CSIRO FREEDOM OF INFORMATION OFFICE www.csiro.au

Limestone Avenue, Campbell ACT 2601 PO Box 225, Dickson ACT 2602, Australia ABN 41 687 119 230

This document was created in response to a Freedom of Information request made to CSIRO.

Date: 27 June 2011

Request: Documents relating to final carbon foot print audits for the CSIRO over the past five years

Document: Part 1

For more information, please refer to CSIRO's FOI disclosure log at www.csiro.au/FOILog

Australian Government Department of Climate Change and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

NATIONAL GREENHOUSE AND ENERGY REPORT

Commonwealth Scientific and Industrial Research Organisation FOR THE REPORTING PERIOD 01/07/2009 - 30/06/2010

PART A

Reporting under the National Greenhouse and Energy Reporting (NGER) Act 2007

This report refers to the reporting entity, which is any corporation or person obligated to submit a report (the Report) under the NGER Act; including, registered corporations under section 12, a corporation holding a Reporting Transfer Certificate (RTC) under section 22K or an "other person" as declared by the Greenhouse and Energy Data Officer (GEDO) under section 20.

eporting entity is to submit Part A and B report components, which together comprise the Report in the form approved by the GEDO.

This Report must contain any information specified by the NGER legislation in relation to the greenhouse gas (GHG) emissions, energy production and energy consumption from the operation of facilities. Data used to compile the Report must be based on the methods specified in the NGER (Measurement) Determination 2008.

Submitting the Report

This Report is only valid when Part B has been completed in Online System for Comprehensive Activity Reporting (OSCAR) and a printed and signed Part A has subsequently been received by the Greenhouse and Energy Reporting Office. The Part A report is only to be signed after Part B has been completed in OSCAR. If the information provided at Part B has been altered after the signing of Part A, the Report will no longer be valid. To ensure that a valid Report has been provided, please check that the version designated (in the footer of the report) on Part A corresponds with that on Part B. A hardcopy version of Part B does not need to be sent along with the signed Part A.

CORPORATION DETAILS

Reporting Entity name:	Commonwealth Scientific and Industrial Research Organisation				
Identifying Details:	ABN: 41 687 119 230				
Chief Executive Officer (or equivalent):	Dr Megan Clark				

rporation Head Office Street Address:

Limestone Ave CAMPBELL, ACT 2612, AUSTRALIA

Corporation Postal Address:

PO Box 225 DICKSON, ACT 2602, AUSTRALIA

Part A Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Page 1 of 65

Date Created: 12/11/2010

Final

ŗ,

Australian Government Department of Climate Change and Energy Efficiency

CEO (or equivalent) details:

Name: Dr Megan Clark Position: Chief Executive Officer

Address: PO Box 225 DICKSON, ACT 2602, AUSTRALIA

Phone: 0262766621 Email: megan.clark@csiro.au Commonwealth Scientific and Industrial Research Organisation

COMMERCIAL-IN-CONFIDENCE

ABN: 41 687 119 230 REGISTRATION APPLICATION No.: R090819-00534

<u>Contact Person details:</u> Name: Position:

Address:

Phone: Email:

.

Part A Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00 Final Page 2 of 65 COMMERCIAL-IN-CONFIDENCE

Australian Government

r'

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Department of Climate Change and Energy Efficiency REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS AND ENERGY TOTALS FOR THE REPORTING PERIOD 01/07/2009 - 30/06/2010

The table below reports total scope 1 and scope 2 greenhouse gas emissions (GHG), energy produced and energy consumed by the corporate group as reported in detail in Part B of this Report.

		C	HGEMISSIONS		ENERGY			
		Scope II. ((rCO2+e)	(t ©02=e)	Tiotal of Scope 1 and Scope 2 (NCO2-e)	(G))	Energy Produced (CJ)		
	Actual	16,381	114,763	131,144	692,589	888		
\bigcirc	% Value Converted to Value	0	0	0	0	0		
	Corporation. Total	16,381	114,763	131,144	692,589	888		

This report contains data that has been measured using the following methods as outlined in the National Greenhouse and Energy Reporting (Measurement) Determination 2008

Method 1 Known as the default method, derived from the National Greenhouse Accounts methods and is based on national average estimates

Part A Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

ŕ

Australian Government

Department of Climate Change and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

STATEMENTS

Any statements below are system generated for Reports prepared under certain provisions in the NGER legislation.

Aggregated facility data (regulation 4.25):

This Report contains aggregate values on more than 1 facility of the corporation whose operation, in a reporting year:

(a) emits greenhouse gases with a carbon dioxide equivalence of less than 25 kilotonnes; and (b) consumes less than 100 terajoules of energy; and

(c) produces less than 100 terajoules of energy; and

(d) all of those facilities are within 1 State or Territory and are attributable to 1 industry sector in accordance with

Subdivisions 2.4.2 and 2.4.3 of Division 2.4 of Part 2 of the NGER Regulations.

orporate group threshold met:

The corporate group of Commonwealth Scientific and Industrial Research Organisation has met a corporate group threshold prescribed in sections 13 (1)(a),(b), or (c) of the NGER Act during the reporting year and is reporting under Divisions 4.3 to 4.5 of the NGER regulations (regulation 4.02(3)(b)).

