meteorological and Oceanographic Journal, vol. 65, no. 1, pp. 54–71. DOI: 10.22499/2.6501.005
  • Hope, P, Keay, K, Pook, M, Catto, J, Simmonds, I, Mills, G, McIntosh, P, Risbey, J, Berry, G 2014, ‘A comparison of automated methods of front recognition for climate studies: A case study in southwest Western Australia’. Monthly Weather Review, vol. 142, pp. 343–363. https://doi.org/10.1175/MWR-D-12-00252.1
  • Hope, P, Timbal, B & Fawcett, R 2010, ‘Associations between rainfall variability in the southwest and southeast of Australia and their evolution through time’, International Journal of Climatology, vol. 30, no. 9, pp. 1360–1371. https://doi.org/10.1002/joc.1964
  • Hu, Y, Tao, L & Liu, J 2013, ‘Poleward expansion of the Hadley circulation in CMIP5 simulations’, Advances in Atmospheric Sciences, vol. 30, no. 3, pp. 790–795. https://doi.org/10.1007/s00376-012-2187-4
  • Jovanovic, B, Braganza, K, Collins, D & Jones, D 2012, ‘Climate variations [LC(A4] and change evident in high-quality climate data for Australia’s Antarctic and remote island weather stations’, Australian Meteorological and Oceanographic Journal, vol. 62, no. 4, pp. 247–261.
  • Jovanovic, B, Collins, D, Braganza, K, Jakob, D & Jones, DA 2011, ‘A high-quality monthly total cloud amount dataset for Australia’, Climatic Change, vol. 108, no. 3, pp. 485–517. https://doi.org/10.1007/s10584-010-9992-5
  • Kirono, DGC, Kent, DM, Hennessy, KJ & Mpelasoka, F 2011, ‘Characteristics of Australian droughts under enhanced greenhouse conditions: Results from 14 global climate models’, Journal of Arid Environments, vol. 75, no. 6, pp. 566–575. https://doi.org/10.1016/j.jaridenv.2010.12.012
  • Lim, EP, Hendon, HH, Arblaster, JM, Chung, C, Moise, AF, Hope, P, Young, G & Zhao, M 2016, ‘Interaction of the recent 50-year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall’, Climate Dynamics, vol. 1900, pp. 1–19. https://doi.org/10.1007/s00382-015-2963-9
  • Marshall Adam John (2019) Variation in growing season water balance in central Victoria, Australia, in relation to large-scale climate drivers. Journal of Southern Hemisphere Earth Systems Science , vol. 69, pp. 131-145. DOI: 10.1071/ES19007
  • McKeon GM et al (2009), Climate change impacts on northern Australian rangeland livestock carrying capacity: a review of issues, The Rangeland Journal 31 (1) 1-29. https://doi.org/10.1071/RJ08068
  • Murphy, BF & Timbal, B 2008, ‘A review of recent climate variability and climate change in south-eastern Australia’, International Journal of Climatology, vol. 28, no. 7, pp. 859–879. https://doi.org/10.1002/joc.1627
  • Nicholls, N 2010, ‘Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958-2007’, Climate Dynamics, vol. 34, no. 6, pp. 835–845. https://doi.org/10.1007/s00382-009-0527-6
  • Pepler, A. S., Alexander, L. V., Evans, J. P., & Sherwood, S. C. (2016). The influence of local sea surface temperatures on Australian east coast cyclones. Journal of Geophysical Research, 121(22), 13,352-13,363. https://doi.org/10.1002/2016JD025495
  • Pepler, A. S., Di Luca, A., Ji, F., Alexander, L. V., Evans, J. P., & Sherwood, S. C. (2016). Projected changes in east Australian midlatitude cyclones during the 21st century. Geophysical Research Letters, 43(1), 334–340. https://doi.org/10.1002/2015GL067267
  • Pepler, A. S., Alexander, L. V., Evans, J. P., & Sherwood, S. C. (2016). Zonal winds and southeast Australian rainfall in global and regional climate models. Climate Dynamics, 46(1–2), 123–133. https://doi.org/10.1007/s00382-015-2573-6
  • Pepler, A. S., Fong, J., & Alexander, L. V. (2017). Australian east coast mid-latitude cyclones in the 20th Century Reanalysis ensemble. International Journal of Climatology, 37(4), 2187–2192. https://doi.org/10.1002/joc.4812
  • Polvani, LM, Waugh, DW, Correa, GJP & Son, SW 2011, ‘Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere’, Journal of Climate, vol. 24, no. 3, pp. 795–812. https://doi.org/10.1175/2010JCLI3772.1
  • Pook, MJ, Risbey, JS, & McIntosh, PC 2014, ‘A comparative synoptic climatology of cool-season rainfall in major grain-growing regions of southern Australia’, Theoretical and Applied Climatology, vol. 117, no. 3–4, pp. 521–533. https://doi.org/10.1007/s00704-013-1021-y
  • Pook, MJ, Risbey, JS, McIntosh, PC, 2012. ‘The synoptic climatology of cool-season rainfall in the Central Wheatbelt of Western Australia’, Monthly Weather Review, vol. 140, pp. 28–43. https://doi.org/10.1175/MWR-D-11-00048.1
  • Rauniyar, S.P. and Power, S.B., 2020. The Impact of Anthropogenic Forcing and Natural Processes on Past, Present, and Future Rainfall over Victoria, Australia. Journal of Climate33(18), pp.8087-8106. https://doi.org/10.1175/JCLI-D-19-0759.1
  • Reid, K. J., I. Simmonds, C. L. Vincent, and A. D. King, 2019: The Australian Northwest Cloudband: Climatology, Mechanisms, and Association with Precipitation. J. Climate, vol. 32, no. 20, pp. 6665–6684 https://doi.org/10.1175/JCLI-D-19-0031.1  
  • Risbey, J, Pook, M, McIntosh, P, Ummenhofer, C, Meyers, G, 2008. ‘Characteristics and variability of synoptic features associated with cool season rainfall in southeastern Australia’, International Journal of Climatology, vo. 29, no. 11, pp. 1595-1613. https://doi.org/10.1002/joc.1775
  • Risbey, JS, Pook, MJ, Wheeler, MC & Hendon, HH 2009, ‘On the remote drivers of rainfall variability in Australia’, Monthly Weather Review, vol. 137, no. 10, pp. 3233–3253. https://doi.org/10.1175/2009MWR2861.1
  • Thompson, DWJ, Solomon, S, Kushner, PJ, England, MH, Grise, KM & Karoly, DJ 2011, ‘Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change’, Nature Geoscience, vol. 4, no. 11, pp. 741–749. https://doi.org/10.1038/ngeo1296
  • Timbal, B, Arblaster, J, Braganza, K, Fernandez, E, Hendon, H, Murphy, B, Raupach, M, Rakich, C, Smith, I, Whan, K & Wheeler, M 2010, Understanding the anthropogenic nature of the observed rainfall decline across South Eastern Australia, CAWCR technical report No 26. accessed from http://www.cawcr.gov.au/technical-reports/CTR_026.pdf .
  • Timbal, B, Arblaster, JM & Power, S 2006, ‘Attribution of the late-twentieth-century rainfall decline in southwest Australia’, Journal of Climate, vol. 19, no. 10, pp. 2046–2062. https://doi.org/10.1175/JCLI3817.1
  • Timbal, B & Drosdowsky, W 2013, ‘The relationship between the decline of South-eastern Australian rainfall and the strengthening of the subtropical ridge’, International Journal of Climatology, vol. 33, no. 4, pp. 1021–1034. https://doi.org/10.1002/joc.3492
  • Timbal, B & Fawcett, R 2013, ‘A historical perspective on South-eastern Australian rainfall since 1865 using the instrumental record’, Journal of Climate, vol. 26, no. 4, pp. 1112–1129. https://doi.org/10.1175/JCLI-D-12-00082.1
  • Ummenhofer, CC, England, MH, Mclntosh, PC, Meyers, GA, Pook, MJ, Risbey, JS, Gupta, AS & Taschetto, AS 2009, ‘What causes southeast Australia’s worst droughts?’, Geophysical Research Letters, vol. 36, no. 4, pp. 1–5. https://doi.org/10.1029/2008GL036801
  • Watterson, IG 2010, ‘Relationships between south-eastern Australian rainfall and sea surface temperatures examined using a climate model’, Journal of Geophysical Research Atmospheres, vol. 115, no. 10, pp. 1–14. https://doi.org/10.1029/2009JD012120

