Blog icon


What is it?

Sunlight irradiates one or more photovoltaic components, which can generate electricity. One or more photovoltaic components can be integrated with catalysts to create photoelectrodes or can be electrically connected to standard catalyst-coated electrodes. Hydrogen and oxygen are produced at different (photo)electrodes, separated by a membrane.

Why is it important?

Photoelectrochemical water splitting makes use of sunlight to convert water to hydrogen, with the option of supplementing the process with some electrical energy.


  • Inputs: Water, sunlight, electricity (optional in some designs)
  • By-products: Oxygen
  • Operating temperature: Ambient
  • Energy efficiency: Low (however uses direct sunlight). Efficiencies of 10-30% have been demonstrated for stand-alone (no added electricity) lab-based systems. DOE have set target STH > 20% using low cost materials.


  • Integrated solar capture and hydrogen production
  • Uses sunlight as primary energy source
  • In some designs, additional electrical energy input can be applied
  • Separation of H2 and O2
  • Zero-to-low carbon emissions
  • Can leverage existing solar cell and electrocatalyst technologies


  • Photoelectrodes absorb a limited range of sunlight

RD&D priorities

  • Continue materials development
  • Develop low-cost, stable catalyst and co-catalysts materials
  • Develop low-cost, high-efficiency photoelectrode materials
  • Improve long term stability of photoelectrodes
  • Improve system integration and design
  • Improve membrane and electrode durability
  • Conduct technoeconomic analysis of PEC based solar hydrogen systems versus PV-electrolysis systems

Known active organisations

  • The Australian National University
  • Macquarie University
  • Monash University
  • Queensland University of Technology
  • RMIT University
  • The University of Adelaide
  • The University of Melbourne
  • The University of New South Wales
  • The University of Newcastle
  • The University of Queensland
  • Western Sydney University

Other opportunities like this

  • Makes use of photocatalyst materials, usually as single particles or nanostructured sheets, which uses sunlight to split water to produce hydrogen and oxygen gas.

  • Methanol is conventionally synthesised at large scale from synthesis gas (or syngas), a mixture of hydrogen and carbon monoxide typically at an H₂/CO ratio of 1.8 ~ 2.2, derived through steam reforming of natural gas or steam gasification of coal.

Contact us

Find out how we can help you and your business. Get in touch using the form below and our experts will get in contact soon!

CSIRO will handle your personal information in accordance with the Privacy Act 1988 (Cth) and our Privacy Policy.

First name must be filled in

Surname must be filled in

I am representing *

Please choose an option

Please provide a subject for the enquriy

0 / 100

We'll need to know what you want to contact us about so we can give you an answer

0 / 1900

You shouldn't be able to see this field. Please try again and leave the field blank.