VALIDATION WARNINGS

This report contained 0 unresolved warnings listed in Part B of the Report.

Part A Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00 Final

Date Created: 12/11/2010

r,

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

REGISTRATION APPLICATION No.: R090819-00534

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

PRIVACY STATEMENT

Personal Information Under the NGER Act and the NGER Regulations, the Greenhouse Energy Data Officer (the GEDO) and authorised staff have the authority to collect information which may include personal information as defined by the Privacy Act 1988 (Cth). "Personal information", as defined in the Privacy Act, means any Information from which a person's identity is apparent or can be

reasonably ascertained.

In compliance with the Privacy Act, the Greenhouse and Energy Reporting Office of the Department of Climate Change and Energy Efficiency has appropriate measures in place to ensure that personal information is protected. Measures include procedures and systems for the receipt, management and storage of personal information and ongoing monitoring of these arrangements.

Disclosure of information

The GEDO and authorised staff are only able to disclose greenhouse and energy information (which may include personal information) in accordance with the NGER Act or as otherwise required by law.

Information may be disclosed for the following purposes:

dministering a program or collecting statistics relating to greenhouse gas emissions, energy consumption or energy production;

a connection with court or tribunal proceedings, or proposed or possible court or tribunal proceedings under the NGER Act;

facilitating reviews of Australia's compliance with its international obligations relating to reporting of greenhouse gas emissions,

consumption of energy or production of energy; and

• streamlining State and Territory programs in accordance with the objectives of the NGER Act.

The full Privacy Statement for the Department of Climate Change and Energy Efficiency is available online at http://www.climatechange.gov.au/statements/privacy.html.

If you have further questions on privacy of information collected under the NGER Act, please contact the Greenhouse and Energy Reporting Office on 1800 018 831.

Anstralian Government Department of Climate Change

and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41-687 119 230

REGISTRATION APPLICATION No.: R090819-00534

DECLARATION

The CEO (or equivalent) should read the following declaration and sign below

It is the responsibility of the reporting entity to ensure that the information provided in the Report is prepared and supplied in accordance with the requirements set out in the NGER Act and NGER Regulations and that the data is based on methods in the NGER (Measurement) Determination.

Under the NGER Act and NGER Regulations, it is the responsibility of the reporting entity to provide the necessary information in their Report even if someone else assists it in preparing that data.

In order to assist reporting entities to comply with their reporting obligations under the NGER Act and NGER Regulations, NGER Guidance material has been developed by the Commonwealth and is available on the Department's website; www.climatechange.gov.au/reporting. -NGER Guidance material can be used in conjunction with the NGER Technical Guidelines, which were developed to assist stakeholders nderstand and apply the NGER (Measurement) Determination.

It should be noted that neither NGER Guidance nor the NGER Technical Guidelines constitute legal advice. Reporting entities are encouraged to seek independent advice to find out how the NGER Act and its subordinate legislation applies, as it is the responsibility of each reporting entity to satisfy its statutory obligations.

Under sections 19, 20 and 22G of the NGER Act, a reporting entity who fails to provide a Report in compliance with its obligations could be liable for a civil penalty of up to 2,000 penalty units (under the Crimes Act 1914, a penalty unit is currently equal to \$110). Under section 30 of the NGER Acl, a reporting entity may be liable for an additional civil penalty for each day on and after the due date of the Report:

In accordance with section 22 of the NGER Act, a reporting entity is required to maintain records of the activities for which it is responsible in order to demonstrate that it has complied with its obligations under the NGER legislation. Records should be retained for a period of 7 years from the end of the year in which the activities took place. Failure to comply with this directive could be punishable by up to 1,000 penalty units.

By signing below, the Chief Executive Officer (or equivalent), as identified, acknowledges the above declaration and that:

· Parts A and B of this Report are being provided by the identified reporting entity in accordance with the NGER legislation. Either

- this Report is required for a registered corporation's trigger year (within the meaning of subsections 12(1) or (3) of the NGER Act); or

- the corporation was a registered corporation at the end of the financial year to which the Report relates; or

- the corporation was the holder of an RTC in relation to a facility at the end of the financial year to which the Report relates; or

the Report is being provided by an "other person" as declared by the GEDO under s.20 of the NGER Act.
The validation warnings identified in this Report have been noted.

. The Information provided in Parts A and B of this Report has been prepared and supplied in accordance with the requirements set out in the NGER Act, NGER Regulations and NGER (Measurement) Determinations.

Under Division 137 of the Criminal Code II may be an offence to provide false or misleading information or documents to the GEDO in purported compliance with this Act.

I agree to the disclosure by publication of information about the GreenPower purchases or RECs which were voluntarily surrendered by the reporting entity and/or members of its Corporate Group in 2009-10.

Name of CEO (or equivalent) (in full)

			A
DR	MEGAN	ELIZABETH	CLARKIC

Signature of CEO (or equivalent)

Date

Part A Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

Page 6 of 65 COMMERCIAL-IN-CONFIDENCE

Date Created: 12/11/2010

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

¢

REGISTRATION APPLICATION No.: R090819-00534

Where the CEO has not signed this report: The CEO (or equivalent) of a reporting entity may not delegate authority to sign the NGER Report to another person. However, it is acceptable for a senior executive officer, who is officially acting in the absence of the CEO (or equivalent), to sign Part A of the NGER Report. Alternatively, the CEO can authorise another person to sign the Report for and on their behalf. For more information on alternative signatories please contact the Department or visit our website.