Heavy rainfall

  • Bao, J., Sherwood, S., Alexander, L. et al. Future increases in extreme precipitation exceed observed scaling rates. Nature Clim Change 7, 128–132 (2017). https://doi.org/10.1038/nclimate3201
  • Evans, JP & Boyer-Souchet, I 2012, ‘Local sea surface temperatures add to extreme precipitation in northeast Australia during la Niña’, Geophysical Research Letters, vol. 39, no. 10, pp. 12–14. https://doi.org/10.1029/2012GL052014
  • Gallant, AJE, Karoly, DJ & Gleason, KL 2014, ‘Consistent trends in a modified climate extremes index in the United States, Europe, and Australia’, Journal of Climate, vol. 27, no. 4, pp. 1379–1394. https://doi.org/10.1175/JCLI-D-12-00783.1
  • Guerreiro, S. B., Fowler, H. J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., … Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nature Climate Change. https://doi.org/10.1038/s41558-018-0245-3
  • Hendon, HH, Lim, E, Arblaster, JM & Anderson, DLT 2014, ‘Causes and predictability of the record wet east Australian spring 2010’, Climate Dynamics, vol. 42, no. 5-6, pp. 1155–1174. https://doi.org/10.1007/s00382-013-1700-5
  • Hope, P., E.-P. Lim, H. Hendon, and G. Wang, 2018: The Effect of Increasing CO2 on the Extreme September 2016 Rainfall Across Southeastern Australia. Bull. Am. Meteorol. Soc. Bull. Am. Meteorol. Soc., 99, S133–S138, https://doi.org/10.1175/BAMS-D-17-0094.1
  • Karoly, D.J., Black, M.T., Grose, M.R. and King, A.D. 2016. The roles of climate change and El Niño in the record low rainfall in October 2015 in Tasmania, Australia. [In: “Explaining Extreme Events of 2015 from a Climate Perspective”]. Bull. Amer. Met. Soc., 97, S127-S130. https://doi.org/10.1175/BAMS-D-16-0139.1
  • King, AD, Lewis, SC, Perkins, SE, Alexander, L V., Donat, MG, Karoly, DJ & Black, MT 2013, ‘Limited evidence of anthropogenic [LC(A7] influence on the 2011-12 Extreme Rainfall over Southeast Australia’, Bulletin of the American Meteorological Society, vol. 94, no. 9, pp. S55–S58.
  • Tozer, C.R., Risbey, J.S., Grose, M.R., Monselesan, D.P., Squire, D.T., Black, A.S., Richardson, D., Sparrow, S.N., Li, S. and Wallom, D. (2020). A 1-day extreme rainfall event in Tasmanian: process evaluation and long tail attribution. [In” “Explaining Extreme Events of 2018 from a Climate Perspective”]. Bull. Amer. Met. Soc., 101, S123-S128. Terrasson, A., McCarthy, N., Dowdy, A., Richter, H., McGowan, H. and Guyot, A., 2019. Weather radar insights into the turbulent dynamics of a wildfire‐triggered supercell thunderstorm. Journal of Geophysical Research: Atmospheres, 124(15), pp.8645-8658. https://doi.org/10.1029/2018JD029986
  • Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., … Roberts, N. M. (2014). Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics. https://doi.org/10.1002/2014RG000464

Compound extreme events

  • Dowdy, A. J., & Catto, J. L. (2017). Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Scientific Reports, 7. https://doi.org/10.1038/srep40359
  • Dowdy, A.J. and Pepler, A., 2018. Pyroconvection risk in Australia: Climatological changes in atmospheric stability and surface fire weather conditions. Geophysical Research Letters, 45(4), 2005-2013. https://doi.org/10.1002/2017GL076654
  • Pepler, A. S., Dowdy, A. J., van Rensch, P., Rudeva, I., Catto, J. L., & Hope, P. (2020). The contributions of fronts, lows and thunderstorms to southern Australian rainfall. Climate Dynamics, 55(5–6), 1489–1505. https://doi.org/10.1007/s00382-020-05338-8
  • Walsh, K., White, C. J., McInnes, K., Holmes, J., Schuster, S., Richter, H., … Warren, R. A. (2016). Natural hazards in Australia: storms, wind and hail. Climatic Change, 139(1), 55–67. https://doi.org/10.1007/s10584-016-1737-7
  • Wu, W., McInnes, K., O’Grady, J., Hoeke, R., Leonard, M., & Westra, S. (2018). Mapping Dependence Between Extreme Rainfall and Storm Surge. Journal of Geophysical Research: Oceans, 123(4), 2461–2474. https://doi.org/10.1002/2017JC013472

Streamflow

  • Fiddes, S & Timbal, B 2016, ‘Assessment and reconstruction of catchment streamflow trends and variability in response to rainfall across Victoria, Australia’, Climate Research, vol. 67, pp. 43-60. DOI: 10.3354/cr01355
  • Zhang XS, Amirthanathan GE, Bari MA, Laugesen RM, Shin D, Kent DM, MacDonald AM, Turner ME, Tuteja NK, 2016, ‘How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations’, Hydrology and Earth System Sciences, vol. 20, no. 9, pp.3947-3965. https://doi.org/10.5194/hess-20-3947-2016

Tropical cyclones

  • Callaghan, J & Power, SB 2011, ‘Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century’, Climate Dynamics, vol. 37, no. 3, pp. 647–662. https://doi.org/10.1007/s00382-010-0883-2
  • Chand et al. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. Wiley Interdisciplinary Reviews: Climate Change, https://doi.org/10.1002/wcc.602 .
  • Dowdy, AJ 2014, ‘Long-term changes in Australian tropical cyclone numbers’, Atmospheric Science Letters, vol. 15, no. 4, pp. 292–298. https://doi.org/10.1002/asl2.502
  • Knutson, TR, McBride, JL, Chan, J, Emanuel, K, Holland, G, Landsea, C, Held, I, Kossin, JP, Srivastava, AK & Sugi, M 2010, ‘Tropical cyclones and climate change’, Nature Geoscience, vol. 3, pp. 157–163. https://doi.org/10.1038/ngeo779
  • Kuleshov, Y, Fawcett, R, Qi, L, Trewin, B, Jones, D, McBride, J & Ramsay, H 2010, ‘Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean’, Journal of Geophysical Research Atmospheres, vol. 115, no. 1, pp. 1–9. https://doi.org/10.1029/2009JD012372
  • Lavender, S.L. and Dowdy, A.J., 2016. Tropical cyclone track direction climatology and its intraseasonal variability in the Australian region. Journal of Geophysical Research: Atmospheres, 121(22), 13-236. https://doi.org/10.1002/2016JD025562

Snowfall

  • Fiddes, S. L., Pezza, A. B., & Barras, V. (2015). Synoptic climatology of extreme precipitation in alpine Australia. International Journal of Climatology, 35(2), 172–188. https://doi.org/10.1002/joc.3970
  • Fiddes, S. L., Pezza, A. B., & Barras, V. (2015). A new perspective on Australian snow. Atmospheric Science Letters, 16(3), 246–252. https://doi.org/10.1002/asl2.549
  • Hennessy, K. J., Whetton, P. H., Walsh, K., Smith, I. N., Bathols, J. M., Hutchinson, M., & Sharples, J. (2008). Climate change effects on snow conditions in mainland Australia and adaptation at ski resorts through snowmaking. Climate Research, 35(3), 255–270. https://doi.org/10.3354/cr00706
  • Luca, A. Di, Evans, J. P., & Ji, F. (2018). Australian snowpack in the NARCliM ensemble: evaluation, bias correction and future projections. Climate Dynamics, 51(1–2), 639–666. https://doi.org/10.1007/s00382-017-3946-9
  • Pepler, A., Trewin, B., & Ganter, C. (2015). The influence of climate drivers on the Australian snow season. Australian Meteorological and Oceanographic Journal, 65(2), 195–205. https://doi.org/10.22499/2.6502.002
  • Thompson, J. A. (2016). A modis-derived snow climatology (2000-2014) for the Australian Alps. Climate Research, 68(1), 25–38. https://doi.org/10.3354/cr01379
  • Timbal, B., Ekstrom, M., Fiddes, S., Grose, m., Kirono, d., Lim, E.P., Lucas, C. and Wilson, L. (2016). Climate change science and Victoria. Bureau Research Report No. 014. https://doi.org/10.22499/4.0014
  • Whetton, P. H., Haylock, M. R., & Galloway, R. (1996). Climate change and snow-cover duration in the Australian Alps. Climatic Change, 32(4), 447–479. https://doi.org/10.1007/BF00140356