The Report has been signed by a senior executive officer, who is officially acting in the absence of the CEO (or equivalent); or
The Report has been signed by a person that has been authorised by the CEO, to sign for and on their behalf (evidence of authorisation must be provided)

Part A Report - Commonwealth Scientific and Industrial Research Organisation

Final

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

Once signed, a copy of Part A should be kept for your records. The signed Part A must be received by the GEDO before the reporting due date. A hardcopy version of Part B does not need to be sent with Part A.

Post: Greenhouse and Energy Data Officer NGER Office Department of Climate Change and Energy Efficiency GPO Box 854 CANBERRA ACT 2601

Reporting entities may alternatively submit the scanned signed Part A to the GEDO by email (reporting@climatechange.gov.au) or facsimile (+61 2 6159 7040). A corporation will be considered to have met its reporting deadline if the scanned signed copy is received by the GEDO, by the deadline. If submission occurs by email or facsimile, the corporation is also requested to send the original hardcopy in the mail.

)r the signed hardcopy of Part A is received by the Greenhouse and Energy Reporting Office, the primary contact will be sent a written

Australian Government Department of Climate Change and Energy Efficiency COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

NATIONAL GREENHOUSE AND ENERGY REPORT

Commonwealth Scientific and Industrial Research Organisation FOR THE REPORTING PERIOD 01/07/2009 - 30/06/2010

PART B

Head Office Postal Address:

PO Box 225 DICKSON, ACT 2602, AUSTRALIA Head Office Street Address:

Limestone Ave CAMPBELL, ACT 2612, AUSTRALIA

Reporting under the National Greenhouse and Energy Reporting (NGER) Act 2007

A reporting entity must submit Part A and B report components, which together comprise the National Greenhouse and Energy Report (the Report).

For registered corporations reporting in accordance with section 19 of the NGER Act, the Report contains information in relation to the GHG emissions, energy production and energy consumption from the operation of facilities under the operational control of the registered corporation or members of the corporation's group during the reporting period. For reporting entities holding an RTC, this Report contains information in relation to the GHG emissions, energy production and energy consumption from the operation of RTC facilities.

If the Report is being submitted by an "other person" as declared by the Greenhouse and Energy Data Officer under section 20 of the NGER Act, the Report only needs to contain the section 19 information that is not in the possession or under control of the registered corporation.

This Report must contain any information specified by the NGER legislation, and data used to compile the Report must be based on the methods specified in the NGER (Measurement) Determination 2008..

Submitting the Report

Part B of this Report is to be completed in the Online System for Comprehensive Activitiy Reporting (OSCAR), however the Report is not valid until a printed Part A report is subsequently signed and received by the Greenhouse and Energy Reporting Office. The Part A report is only to be signed after Part B has been completed in OSCAR. If the information provided at Part B has been altered after the signing of Part A, the Report will no longer be valid. To ensure that a valid Report has been provided, please check that the version designated on Part A corresponds with that on Part B. A hardcopy version of Part B does not need to be sent along with the signed Part A.

NB: if a registered corporation does not meet a threshold under section 13 of the NGER Act, the data tables in this report will be blank, but group member and facility details will be included with a statement to satisfy legislative requirements.

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

ť,

 \mathbf{O}

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230 REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

GREENHOUSE GAS EMISSIONS AND ENERGY TOTALS FOR THE REPORTING PERIOD

The tables below report total scope 1 and scope 2 greenhouse gas emissions (GHG), energy consumed and energy produced by the corporate group if a s.13 threshold is met for the reporting period.

			BHGIEMISSIONS		ENERGY			
		scope.TU (tr:Co2=e)	(t/CO₂~e),	1.41. CA 11-12 BERLEY FORT OF COMMENCE ALL ALL ALL	Energy Consumed: (CJ)	17 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -		
	Sector Actual	16,381	114,763	131,144	692,589	888		
)	Convertedator Convertedator Value	0	0	0	0	0		
	Corporation	16,381	114,763	131,144	692,589	888		

60	CHT STORE	GHG Scope	1.Emission By	//Gas (trCO2=e) sie USUlphur/Hexa	TIOTTAL
		Nitrous Oxide	ine in a biotection of the	HydrolFiluoro	Fluoride	
16,345	10	26	0	0	0	16,381

Part B Report - Commonwealth Scientific and Industrial Research Organisation

¢

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

REPORTING SMALLER FACILITIES BY ESTIMATING EMISSIONS AND ENERGY (Reg. 4.26)

Smaller facilities that are below GHG emissions or energy levels defined in regulation 4.26 can be reported as an estimated percentage of the corporate group's totals. The values of GHG emissions and energy reported under this regulation are based on the following percentage estimates. GHG emissions and energy data is not required to be reported elsewhere for facilities that are reported under this regulation.

Number of facilities	·GHG'Emissions)	iEnergy:Rtoolused	ense Energy Oonsumed
reported as %	(%)	(۶/۵)	(%)
0	0	0	0

This report contains data that has been measured using the following methods as outlined in the NGER (Measurement) Determination 2008:

Method 1 Known as the default method, derived from the National Greenhouse Accounts methods and is based on national average estimates

REPORTING ASSESSMENT OF UNCERTAINTY UNDER NGER REGULATION 4.17A

The NGER Regulations require corporations to include the amount of uncertainty associated with estimates of scope 1 emissions for their corporate group in their 2009-10 report. In accordance with Chapter 8 of the NGER Determination, uncertainty is to be assessed for emissions estimates so that a range for statistical uncertainty is provided within a 95% confidence level. The NGER Determination currently sets out the uncertainty levels for emissions factors and energy content of activities to enhance Method 1 calculations. If there are no specific guidelines in the determination, uncertainty of emissions estimates are to be assessed in accordance with the GHG protocol guidance on uncertainty assessment in the GHG Inventories and Calculating Statistical Parameter Uncertainty (September 2003). Further guidance on calculating uncertainty is provided in the NGER (Measurement) Determination.

It is recognised that some corporations may not be in a position to provide uncertainty figures, as the amendments took effect halfway through a reporting year. Corporations are still encouraged to include uncertainty figures in their 2009-10 report wherever possible.

The GEDO has stated that he will not take compliance action for failure to meet the uncertainty reporting requirement until the 2010-11 reporting year.

VOLUNTARY PROVISION OF GREENPOWER AND RECS INFORMATION

This reporting entity has elected to identify its individual GreenPower purchases and/or voluntarily surrendered renewable energy certificates (RECs). The provision of this information is not required under the NGER Act and does not comprise part of a reporting entity's Report.

In the 2009-10 financial year the reporting entity and/or members of its corporate group purchased:

21694 MWh of GreenPower; and/or 0 MWh of RECs which were voluntarily surrendered to reduce the greenhouse gas emissions attributed to their electricity use.

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Page 11 of 65

Final

Australian Government Department of Climate Change

and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

STATEMENTS

çı

Any statements below are system generated for Reports prepared under certain provisions in the NGER legislation.

Aggregated facility data (regulation 4.25):

This Report contains aggregate values on more than 1 facility of the corporation whose operation, in a reporting year: (a) emits greenhouse gases with a carbon dioxide equivalence of less than 25 kilotonnes; and (b) consumes less than 100 terajoules of energy; and

(c) produces less than 100 terajoules of energy; and
(d) all of those facilities are within 1 State or Territory and are attributable to 1 industry sector in accordance with Subdivisions 2.4.2 and 2.4.3 of Division 2.4 of Part 2 of the NGER Regulations.

Corporate group threshold met:

he corporate group of Commonwealth Scientific and Industrial Research Organisation has met a corporate group threshold prescribed in sections 13 (1)(a),(b), or (c) of the NGER Act during the reporting year and is reporting under Divisions 4.3 to 4.5 of the NGER regulations (regulation 4.02(3)(b)).

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Page 12 of 65

Date Created: 12/11/2010

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

CORPORATE SUMMARY

Scope 1 Greenhouse Gas Emissions Summary

Source/Name	Activ/by/Data/Name	Activity Data Context Name	Amount.	เป็นไป	Scope [/. .(t/CO2-te)]
Other Stationary	Diesel Oil	Non-transport	30	kL	80
Other Stationary	Liquefied petroleum gas	Non-transport	3	кL	5
Other Stationary	Other natural gas liquids Non-transport		tonnes	3	
Other Stationary	Town gas Non-transport 227,173		GJ	13,621	
ransport	Diesel Oil	Transport	17	kL	46
Transport			315	кL	848
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport	0	kL	0
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	3	kL	0
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	90	kL	. 214
Transport			639	kL	1,463
Transport	Liquefied petroleum gas	Transport	2	kL	3
Transport	Liquefied petroleum gas	Transport - Post 2004 vehicles	13	kL	20
				TOTAL:	16,305

Scope 2 Greenhouse Gas Emissions Summary

Source Name:	Activity Data Name	Act Vity Data Context Name	Amount	Uniț	(tiCO2-re)
nergy commodilies	Electricity	Energy commodity	118,310,795	kWh	114,763
γ. 		********************************* ******		TOTAL:	114,763

Part B Report - Commonwealth Scientific and Industrial Research Organisation

C-

ť

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

......

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Energy Consumption Summary

Source Name	ActivityType	Activity Type	Amount	Unit	(Gonverted) Amount/(CJ))
Energy commodities	Electricity	Energy commodity	118,310,795	kWh	425,919
Other Stationary	Town gas	Non-transport	227,173	GJ	227,173
Other Stationary	Other natural gas liquids	Non-transport	1	tonnes	51
Other Stationary	Diesel Oil	Non-transport	30	kL	1,150
Other Stationary	Liquefied petroleum gas	Non-transport	3	kL	87
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	90	kL	3,079
ransport	Diesel Oil	Transport	17	kL.	659
Transport	Liquefied petroleum gas	Transport	2	kL	55
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport	0	k∟	10
Transport	Gasoline (olher than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	639	kL	21,865
Transport	Diesel Oil	Transport - Post 2004 vehicles	315	kL.	12,144
Transport Liquefied petroleum gas		Transport - Post 2004 vehicles	13	kL	337
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	3	kL	60
				TOTAL:	692,589