Oceans and cryosphere

Ocean temperature and heat content

  • Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., & Zhu, J. (2017). Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3(3), e1601545. https://doi.org/10.1126/sciadv.1601545
  • Church, JA, White, NJ, Konikow, LF, Domingues, CM, Cogley, JG, Rignot, E, Gregory, JM, van den Broeke, MR, Monaghan, AJ & Velicogna, I 2011, ‘Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008’, Geophysical Research Letters, vol. 38, no. 18, p. L18601. https://doi.org/10.1029/2011GL048794
  • Church, JA, White, NJ, Konikow, LF, Domingues, CM, Cogley, JG, Rignot, E, Gregory, JM, van den Broeke, MR, Monaghan, AJ & Velicogna, I 2013, ‘Correction to “Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008’, Geophysical Research Letters, vol. 40, no. 15, pp. 4066–4066. https://doi.org/10.1002/grl.50752
  • Domingues, CM, Church, JA, White, NJ, Gleckler, PJ, Wijffels, SE, Barker, PM & Dunn, JR 2008, ‘Improved estimates of upper-ocean warming and multi-decadal sea-level rise’, Nature, vol. 453, no. 7198, pp. 1090–1093. https://doi.org/10.1038/nature07080
  • Feng, M, McPhaden, MJ, Xie, S-P, & Hafner, J 2013, ‘La Niña forces unprecedented Leeuwin Current warming in 2011’, Scientific reports, Vol. 3, p. 1277. https://doi.org/10.1038/srep01277
  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver EC, Benthuysen JA, Burrows MT, Donat MG, Feng M & Holbrook NJ 2016, ‘A hierarchical approach to defining marine heatwaves’. Progress in Oceanography. Vol. 141, pp. 227-238. https://doi.org/10.1016/j.pocean.2015.12.014
  • Huang, B, Banzon, VF, Freeman, E, Lawrimore, J, Liu, W, Peterson, TC, Smith, TM, Thorne, PW, Woodruff, SD & Zhang, H-MM 2015, ‘Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons’, Journal of Climate, vol. 28, no. 3, pp. 911–930. https://doi.org/10.1175/JCLI-D-14-00006.1
  • Huang., B. and co-authors. 2017. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations and intercomparisons. J. Clim., 30, 8179-8205. doi: 10.1175/JCLI-D-16-0836.1.Johnson, CR, Banks, SC, Barrett, NS, Cazassus, F, Dunstan, PK, Edgar, GJ, Frusher, SD, Gardner, C, Haddon, M, Helidoniotis, F, Hill, KL, Holbrook, NJ, Hosie, GW, Last, PR, Ling, SD, Melbourne-Thomas, J, Miller, K, Pecl, GT, Richardson, AJ, Ridgway, KR, Rintoul, SR, Ritz, DA, Ross, DJ, Sanderson, JC, Shepherd, SA, Slotwinski, A, Swadling, KM, & Taw, N 2011, ‘Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania’, Journal of Experimental Marine Biology and Ecology, Vol. 400, No. 1, pp. 17–32. https://doi.org/10.1016/j.jembe.2011.02.032
  • Kennedy, JJ 2014, ‘A review of uncertainty in in situ measurements and data sets of sea surface temperature’, Reviews of Geophysics March, Vol. 52, No. 1, pp. 1–32. https://doi.org/10.1002/2013RG000434
  • Kennedy, J.J., Rayner, N.A., Atkinson, C.P. and Killick, R.E. 2019. An ensemble data set of sea-surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set. J. Geophys. Res. Atmos., 124, 77-19-7763. https://doi.org/10.1029/2018JD029867
  • Laufkötter, C.  Zscheischler, J., &T L. Frölicher, High-impact marine heatwaves attributable to human-induced global warming Science Vol. 369, Issue 6511, pp. 1621-1625 DOI: 10.1126/science.aba0690
  • Levitus, S, Antonov, JI, Boyer, TP, Baranova, OK, Garcia, HE, Locarnini, RA, Mishonov, A V., Reagan, JR, Seidov, D, Yarosh, ES & Zweng, MM 2012, ‘World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010’, Geophysical Research Letters, vol. 39, no. 10, p. L10603. https://doi.org/10.1029/2012GL051106
  • Liu, W, Huang, B, Thorne, PW, Banzon, VF, Zhang, H-MM, Freeman, E, Lawrimore, J, Peterson, TC, Smith, TM & Woodruff, SD 2015, ‘Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations’, Journal of Climate, vol. 28, no. 3, pp. 931–951. https://doi.org/10.1175/JCLI-D-14-00007.1
  • Oliver, ECJ & Holbrook, NJ 2014, ‘Extending our understanding of south Pacific gyre “spin up”: modeling the East Australian Current in a future climate’, Journal of Geophysical Research: Oceans, Vol. 119, pp. 2788–2805. https://doi.org/10.1002/2013JC009591
  • Oliver, E. C. J., Benthuysen, J. A., Bindoff, N. L., Hobday, A. J., Holbrook, N. J., Mundy, C. N., & Perkins-Kirkpatrick, S. E. (2017). The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications, 8. https://doi.org/10.1038/ncomms16101
  • Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., … Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03732-9
  • Pearce, AF & Feng, M 2013, ‘The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011’, Journal of Marine Systems, Vol. 111–112, pp. 139–156. https://doi.org/10.1016/j.jmarsys.2012.10.009
  • Perkins-Kirkpatrick, S. E., King, A. D., Cougnon, E. A., Grose, M. R., Oliver, E. C. J., Holbrook, N. J., … Pourasghar, F. 2019. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. BAMS Special Issue Explaining the Extreme Events of 2017 from a Climate Perspective. https://doi.org/10.1175/BAMS-D-18-0116.1
  • Purkey, SG & Johnson, GC 2010, ‘Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets*’, Journal of Climate, vol. 23, no. 23, pp. 6336–6351 https://doi.org/10.1175/2010JCLI3682.1
  • Purkey, S.G. and Johnson, G.C., 2013. Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain*. Journal of Climate, 26 (16), pp.6105-6122. https://doi.org/10.1175/JCLI-D-12-00834.1
  • Rhein, M, Rintoul, SR, Aoki, S, Campos, E, Chambers, D, Feely, RA, Gulev, S, Johnson, GC, Josey, SA, Kostianoy, A, Mauritzen, C, Roemmich, D & Wang, F 2013, ‘Observations: Ocean’, in: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V, Midgley, PM (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 255–316 https://doi.org/10.1017/CBO9781107415324
  • Roemmich, D, Church, J, Gilson, J, Monselesan, D, Sutton, P & Wijffels, S 2015, ‘Unabated planetary warming and its ocean structure since 2006’, Nature Climate Change, vol. 5, no. 3, pp. 240–245. https://doi.org/10.1038/nclimate2513
  • Smale, D.A., Wernberg, T., Oliver, E.C.J. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019). https://doi.org/10.1038/s41558-019-0412-1
  • Wernberg, T, Smale, DA, Tuya, F, Thomsen, MS, Langlois, TJ, de Bettignies, T, Bennett, S, & Rousseaux, CS 2013, ‘An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot’, Nature Climate Change, Vol. 3, No. 1, pp. 78–82. https://doi.org/10.1038/nclimate1627
  • Wijffels, S, Roemmich, D, Monselesan, D, Church, J & Gilson, J 2016, ‘Ocean temperatures chronicle the ongoing warming of Earth’, Nature Climate Change, vol. 6, no. 2, pp. 116–118. https://doi.org/10.1038/nclimate2924