Energy Production Summary

generation		i			T	OTAL:	888
Electricity (thermal generation)	155,822	kWh					561
ctricity (solar generation)	90,754	kWh					327
			outside the operation of the s		Produced for supply to an electricity transmission or distribution network		Mamount ((CJ))

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00 Final Page 14 of 65 COMMERCIAL-IN-CONFIDENCE

Australian Government Department of Climate Change

and Energy Efficiency

Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230 REGISTRATION APPLICATION No.: R090819-00534

CORPORATE STRUCTURE (TABLE OF CONTENTS) INCLUDING EMISSIONS SUMMARY

Emissions Summary By Facility				In the second				
Documenta Reference Number	dentity/Name		Scope II ((I.CO2-e))	(tCO25C)	Scope il and:	(GJ)	Phoduced:	
1	Australian Animal Health Laboratory (AAHL)	Facility	3,648	16,409	20,057	107,678	0	
2	CSIRO-ACT	Facility Aggregate	4,737	20,122	24,859	157,832	0	
3	CSIRO-NSW	Facility Aggregate	2,342	24,631	26,973	137,982	888	
4	CSIRO-NT	Facility Aggregate	3	235	238	1,290	0	
5	CSIRO-QLD	Facility Aggregate	254	7,887	8,140	35,699	0	
6	CSIRO-SA	Facility Aggregate	459	4,206	4,665	27,174	0	
7	CSIRO-TAS	Facility Aggregate	83	885	968	15,073	0	
8	CSIRO-VIC	Facility Aggregate	4,516	32,424	36,939	170,404	0	
9	CSIRO-WA	Facility Aggregate	341	7,965	8,305	39,456	C	

CEO (or equivalent) details:

Name: Dr Megan Clark

Position: Chief Executive Officer

Address: PO Box 225 DICKSON, ACT 2602, AUSTRALIA

Phone: 0262766621 Email: megan.clark@csiro.au

Contact Person details:

Name:

Position:

Address:

Phone: Email:

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Page 15 of 65

Date Created: 12/11/2010

τ,

ť

Australian Government Department of Climate Change and Energy Efficiency Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230 REGISTRATION APPLICATION No.: R090819-00534

1. Facility - Australian Animal Health Laboratory (AAHL)

The following tables summarise greenhouse gas emissions and energy data for this facility during the reporting period.

		(shg en	VISSIONS			EN EN	ERGY	
			Constant statistic	ipe 2. (02-e)	and the second of the second designed of the second		Energy Consumed	d: Ehergy/Produce	
	3,64	3,648		16,409		20,057	107,678	0	
(CHC Sco	pe	Emission By	/ Gas.(t/CO2-e))		
ς.	CO2A Carbon/DioXide	. C Met	Har	NzO Nitrous Ox	ski znaja	Peffluorocation	s HECS. Hivero Fluoro F Carbonse	SUlphuriHexa Fluoride	TOTAL
	3,644	110000000000000000000000000000000000000	2	2	#130044344	0	0	0	3,648
	Facility Detail	<u>s</u>							
	Op	erational	Control:	Commony control ov			ndustrial Research	Organisation has op	perational
	Facilit	/ Street A	ddress:	5 Portarlington Road NEWCOMB, VIC 3219, AUSTRALIA					
	Geogra	hic Coor	dinates: Region:	38.153°S, 144.387°E VIC					
		ANZS	IC Code:	691					
		l	Division:	Professio	nal, S	Scientific and Te	chnical Services		
		Sub	division:	Professic Design a	nal, S nd Re	Scientific and Te elated Services)	chnical Services (Ex	cept Computer Sys	stem '
			Group:	Scientific	Rese	earch Services			
	\bigcirc		Class:						
		iber of da erational		365					

Facility Data

Australian Government

Department of Climate Change and Energy Efficiency

Scope 1

n

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

	OX STREAM PROFESSION	Activity (Data/Name:	Activity Data Context Name	(Griteria)	Amount	. Units	, Energy Gontent SFactore	(Energy) Content	Emission Factors	Gases		(Scopell t. CO2-e Galiboni Dioxide Equivalent?
		Diesel Oil	Non-	A	30	kL	38.6	1,150	69.200	CO2	Method 1	80
ן (Stationary		transport		:				0.100	CH₄	Method 1	0
	1								0.200	N₂O	Method 1	0
	Other	Town gas	Non-	А	57,116	GJ	1	57,116	59.900	CO₂	Method 1	3,421
	Stationary		transport						0.030	CH₄	Method 1	2
									0.030	N₂O	Methoḋ 1	2
Transport Transport	Transport	Diesel Oil	Transport -	A	1	kL	38.6	43	69.200	CO2	Method 1	3
			Post 2004 vehicles						0.010	CH₄ _.	Method 1	0
									0.600	N₂O	Method 1	0
	Transport	Diesel Oil	Transport	A	0	kL	38.6	7	69.200	CO₂	Method 1	0
									0.200	CH₄	Method 1	0
									0.500	N₂O	Method 1	0
	Transport	Ethanol for	Transport -	A	0	kL	23.4	1	0.000	CO₂	Method 1	0
(use as a fuel in an	Post 2004 vehicles						0.200	CH₄	Method 1	0
		internal combustion engine							0.200	N₂O	Method 1	0
	Transport	Ethanol for	Transport	A	0	kL	23.4	0	0.000	CO2	Method 1	0
		use as a fuel in an							1.200	CH₄	Method 1	0
		internal combustion engine							2.200	N2O	Method 1	0
	Transport	Gasoline	Transport -	- A	24	k kL	34.2	812	66.700	CO2	Method 1	54
		(other than for use as	Post 2004 vehicles						0.020	CH₄	Method 1	0
		fuel in an aircraft)							0.200	N2O	Method 1	0

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Australian Government

۲,

Department of Climate Change and Energy Efficiency Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Transport	Gasoline	Transport	А	4	kL	34.2	132	66.700	CO2	Method 1	9
	(other than							0.600	CH₄	Method 1	0
	for use as						}				
	fuel in an							2.300	N₂O	Method 1	0
	aircraft)								l		
						<u>1</u>	· · · · · · · · · · · · · · · · · · ·			TOTAL:	3,57

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

Waste incineration

Source Information

iName	Entered/Amount	Unit	
Total waste incinerated	87.36	tonnes	ĺ.

Scope 2

TOTAL:				Lifeldy commodities
3,449,642 kWh	13,449,6	Energy commodity	Electricity	Energy commodities
nounts Units	Criteria Amounts	Activity Data Context Name	Activity Data Name .	"Source'Name

Final

Australian Government

Department of Climate Change and Energy Efficiency

c١

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

Source!Name	Activity Type	Activity type context	Wsage)	Criteria .	Amount	Units	Energy Content Factor	Converted: /Amount (GJ))
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	3.864	. kL	34.2	132
Transport	Diesel Oil	Transport	Combusted	A	0.18	кL	38.6	7
ransport	Ethanol for use as a fuel in an internal combustion engine	Transport	Combusted	A	0.004	KL.	23.4	0
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	23.736	kL.	34.2	812
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	А	1.105	kL.	38.6	43
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	Combusted	A	0.026	кL	23.4	1
	1	·····	<u> </u>		· · · · · · · · · · · · · · · · · · ·		TOTAL:	994

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

ENDER STATE AND	Activity Type	contayt	Usage	Criteria	/Amount:	Units	Content	Converted Amount (GJ)
her Stationary	Town gas	Non-transport	Combusted	A	57,116	GJ	1	57,116
Other Stationary	Diesel Oil	Non-transport	Combusted	· A	29.78	kL.	38.6	1,150
			L				TOTAL:	58,266

Energy consumed by means other than combustion

Source/Name	Activity.Type	Activity type context	100203/http://www.ingtoingtoingtoingtoingtoingtoingtoingto	2Criteria			Content IFactor	Converted Amount (GJ)
Energy commodities	Electricity	Energy commodity			13,449,642	kWh	0.004	
	<u></u>						TOTAL:	48,419

Part B Report - Commonwealth Scientific and Industrial Research Organisation

р

COMMERCIAL-IN-CONFIDENCE

Australian Government Department of Climate Change and Energy Efficiency Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Summary Table

Categories	Converted Amount	Units ،
Amount of energy consumed by means of combustion	59,260	GJ
Energy consumed by means other than combustion	48,419	GJ
TOTAL:	107,678	GJ

Australian Government Department of Climate Change

and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

2. Facility Aggregate - CSIRO-ACT

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

			GHGIEMIS	SIONS		ENE	RGY	
	1034778594507595	Souther 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			altof Scope 1 - I ndiScope 2	Energy Consumed	Energy Produc (GJ)	ed
		A STOLEY CALLS STOLE		ten en sen statistik samtekov	(ti@02=e)			
\cap)	4,737	20,12	2	24,859	157,832	0	
		a an				o weo o		
1		Carlo Carlo Age 1		le scope i	Emission by	Gas (tiCO2=e)		
		ant Control (H42 mil 1	NzÖ	Renfluorocarbons	HRCS	SulphuriHexa	
			H42 mil 1	CONTRACTOR OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIP	Renfluorocarbons	HRC5		

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region:	ACT
BusinessUnit:	
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

ķ

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

And the second	Address	GEO Coordinates
CSIRO-ACT-Acton	Australian National University North Road ACTON, ACT 2601	35.275°S, 149.121°E
CSIRO-ACT-Black Mountain	Clunies Ross Street BLACK MOUNTAIN, ACT 2601	35.272°S, 149.116°E
CSIRO-ACT-Campbell	Limestone Avenue CAMPBELL, ACT 2612	35.276°S, 149.145°E
CSIRO-ACT-Ginninderra	Barton Highway BELCONNEN, ACT 2617	35.197°S, 149.085°E
CSIRO-ACT-Gungahlin	Bellenden Street CRACE, ACT 2911	35.220°S, 149.127°E
)SIRO-ACT-Tidbinbilla	421 Discovery Drive Tidbinbilla HUME, ACT 2620	35.402°S, 148.981°E
CSIRO-ACT-Yarralumla	Banks Street YARRALUMLA, ACT 2600	35.305°S, 149.093°E