Marine heatwaves and coral reefs

  • Anthony, K., Bay, L. K., Costanza, R., Firn, J., Gunn, J., Harrison, P., … Walshe, T. (2017). New interventions are needed to save coral reefs. Nature Ecology and Evolution. https://doi.org/10.1038/s41559-017-0313-5
  • Comeau, S., Cornwall, C.E., DeCarlo, T.M. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9, 477–483 (2019). https://doi.org/10.1038/s41558-019-0486-9
  • Hobday, A.J., E.C.J. Oliver, A. Sen Gupta, J.A. Benthuysen, M.T. Burrows, M.G. Donat, N.J. Holbrook, P.J. Moore, M.S. Thomsen, T. Wernberg, and D.A. Smale. 2018. Categorizing and naming marine heatwaves. Oceanography 31(2):162–173, https://doi.org/10.5670/oceanog.2018.205 .
  • Hughes, T.P., Kerry, J.T., Connolly, S.R. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nature Clim Change 9, 40–43 (2019). https://doi.org/10.1038/s41558-018-0351-2
  • Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., … Torda, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492–496. https://doi.org/10.1038/s41586-018-0041-2
  • Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., … Wilson, S. K. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80–83. https://doi.org/10.1126/science.aan8048
  • Laufkötter, C.  Zscheischler, J., &T L. Frölicher, High-impact marine heatwaves attributable to human-induced global warming Science Vol. 369, Issue 6511, pp. 1621-1625 DOI: 10.1126/science.aba0690
  • Lewis, S. C., & Mallela, J. (2017). A Multifactor Analysis of the Record 2016 Great Barrier Reef Bleaching. Bulletin of the American Meteorological Society, (January), S144–S149. https://doi.org/10.1175/BAMS-D-17-0074.1
  • Mollica, Nathaniel R., Weifu Guo, Anne L. Cohen, Kuo-Fang Huang, Gavin L. Foster, Hannah K. Donald, Andrew R. Solow, 2018. OA affects coral growth by reducing density, Proceedings of the National Academy of Sciences Feb 2018, 115 (8) 1754-1759; https://doi.org/10.1073/pnas.1712806115

Sea level

  • Agarwal, N, Jungclaus, JH, Köhl, A, Mechoso, CR & Stammer, D 2015, ‘Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss’, Environmental Research Letters, vol. 10, no. 7, pp. 1–8. DOI: 10.1088/1748-9326/10/7/074008
  • Boening, C, Willis, JK, Landerer, FW, Nerem, RS & Fasullo, J 2012, ‘The 2011 La Niña: So strong, the oceans fell’, Geophysical Research Letters, vol. 39, no. 19, p. L19602. https://doi.org/10.1029/2012GL053055
  • Burgette, RJ, Watson, CS, Church, JA, White, NJ, Tregoning, P & Coleman, R 2013, ‘Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia’, Geophysical Journal International, vol. 194, no. 2, pp. 719–736. https://doi.org/10.1093/gji/ggt131
  • Cazenave, A., Meyssignac, B., Ablain, M., Balmaseda, M., Bamber, J., Barletta, V., … others. (2018). Global sea-level budget 1993-present. Earth System Science Data, 10(3), 1551–1590. https://doi.org/10.5194/essd-10-1551-2018
  • Chen, X., X. Zhang, J.A. Church, C.S. Watson, M.A. King, D. Monselesan, B. Legresy and C. Harig (2017), The increasing rate of global mean sea-level rise during 1993-2014. Nature Climate Change 7, 492-495, doi:10.1038/nclimate3325
  • Church, JA, Clark, PU, Cazenave, A, Gregory, JM, Jevrejeva, S, Levermann, A, Merrifield, MA, Milne, GA, Nerem, RS, Nunn, PD, Payne, AJ, Pfeffer, WT, Stammer, D & Unnikrishnan, AS 2013, ‘Sea level change’, in TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y Xia, V Bex, & PM Midgley (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp. 1137–1216. https://www.ipcc.ch/report/ar5/wg1/sea-level-change/
  • Church, J.A., J. R. Hunter, K. L. McInnes and N. J. White, 2006: Sea-level rise around the Australian coastline and the changing frequency of extreme sea-level events. Aust. Met. Mag. 55 (2006) 253-260. DOI: 10.1016/j.gloplachs.2006.04.001
  • Fasullo, JT, Boening, C, Landerer, FW & Nerem, RS 2013, ‘Australia’s unique influence on global sea level in 2010-2011’, Geophysical Research Letters, vol. 40, no. 16, pp. 4368–4373. https://doi.org/10.1002/grl.50834
  • Featherstone, W. E., Penna, N. T., Filmer, M. S., & Williams, S. D. P. (2015). Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. Journal of Geophysical Research: Oceans, 120(10), 7004–7014. https://doi.org/10.1002/2015JC011295
  • Hinkel, J., Church, J.A., Gregory, J.M., Lambert, E., Lowe J., McInnes, K.L., Nicholls, R.J., van der Pol, T.D., van de Wal, R., 2019. Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth’s Future, 7(3), 320 – 327. https://doi.org/10.1029/2018EF001071
  • Hague Ben S., Murphy Bradley F., Jones David A. Taylor Andy J. (2019) Developing impact-based thresholds for coastal inundation from tide gauge observations. Journal of Southern Hemisphere Earth Systems Science , vol. 69, pp. 252-272. DOI: 10.1071/ES19024
  • B. Honisch, A. Ridgwell, D. N. Schmidt, E. Thomas, S. J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R. C. Martindale, S. E. Greene, W. Kiessling, J. Ries, J. C. Zachos, D. L. Royer, S. Barker, T. M. Marchitto, R. Moyer, C. Pelejero, P. Ziveri, G. L. Foster, B. Williams. The Geological Record of Ocean Acidification. Science, 2012; 335 (6072): 1058 DOI: 
  •  Jevrejeva, S, Moore, JC, Grinsted, A & Woodworth, PL 2008, ‘Recent global sea level acceleration started over 200 years ago?’, Geophysical Research Letters, vol. 35, no. 8, p. L08715. https://doi.org/10.1029/2008GL033611
  • Masters, D, Nerem, RS, Choe, C, Leuliette, E, Beckley, B, White, N & Ablain, M 2012, ‘Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2’, Marine Geodesy, vol. 35, no. sup1, pp. 20–41. https://doi.org/10.1080/01490419.2012.717862
  • McInnes, K. L., J. A. Church, D. Monselesan, J. R. Hunter, J. G. O’Grady, I. D. Haigh, X. Zhang, 2015: Information for Australian Impact and Adaptation Planning in response to Sea-level Rise, Australian Meteorological and Oceanographic Journal, 65:1, 127–149. DOI: 10.22499/2.6501.009
  • Rignot, E, Velicogna, I, Van Den Broeke, MR, Monaghan, A & Lenaerts, J 2011, ‘Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise’, Geophysical Research Letters, vol. 38, no. 5, p. L05503. <https:></https:>
  • Royston, S., Watson, C. S., Legrésy, B., King, M. A., Church, J. A., & Bos, M. S. (2018). Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise. Journal of Geophysical Research: Oceans, 123(3), 1978–1993. https://doi.org/10.1002/2017JC013655
  • Slangen, A., Church, J., Agosta, C. et al. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Clim Change 6, 701–705. https://doi.org/10.1038/nclimate2991
  • Watson, CS, White, NJ, Church, JA, King, MA, Burgette, RJ & Legresy, B 2015, ‘Unabated global mean sea-level rise over the satellite altimeter era’, Nature Climate Change, vol. 5, no. 6, pp. 565–568. https://doi.org/10.1038/nclimate2635 WCRP sea level budget group (https://doi.org/10.5194/essd-10-1551-2018)
  • White, NJ, Haigh, ID, Church, JA, Koen, T, Watson, CS, Pritchard, TR, Watson, PJ, Burgette, RJ, McInnes, KL, You, ZJ, Zhang, X & Tregoning, P 2014, ‘Australian sea levels-trends, regional variability and influencing factors’. Earth-Science Reviewsvol. 136, pp.155-174. https://doi.org/10.1016/j.earscirev.2014.05.011
  • Wijffels, S., Beggs, H., Griffin, C., Middleton, J., Cahill, M., King, E., Jones, E., Feng, M., Benthuysen, J., Steinberg, C., Sutton, P. (2018). A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): seasonal variability and trends around Australasia and New Zealand revisited. Journal of Marine Systems, Vol 87, 156-196. https://doi.org/10.1016/j.jmarsys.2018.07.005
  • Woolworth, P.L., N.J. White, S. Jevrejeva, S.J. Holgate, J.A. Church and W.R. Gehrels (2008) Evidence for the accelerations of sea level on multi-decade and century timescales. International Journal of Climatology, 29(6), 777-789. https://doi.org/10.1002/joc.1771
  • Zhang, X., Church, J. A., Monselesan, D., & McInnes, K. L. (2017). Sea level projections for the Australian region in the 21st century. Geophysical Research Letters, 44(16), 8481–8491. https://doi.org/10.1002/2017GL074176

Ocean acidification

  • Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., … Caldeira, K. (2016). Reversal of ocean acidification enhances net coral reef calcification. Nature, 531(7594), 362–365. https://doi.org/10.1038/nature17155
  • Comeau, S., Cornwall, C.E., DeCarlo, T.M. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9, 477–483 (2019). https://doi.org/10.1038/s41558-019-0486-9  
  • Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., … Williams, B. (2012). The geological record of ocean acidification. Science (New York, N.Y.), 335(6072), 1058–1063. https://doi.org/10.1126/science.1208277
  • Kleypas, JA, Feely, RA, Fabry, VJ, Langdon, C, Sabine, CL, Robbins, LL, 2006, ‘Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research’. A report from a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by the National Science Foundation, the National Oceanic and Atmospheric Administration, and the U.S. Geological Survey, 88 pp.
  • Lenton A, Tilbrook B, Matear RJ, Sasse T, Nojiri Y 2016, ‘Historical reconstruction of ocean acidification in the Australian region’. Biogeosciences, vol. 13, pp. 1753-1765 https://doi.org/10.5194/bg-13-1753-2016
  • Raven, John, Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., … Watson, A. (2005). Ocean acidification [LC(A8] due to increasing atmospheric carbon dioxide. The Royal Society, 5 (June), 1–68.

Cryosphere

  • Aaron-Morrison, A. P., Ackerman, S. A., Adams, N. G., Adler, R. F., Albanil, A., Alfaro, E. J., … Romanovsky, V. E. (2017). State of the climate in 2016. Bulletin of the American Meteorological Society, 98(8), Si-S280. https://doi.org/10.1175/2017BAMSStateoftheClimate.2
  • Bintanja, R, van Oldenborgh, GJ, Drijfhout, SS, Wouters, B & Katsman, CA 2013, ‘Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion’, Nature Geoscience, vol. 6, no. 5, pp. 376–379. https://doi.org/10.1038/ngeo1767
  • Hobbs, W., Massom, R., Stammerjohn, S., Reid, P., Williams, G., & Meier, W. (2016). A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change (Vol. 143). https://doi.org/10.1016/j.gloplacha.2016.06.008
  • Holland, PR & Kwok, R 2012, ‘Wind-driven trends in Antarctic sea-ice drift’, Nature Geoscience, vol. 5, no. 12, pp. 872–875. https://doi.org/10.1038/ngeo1627
  • Hope, P, Reid, P, Tobin, S, Tully, M, Klekociuk, A & Krummel, P 2015, ‘Seasonal climate summary southern hemisphere (spring 2014): El Niño continues to try to break through, and Australia has its warmest spring on record (again!)’, Australian Meteorological and Oceanographic Journal, vol. 65, no. 2, pp. 267–292. DOI:10.22499/2.6502.006
  • Li, X, Holland, DM, Gerber, EP & Yoo, C 2014, ‘Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice’, Nature, vol. 505, no. 7484, pp. 538–542. https://doi.org/10.1038/nature12945
  • Liu, J & Curry, JA 2010, ‘Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice’, Proceedings of the National Academy of Sciences, vol. 107, no. 34, pp. 14987–14992. https://doi.org/10.1073/pnas.1003336107
  • Massom, R., Reid, P., Stammerjohn, S., Raymond, B., Fraser, A., & Ushio, S. (2013). Change and Variability in East Antarctic Sea Ice Seasonality, 1979/80-2009/10. PLoS ONE, 8(5). https://doi.org/10.1371/journal.pone.0064756
  • Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., & Stammerjohn, S. E. (2018). Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature, 558(7710), 383–389. https://doi.org/10.1038/s41586-018-0212-1
  • Meehl, G.A., Arblaster, J.M., Chung, C.T.Y. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nature Communications 10, 14 (2019). https://doi.org/10.1038/s41467-018-07865-9
  • Reid, P., S. Stammerjohn, R. A. Massom, J. L. Lieser, S. Barreira, and T. Scambos, 2019: Sea ice extent, concentration, and seasonality [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc., 100 (9), S178-S181.
  • Schlosser, E., Alexander Haumann, F., & Raphael, M. N. (2018). Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere, 12(3), 1103–1119. https://doi.org/10.5194/tc-12-1103-2018
  • Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., Velicogna, I., … Wouters, B. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature. https://doi.org/10.1038/s41586-018-0179-y
  • Smith B., H.A. Fricker, A.S. Gardner, B. Medley, J. Nilsson, F. S. Paolo, N. Holschuh, S. Adusumilli, K. Brunt, B. Csatho, K. Harbeck, T. Markus, T. Neumann, M. R. Siegfried, H. J. Zwally. 2020. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science. https://doi.org/10.1126/science.aaz5845
  • Stammerjohn, SE, Martinson, DG, Smith, RC, Yuan, X & Rind, D 2008, ‘Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability’, Journal of Geophysical Research: Oceans, vol. 113, no. C03S90, pp. 1–20. https://doi.org/10.1029/2007JC004269
  • Stammerjohn, S, Massom, R, Rind, D & Martinson, D. 2012, ‘Regions of rapid sea ice change: An inter-hemispheric seasonal comparison’, Geophysical Research Letters, vol. 39, no. 6, p. L06501. https://doi.org/10.1029/2012GL050874
  • Turner, J, Comiso, JC, Marshall, GJ, Lachlan-Cope, TA, Bracegirdle, T, Maksym, T, Meredith, MP, Wang, Z & Orr, A 2009, ‘Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent’, Geophysical Research Letters, vol. 36, no. 8, pp. 1–5. https://doi.org/10.1029/2009GL037524
  • Turner, J., Phillips, T., Marshall, G. J., Hosking, J. S., Pope, J. O., Bracegirdle, T. J., & Deb, P. (2017). Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical Research Letters, 44(13), 6868–6875. https://doi.org/10.1002/2017GL073656
  • Vaughan, DG, Comiso, JC, Allison, I, Carrasco, J, Kaser, G, Kwok, R, Mote, P, Murray, T, Paul, F, Ren, J, Rignot, E, Solomina, O, Steffen, K & Zhang, T 2013, ‘Observations: Cryosphere’, in: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V & Midgley, PM (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 317–382. https://www.ipcc.ch/report/ar5/wg1/

Greenhouse gases (including Global Carbon Budget)