Facility Aggregate Data

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

Scope 1

Australian Government Department of Climate Change

and Energy Efficiency

	Source) Name	Activitý Data Name	E-2012 12:57 (2012)	Gniteria	ZAmount-	Units	Ehergy Content Factor	Energy Content	Emission Ractors	(Gases)		Scopell t CO2ne Carbon DioXide Equivalent
	Other	Town gas	Non-	A	58,145	GJ	1	58,145	59.900	CO₂	Method 1	3,483
1	Stationary)		transport						0.030	CH₄	Method 1	2
	, 								0.030	N₂O	Method 1	2
	Transport	Diesel Oil	Transport -	А	240	kL	38.6	9,278	69.200	CO₂	Method 1	642
			Post 2004 vehicles						0.010	CH₄	Method 1	0
									0.600	N₂O	Method 1	6
	Transport	Diesel Oil	Transport	A	5	kL	38.6	206	69.200	CO2	Method 1	14
									0.200	CH₄	Method 1	0
									0.500	N2O	Method 1	0
	Transport	Ethanol for	Transport -	A	1	kL.	23.4	19	0.000	CO2	Method 1	0
		use as a fuel in an	Post 2004 vehicles						0.200	CH₄	Method 1	0
		internal combustion engine							0.200	N₂O	Method 1	0
C	ransport	Ethanol for	Transport	A	0	kL.	23.4	3	0.000	CO2	Method 1	0
~		use as a Ifuel in an							1.200	CH₄	Method 1	0
		internal combustion engine					5		2.200	N₂O	Method 1	0
	Transport	Gasoline	Transport -	A	226	kL	34.2	7,729	66.700	CO2	Method 1	516
		(other than for use as	Post 2004 vehicles						0.020	CH₄	Method 1	0
		fuel in an aircraft)							0.200	N₂O	Method 1	2
	Transport	Gasoline	Transport	A	23	kL	34.2	778	66.700	CO2	Method 1	52
		(other than Ifor use as							0.600	CH₄	Method 1	0
		fuel in an aircraft)							2.300	N2O	Method 1	2

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Transport	Liquefied	Transport -	A	9	kL	26.2	242	59.600	CO2	Method 1	14
	petroleum	Post 2004 vehicles						0.300	CH₄	Method 1	0
	gas	Venicies						0.300	N₂O	Method 1	0
Transport	Liquefied	Transport	A	2	kL	26.2	.39	59.600	CO2	Method 1	2
	petroleum							0.600	CH₄	Method 1	0
	gas							0.600	N2O	Method 1	0
		<u>_ </u> _			L		<u> </u>	<u> </u>	1	TOTAL:	4,737

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

Scope 2

Source Name	Activity/Data/Name	Activity/Data Context Name	Criteria	Amounts	Units	Scope2(t)CO2-e Carbon Dioxide
						Equivalent.
Energy commodities	Electricity	Energy commodity		22,608,711		20,122
		<u> </u>			TOTAL:	20,122

Australian Government

Department of Climate Change and Energy Efficiency

o

•

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

(Source)Name	Activity Type	Activity.type context	Usage	Griteria	Amount	Units -	Energy Content Factor	Converted Amount (GJ)
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	22.749	kL	34.2	778
Transport	Diesel Oil	Transport	Combusted	А	5.349	kL	38.6	206
Transport	Liquefied petroleum gas	Transport	Combusted	A	1 <i>.</i> 505	kL	26.2	39
Transport	Ethanol for use as a fuel in an Internal combustion engine	Transport	Combusted	A	0.133	kL	23.4	3
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	225.986	kL	34.2	7,729
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	A	240.372	kL	38.6	9,278
Transport	Liquefied petroleum gas	Transport - Post 2004 vehicles	Combusted	A	9.245	kL	26.2	242
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	Combusted	A	0.817	kL	23.4	. 19
	Tengine	l	_ <u></u>	<u> </u>	J		TOTAL:	18,295

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

<u>}</u>			The second second second second second second	Real Property of the second statement of the second statement of the second statement of the second statement of	Contraction States States and	DIST_UNTED STATES	REAL PROPERTY AND DESCRIPTION OF	TO THE REAL PROPERTY OF
Source Name	Activity/Type >>	Activity type	Usage	Criteria	Amount	Units	Addition of the second s	Converted,
		context					Content Factor	
							Factor	
	Contraction of the second second	No Verminia de l'Autoritation de la seconda d	Reconstruction of the second		58,145	GJ	1	58.145
Other Stationary	Town gas	Non-transport	Combusted	A	56,145	65	1	00,140
	1	······································					TOTAL:	58,145

Energy consumed by means other than combustion

Source Name	Activity Type:	Activity type context	Usage)	Criteria	/Amount	Units	Content	Converted Amount (GJ)
Energy commodities	Electricity	Energy commodity			22,608,711	kWh	0.004	81,391
commodities	1	L	L	<u></u>			TOTAL:	81,391

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Page 25 of 65

Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Summary Table

Categories	Converted /Amount	Units
Amount of energy consumed by means of combustion	76,440	GJ
Energy consumed by means other than combustion	81,391	GJ
TOTAL	157,832	GJ

Australian Government Department of Climate Change and Energy Efficiency Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