  • Allison, CE & Francey, RJ 2007, ‘Verifying Southern Hemisphere trends in atmospheric carbon dioxide stable isotopes’, Journal of Geophysical Research: Atmospheres, vol. 112, no. D21, p. D21304. https://doi.org/10.1029/2006JD007345
  • Bousquet, P, Ringeval, B, Pison, I, Dlugokencky, EJ, Brunke, E-G, Carouge, C, Chevallier, F, Fortems-Cheiney, A, Frankenberg, C, Hauglustaine, DA, Krummel, PB, Langenfelds, RL, Ramonet, M, Schmidt, M, Steele, LP, Szopa, S, Yver, C, Viovy, N & Ciais, P 2011, ‘Source attribution of the changes in atmospheric methane for 2006–2008’, Atmospheric Chemistry and Physics, vol. 11, no. 8, pp. 3689–3700. https://doi.org/10.5194/acp-11-3689-2011
  • Chevallier, F, Ciais, P, Conway, TJ, Aalto, T, Anderson, BE, Bousquet, P, Brunke, EG, Ciattaglia, L, Esaki, Y, Fröhlich, M, Gomez, A, Gomez-Pelaez, AJ, Haszpra, L, Krummel, PB, Langenfelds, RL, Leuenberger, M, Machida, T, Maignan, F, Matsueda, H, Morguí, JA, Mukai, H, Nakazawa, T, Peylin, P, Ramonet, M, Rivier, L, Sawa, Y, Schmidt, M, Steele, LP & Va, D 2010, ‘CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements’, Journal of Geophysical Research: Atmospheres, vol. 115, no. D21, p. D21307. https://doi.org/10.1029/2010JD013887
  • Etheridge, DM, Steele, LP, Francey, RJ & Langenfelds, RL 1998, ‘Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability’, Journal of Geophysical Research: Atmospheres, vol. 103, no. D13, pp. 15979–15993. https://doi.org/10.1029/98JD00923
  • Etheridge, DM, Steele, LP, Langenfelds, RL, Francey, RJ, Barnola, JM & Morgan, VI 1996, ‘Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn’, Journal of Geophysical Research: Atmospheres, vol. 101, no. D2, pp. 4115–4128. https://doi.org/10.1029/95JD03410
  • Etminan, M., Myhre, G., Highwood, E. J., & Shine, K. P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43(24), 12,614-12,623. https://doi.org/10.1002/2016GL071930
  • Flückiger, J, Monnin, E, Stauffer, B, Schwander, J, Stocker, TF, Chappellaz, J, Raynaud, D & Barnola, J-M 2002, ‘High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2’, Global Biogeochemical Cycles, vol. 16, no. 1, pp. 10–1–10–8 https://doi.org/10.1029/2001GB001417
  • Francey, RJ, Trudinger, CM, Van Der Schoot, M, Krummel, PB, Steele, LP & Langenfelds, RL 2010, ‘Differences between trends in atmospheric CO2 and the reported trends in anthropogenic CO2 emissions’, Tellus, Series B: Chemical and Physical Meteorology, vol. 62, no. 5, pp. 316–328. https://doi.org/10.1111/j.1600-0889.2010.00472.x
  • Francey, RJ, Trudinger, CM, van der Schoot, M, Law, RM, Krummel, PB, Langenfelds, RL, Steele, PL, Allison, CE, Stavert, AR, Andres, RJ & Rödenbeck, C 2013, ‘Atmospheric verification of anthropogenic CO2 emission trends’, Nature Climate Change, vol. 3, no. 5, pp. 520–524 https://doi.org/10.1038/nclimate1817
  • Gohar, L. K., & Shine, K. P. (2007). Equivalent CO 2 and its use in understanding the climate effects of increased greenhouse gas concentrations. Weather, 62(11), 307–311. https://doi.org/10.1002/wea.103
  • Graven, H., Allison, C. E., Etheridge, D. M., Hammer, S., Keeling, R. F., Levin, I., … White, J. W. C. (2017). Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development, 10(12), 4405–4417. https://doi.org/10.5194/gmd-10-4405-2017
  • Higgins, JA, Kurbatov, A V., Spaulding, NE, Brook, E, Introne, DS, Chimiak, LM, Yan, Y, Mayewski, PA & Bender, ML 2015, ‘Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica’, Proceedings of the National Academy of Sciences, vol. 112, no. 22, pp. 6887–6891. https://doi.org/10.1073/pnas.1420232112
  • Hönisch, B, Hemming, NG, Archer, D, Siddall, M & McManus, JF 2009, ‘Atmospheric carbon dioxide concentration across the mid-Pleistocene transition’, Science, vol. 324, no. 5934, pp. 1551–1554. https://doi.org/10.1126/science.1171477
  • Khatiwala, S, Tanhua, T, Mikaloff Fletcher, S, Gerber, M, Doney, SC, Graven, HD, Gruber, N, McKinley, GA, Murata, A, Ríos, AF & Sabine, CL 2013, ‘Global ocean storage of anthropogenic carbon’, Biogeosciences, vol. 10, no. 4, pp. 2169–2191. https://doi.org/10.5194/bg-10-2169-2013
  • Kirschke, S, Bousquet, P, Ciais, P, Saunois, M, Canadell, JG, Dlugokencky, EJ, Bergamaschi, P, Bergmann, D, Blake, DR, Bruhwiler, L, Cameron-Smith, P, Castaldi, S, Chevallier, F, Feng, L, Fraser, A, Heimann, M, Hodson, EL, Houweli, JE & Zeng, G 2013, ‘Three decades of global methane sources and sinks’, Nature Geoscience, vol. 6, no. 10, pp. 813–823. https://doi.org/10.1038/ngeo1955
  • Krummel, PB, Fraser, PJ, Steele, LP, Derek, N, Rickard, C, Ward, J, Somerville, NT, Cleland, SJ, Dunse, BL, Langenfelds, RL, Baly, S, & Leist, MA 2014, ‘The AGAGE in situ program for non‐CO2 greenhouse gases at Cape Grim, 2009‐2010’, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 56-70. http://hdl.handle.net/102.100.100/94580?index=1
  • Langenfelds, RL, Fraser, PJ, Francey, RJ, Steele, LP, Porter, LW & Allison, CE 1996, ‘The Cape Grim air archive: The first seventeen years, 1978-1995’, in Baseline Atmospheric Program (Australia) 1994-1995, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, pp. 53-70.
  • Langenfelds, RL, Steele, LP, Gregory, RL, Krummel, PB, Spencer, DA & Howden, RT 2014, Atmospheric methane, carbon dioxide, hydrogen, carbon monoxide, and nitrous oxide from Cape Grim flask air samples analysed by gas chromatography, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 45-49.
  • Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R & Worthy, DE 2010, ‘Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2’, Tellus, Series B: Chemical and Physical Meteorology, vol. 62, no. 1, pp. 26–46. https://doi.org/10.1111/j.1600-0889.2009.00446.x
  • Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., … Zhu, D. (2018). Global Carbon Budget 2017. Earth System Science Data, 10(1), 405–448. https://doi.org/10.5194/essd-10-405-2018
  • Le Quéré, C., Jackson, R.B., Jones, M.W. et al. 2020. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 10, 647–653. https://doi.org/10.1038/s41558-020-0797-x
  • Loulergue, L, Schilt, A, Spahni, R, Masson-Delmotte, V, Blunier, T, Lemieux, B, Barnola, J-M, Raynaud, D, Stocker, TF & Chappellaz, J 2008, ‘Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years’, Nature, vol. 453, no. 7193, pp. 383–386[ED(A9] . https://doi.org/10.1038/nature06950
  • Lüthi, D, Le Floch, M, Bereiter, B, Blunier, T, Barnola, J-M, Siegenthaler, U, Raynaud, D, Jouzel, J, Fischer, H, Kawamura, K & Stocker, TF 2008, ‘High-resolution carbon dioxide concentration record 650,000-800,000 years before present.’, Nature, vol. 453, no. 7193, pp. 379–382. https://doi.org/10.1038/nature06949
  • MacFarling Meure, C, Etheridge, D, Trudinger, C, Steele, P, Langenfelds, R, Van Ommen, T, Smith, A & Elkins, J 2006, ‘Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP’, Geophysical Research Letters, vol. 33, no. 14, pp. 2000–2003. https://doi.org/10.1029/2006GL026152
  • Martínez-Botí, M., Marino, G., Foster, G. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015). https://doi.org/10.1038/nature14155
  • Martínez-Botí, M., Foster, G., Chalk, T. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015). https://doi.org/10.1038/nature14145
  • Meinshausen, M., E. Vogel, A. Nauels, K. Lorbacher, N. Meinshausen, D. Etheridge, P. Fraser, S. A. Montzka, P. Rayner, C. Trudinger, P. Krummel, U. Beyerle, J. G. Cannadell, J. S. Daniel, I. Enting, R. M. Law, S. O'Doherty, R. G. Prinn, S. Reimann, M. Rubino, G. J. M. Velders, M. K. Vollmer, and R. Weiss, Historical greenhouse gas concentrations, Geosci. Model Dev., 10, 2057–2116. https://doi.org/10.5194/gmd-10-2057-2017
  • Machida, T, Nakazawa, T, Fujii, Y, Aoki, S & Watanabe, O 1995, ‘Increase in the atmospheric nitrous oxide concentration during the last 250 years’, Geophysical Research Letters, vol. 22, no. 21, pp. 2921–2924[ED(A10] . https://doi.org/10.1029/95GL02822
  • Park, S, Croteau, P, Boering, KA, Etheridge, DM, Ferretti, D, Fraser, PJ, Kim, K-R, Krummel, PB, Langenfelds, RL, van Ommen, TD, Steele, LP & Trudinger, CM 2012, ‘Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940’, Nature Geoscience, vol. 5, no. 4, pp. 261–265. DOI: 10.5194/acpd-11-18767-2011
  • Pagani, M., Caldeira, K., Berner, R., & Beerling, D. J. (2009). The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature, 460(7251), 85–88. https://doi.org/10.1038/nature08133
  • Patra, PK, Houweling, S, Krol, M, Bousquet, P, Belikov, D, Bergmann, D, Bian, H, Cameron-Smith, P, Chipperfield, MP, Corbin, K, Fortems-Cheiney, A, Fraser, A, Gloor, E, Hess, P, Ito, A, Kawa, SR, Law, RM, Loh, Z, Maksyutov, S, Meng, L, Palmer, PI, Prinn, RG, Rigby, M, Saito, R & Wilson, C 2011, ‘TransCom model simulations of CH4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere’, Atmospheric Chemistry and Physics, vol. 11, no. 24, pp. 12813–12837. https://doi.org/10.5194/acp-11-12813-2011
  • Peters GP, R.M. Andrew, J.G. Canadell, P. Friedlingstein, R.B. Jackson, JI. Korsbakken, C. Le Quéré, and A. Peregon 2019, Carbon dioxide emissions continue to grow despite emerging climate policies. Nature Climate Change, 2019. https://doi.org/10.1038/s41558-019-0659-6
  • Prinn, R. G., R. F. Weiss, J. Arduini, T. Arnold, H. L. DeWitt, P. J. Fraser, A. L. Ganesan, J. Garsore, C. M. Harth, O. Hermansen, J. Kim, P. B. Krummel, S. Li, Z. M. Loh, C. R. Lunder, M. Maione, A. J. Manning, B. R. Miller, B. Mitrevski, J. Muhle, S. O'Doherty, S. Park, S. Reimann, M. Rigby, T. Saito, P. K. Salameh, R. Schmidt, P. G. Simmonds, L. P. Steele, M. K. Vollmer, R. H. Wang, B. Yao, Y. Yokouchi, D. Young, and L. Zhou, History of Chemically and Radiatively Important Atmospheric Gases from the Advanced Global Atmospheric Gases Experiment (AGAGE), Earth Syst. Sci. Data, 10, 985-1018, 2018. https://doi.org/10.5194/essd-10-985-2018
  • Rigby, M, Prinn, RG, Fraser, PJ, Simmonds, PG, Langenfelds, RL, Huang, J, Cunnold, DM, Steele, LP, Krummel, PB, Weiss, RF, O’Doherty, S, Salameh, PK, Wang, HJ, Harth, CM, Muhle, J & Porter, LW 2008, ‘Renewed growth of atmospheric methane’, Geophysical Research Letters, vol. 35, no. 22, pp. 2–7. https://doi.org/10.1029/2008GL036037
  • Rigby, M, Prinn, RG, O'Doherty, S, Miller, BR, Ivy, DJ, Muhle, J, Harth, CM, Salameh, PK, Arnold, T, Weiss, RF, Krummel, PB, Steele, LP, Fraser, PJ, Young, D, & Simmonds, PG 2014, ‘Recent and future trends in synthetic greenhouse gas radiative forcing’, Geophysical Research Letters, vol. 41, no. 7, pp. 2623–2630. https://doi.org/10.1002/2013GL059099
  • Rubino, M, Etheridge, DM, Trudinger, CM, Allison, CE, Battle, MO, Langenfelds, RL, Steele, LP, Curran, M, Bender, M, White, JWC, Jenk, TM, Blunier, T & Francey, RJ 2013, ‘A revised 1000 year atmospheric δ13 C-CO2 record from Law Dome and South Pole, Antarctica’, Journal of Geophysical Research: Atmospheres, vol. 118, no. 15, pp. 8482–8499. https://doi.org/10.5194/essd-11-473-2019
  • Rubino, M., Etheridge, D. M., Thornton, D. P., Howden, R., Allison, C. E., Francey, R. J., Langenfelds, R. L., Steele, L. P., Trudinger, C. M., Spencer, D. A., Curran, M. A. J., van Ommen, T. D., and Smith, A. M.: Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica, Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019 , 2019.
  • Saunois, M., A. R Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isakson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murgia-Flores, V. Naik, Y. Niwa, S. Noce, S. O'Doherty, R. J. Parker, C. Peng, S. Pen, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Qing Zhu, Qiuan Zhu, and Q. Zhuang, Global Methane Budget 2000-2017, Earth Syst. Sci. Data, 12, 1561-1623, 2020. https://doi.org/10.5194/essd-12-1561-2020
  • Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., & Pancost, R. D. (2010). Alkenone and boron-based Pliocene pCO2records. Earth and Planetary Science Letters, 292(1–2), 201–211. https://doi.org/10.1016/j.epsl.2010.01.037
  • Steele, P, Krummel, P, van der Schoot, M, Spencer, D, Baly, S, Langenfelds, R, Howden, R, Ward, J, Somerville, N & Cleland, S & 2014, ‘Baseline carbon dioxide monitoring’, in Baseline Atmospheric Program (Australia) 2009-2010, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, Australia, pp. 39-41.
  • Sturrock, GA, Etheridge, DM, Trudinger, CM, Fraser, PJ & Smith, AM 2002, ‘Atmospheric histories of halocarbons from analysis of Antarctic firn air: Major Montreal Protocol species’, Journal of Geophysical Research: Atmospheres, vol. 107, no. 24, pp. 1–14. https://doi.org/10.1029/2002JD002548
  • Thompson, RL, Chevallier, F, Crotwell, AM, Dutton, G, Langenfelds, RL, Prinn, RG, Weiss, RF, Tohjima, Y, Nakazawa, T, Krummel, PB, Steele, LP, Fraser, P, O’Doherty, S, Ishijima, K & Aoki, S 2014, ‘Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion’, Atmospheric Chemistry and Physics, vol. 14, no. 4, pp. 1801–1817. DOI: 10.5194/acp-14-1801-2014
  • Thompson, RL, Dlugokencky, E, Chevallier, F, Ciais, P, Dutton, G, Elkins, JW, Langenfelds, RL, Prinn, RG, Weiss, RF, Tohjima, Y, O’Doherty, S, Krummel, PB, Fraser, P & Steele, LP 2013, ‘Interannual variability in tropospheric nitrous oxide’, Geophysical Research Letters, vol. 40, no. 16, pp. 4426–4431. https://doi.org/10.1002/grl.50721
  • Tian, H, Lu, C, Ciais, P, Michalak, AM, Canadell, JG, Saikawa, E, Huntzinger, DN, Gurney, KR, Sitch, S, Zhang, B, Yang, J, Bousquet, P, Bruhwiler, L, Chen, G, Dlugokencky, E, Friedlingstein, P, Melillo, J, Pan, S, Poulter, B, Prinn, R, Saunois, M, Schwalm, CR & Wofsy, SC 2016, ‘The terrestrial biosphere as a net source of greenhouse gases to the atmosphere’, Nature, vol. 531, no. 7593, pp. 225–228. https://doi.org/10.1038/nature16946
  • Tian, H., R. Xu, J. P. Canadell, R. Thompson, W. Winiwarter, P. Suntharalingam, E. Davidson, P. Ciais, R. B. Jackson, G. Janssens-Maenhout, M. Prather, P. Regnier, N. Pan, G. P. Peters, H. Shi, F. Tubiello, S. Zaehle, F. Zhou, A. Arneth, G. Battaglia, S. Berthet, L. Bopp, A. Bouwman, E. T. Buitenhuis, J. Chang, M. Chipperfield, S. Dangal, E. J. Dlugokencky, J. W. Elkins, B. Eyre, B. D. Hall, A. Ito, F. Joos, P. B. Krummel, A. Landolfi, G. Laruelle, R. Lauerwald, W. Li, S. Lienert, T. Maavara, M. MacLeod, D. Millet, S. Olin, P. K. Patra, R G Prinn, P. A. Raymond, D. Ruiz, G. van der Werf, N. Vuichard, J. Wang, R. F. Weiss, K. C. Wells, C. Wilson, J. Yang, and Y. Yao, (2020) ‘A comprehensive quantification of global nitrous oxide sources and sinks’, Nature 586, 248–256. https://doi.org/10.1038/s41586-020-2780-0
  • Trudinger, CM, Etheridge, DM, Rayner, PJ, Enting, IG, Sturrock, GA & Langenfelds, RL 2002, ‘Reconstructing atmospheric histories from measurements of air composition in firn’, Journal of Geophysical Research: Atmospheres, vol. 107, no. 24, pp. 1–13. DOI: 10.1029/2002JD002545
  • van Vuuren, DP, Edmonds, J, Kainuma, M, Riahi, K, Thomson, A, Hibbard, K, Hurtt, GC, Kram, T, Krey, V, Lamarque, J-F, Masui, T, Meinshausen, M, Nakicenovic, N, Smith, SJ & Rose, SK 2011, ‘The representative concentration pathways: An overview’, Climatic Change, vol. 109, no. 1, pp. 5–31. https://doi.org/10.1007/s10584-011-0148-z

Future climate

  • Chand et al. (2019). Review of tropical cyclones in the Australian region: Climatology, variability, predictability, and trends. Wiley Interdisciplinary Reviews: Climate Change, https://doi.org/10.1002/wcc.602 .
  • Clarke JM, Grose M, Thatcher M, Hernaman V, Heady C, Round V, Rafter T, Trenham C & Wilson L. 2019. Victorian Climate P2013. ‘Long-term Climate Change: Projections, Commitments and Irreversibility’, in: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V & Midgley, PM (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1029–1136. https://www.ipcc.ch/report/ar5/wg1/long-term-climate-change-projections-commitments-and-irreversibility/
  • Di Virgilio, G., Evans, J.P., Blake, S.A., Armstrong, M., Dowdy, A.J., Sharples, J. and McRae, R. (2019). Climate change increases the potential for extreme wildfires. Geophysical Research Letters, 46(14), pp.8517-8526. https://doi.org/10.1029/2019GL083699
  • Dowdy, A.J., Mills, G.A., Timbal, B. and Wang, Y., 2014. Fewer large waves projected for eastern Australia due to decreasing storminess. Nature Climate Change, 4(4), 283-286. https://doi.org/10.1038/nclimate2142
  • Dowdy, A.J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S.L., Evans, J.P., Di Virgilio, G. and McCarthy, N., (2019b). Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific Reports, 9(1), 1-11, 10073 (2019). https://doi.org/10.1038/s41598-019-46362-x
  • Earth Systems and Climate Change Hub. 2020. Scenario analysis of climate-related physical risk for buildings and infrastructure: climate science guidance. Technical report by the National Environmental Science Program (NESP) Earth Systems and Climate Change Science (ESCC) Hub for the Climate Measurement Standards Initiative, ESCC Hub Report No.21. Grose et al. 2020. Insights from CMIP6 for Australia's Future Climate. Earth’s Future, 8: https://doi.org/10.1029/2019EF001469
  • Grose MR, Whetton PH, Risbey JS. 2016. Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes’. Climatic Change. 140: 307-322. DOI:10.1007/s10584-016-1840-9
  • Guerreiro, S.B., Fowler, H.J., Barbero, R., Westra, S., Lenderink, G., Blenkinsop, S., Lewis, E. and Li, X.-F. (2018). Detection of continental-scale intensification of hourly rainfall extremes. Nature Climate Change 8: 803-807. https://doi.org/10.1038/s41558-018-0245-3
  • Hawkins. E., Frame, D., Harrington, L., Joshi, M., King, A., Rojas, M., Sutton, R. 2020. Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown. Geophysical Research Letters 47(6). https://doi.org/10.1029/2019GL086259
  • IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner et al. Cambridge, UK, and New York, NY, USA, Cambridge University Press. https://www.ipcc.ch/report/ar5/wg1/  
  • IPCC (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte et al. Geneva, Switzerland, World Meteorological Organization. https://www.ipcc.ch/srocc/
  • Kirono D.G.C., Round V., Heady C., Chiew F., Osbrough S. (2020). Drought projections for Australia: updated results and analysis of model simulations. Weather and Climate Extremes. https://doi.org/10.1016/j.wace.2020.100280 .
  • Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2019). Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 100(10), pp.1987-2007. https://doi.org/10.1175/BAMS-D-18-0189.1
  • Knutson, T., Camargo, S.J., Chan, J.C., Emanuel, K., Ho, C.H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L. (2020). Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101 (3): E303-E322. https://doi.org/10.1175/BAMS-D-18-0194.1
  • Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G., & Pitman, A. J. (2020). Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophysical Research Letters, 1–9. https://doi.org/10.1029/2020gl087820

How do we know which baseline period to use?

The World Meteorological Organization's standard reference period, for use in monitoring long-term climate change, is the 30-year period 1961–1990. All State of the Climate Climate reports, including State of the Climate 2020, use that baseline period for long-term averages where suitable data are available. It normally uses the full period of available nationwide data for extremes and frequency distributions. Records from the monitoring of the ocean, atmosphere and land can vary in length, influencing the baselines used.

National records across Australia are available for rainfall from 1900, and from 1890 for the small regions with good rainfall gauage coverage in the earlier part of the report, such as the southwest of WA and the southeast of Australia shown in the report. National records are available for monthly temperature, from consistent thermometer screens, from 1910. Digitised daily temperature records become widespread from 1950 onwards, and hence a period beginning in 1951 is used as the initial baseline for daily temperature distributions.

The measurement of atmospheric constituents such as CO2 began in Mauna Loa, Hawaii in 1958, and clean air baseline measurements started in the mid-1970s at Cape Grim, Tasmania.

High-quality satellite altimeter data has been available for monitoring sea level of the oceans surrounding Australia since 1993. Sea level measurements can also be taken from tide gauges along the Australian coastline.

Archives of in situ sea surface temperature measurements extend back more than 160 years, with increasing spatial coverage in recent decades. The number of ocean temperature profile measurements in the upper 700 m have increased since the 1950s. For depths below 2000 m, ocean temperature profiles are largely measured by ship-based surveys (GO-SHIP) since the 1970s. In 2006, the Argo profiling float array achieved near-global coverage for the upper 2000 m.

Satellite measurements started in the late 1970s and provide information about sea-ice, oceans and land.

The concept of pre-industrial as a baseline period for comparison with recent trends is used in the report. This baseline refers to the climate immediately before the acceleration of human influence such as emissions of greenhouse gases from the 1700s. There is no one official pre-industrial baseline, and observations are very sparse before the 20th Century so slightly different baselines are used for different applications. Read more in this article on baselines . For State of the Climate 2020 we have specified in the text, or associated figures, which specific period is being used.

Projections used in this report are from www.climatechangeinaustralia.gov.au  and are generated by global climate models using different greenhouse gas and aerosol emissions scenarios. These projections are generally compared to a 1986–2005 baseline.

Contact us

 
Your contact details
0 / 100
0 / 1900
You shouldn't be able to see this field. Please try again and leave the field blank.

For security reasons attachments are not accepted.