3. Facility Aggregate - CSIRO-NSW

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

				GHG EI	MISSIONS				ENE	RGY	
		see a part of the second second	1.	si Sc	ope 2	Tiot	all of Scope 1	Ene	ergy/Consumed	Energy Produc	ed
		:: i(t ©02	-(e)				((t(CO2-e))		(GJ)		
\bigcap)	2,342	2	24	4,631		26,973		137,982	888	
			i poposi de la composición de la composición de l		GHG Sco	pe.1	Emission B	//Ga	as ((t CO2-e))		
		COX	C		N2O		Rerflüorocafbor	15	HF@s HydroiFluoro	Sulphur Hexa Fluoride	TIOTIAL
	Carl	oniuloxide	met	alle s	A STATES				Carbons 2		
ſ		2,336	1	2	4		0		0	0	2,342

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region: BusinessUnit:	NSW
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

0

2

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

Facility/Name:	Address	GEO.Coordinates
CSIRO-NSW-Armidale - Chiswick	New England Highway ARMIDALE, NSW 2350	30.608°S, 151.545°E
CSIRO-NSW-Narrabri	ATNF Narrabri Paul Wild Observatory NARRABRI, NSW 2390	30.313°S, 149.563°E
CSIRO-NSW-Griffith	Research Station HANWOOD, NSW 2680	34.319°S, 146.068°E
CSIRO-NSW-Lindfield	Bradfield Road LINDFIELD WEST , NSW 2070	33.783°S, 151.150°E
CSIRO-NSW-Marsfield	Corner Vimiera & Pembroke Roads MARSFIELD, NSW 2122	33.773°S, 151.096°E
SIRO-NSW-Myall Vale	Wee Waa Road Myall Vale NARRABRI, NSW 2390	30.206°S, 149.595°E
CSIRO-NSW-Newcastie	Steel River Estate 10 Murray Dwyer Circuit MAYFIELD WEST, NSW 2304	32.883°S, 151.727°E
CSIRO-NSW-North Ryde	Riverside Corporate Park 11 Julius Avenue NORTH RYDE, NSW 2113	33.796°S, 151.141°E
CSIRO-NSW-Parkes	ATNF Parkes Observatory 473 Telescope Road PARKES, NSW 2870	32.998°S, 148.263°E
CSIRO-NSW-Mopra	Lot 43 off John Renshaw Pkwy COONABARABRAN, NSW 2357	31.273°S, 149.064°E

Facility Aggregate Data

,n

¢.

Australian Government Department of Climate Change and Energy Efficiency

Scope 1

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

Emission Gases Method Scopellit 4 Activity Energy Energy Griteria Units Source Activity mount CO2-e Factor Content Content Data Data Name Carlbon Facto Context Dioxide Name Equivalent Method 1 3 60,400 CO2 51 46.5 1 tonnes Other Non-A Other natural gas transport Stationary CH₄ Method 1 0 0.060 liquids 0.200 Method 1 0 N₂O Method 1 1,955 32,646 59.900 CO₂ 1 Non-А 32,646 GJ Other Town gas Stationary transport 1 0.030 CH₄ Method 1 Method 1 1 N2O 0.030 55 CO₂ Method 1 799 69.200 21 kL 38.6 Transport -А Diesel Oil Transport Post 2004 CH₄ Method 1 0 0.010 vehicles 0 N2O Method 1 0.600 CO₂ Method 1 9 69.200 130 3 kL 38.6 А Diesel Oil Transport Transport CH₄ Method 1 0 0.200 0 0.500 N2O Method 1 0 CO2 Method 1 0.000 23.4 21 1 kL A Ethanol for Transport Transport Post 2004 use as a 0 CH₄ Method 1 0.200 vehicles fuel in an Method 1 0 0.200 N2O internal combustion engine 0 CO2 Method 1 0.000 0 kL 23.4 3 А Ethanol for Transport Transport use as a 0 1.200 CH₄ Method 1 fuel in an 0 2.200 N₂O Method 1 internal combustion engine 270 4,042 66.700 CO2 Method 1 34.2 118 kL Gasoline Transport -А Transport Post 2004 (other than 0 0.020 CH₄ Method 1 for use as vehicles 0.200 N₂O Method 1 1 fuel in an aircraft)

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Commonwealth Scientlfic and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

c

71.

REGISTRATION APPLICATION No.: R090819-00534

Fransport	Gasoline	Transport	A	19	kL	34.2	658	66.700	CO₂	Method 1	44
	(other than							0.600	CH₄	Method 1	0
	for use as									 	
	fuel in an							2.300	N₂O	Method 1	2
	aircraft)								1	1 1	

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

_cope 2

	L.,				TOTAL:	24,631
Energy commodities	Electricity	Energy commodity		27,675,524	kWh	24,631
Source/Name	ACTIVITY Data Name	Activity Data Contexti Name	Cinera	.'Amounts	ET SCHIZEZ PERSON AND	Scope211:CO2=e Carbon Dioxide Equivalent:

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

r,

ENERGY PRODUCTION

Electricity Production

.

	Methods of Rrotluction		Produced/fonthe operation of the facility	Units	Produced for use outside the operation of the faolity	Produced for supply/toran electricity transmission.or distribution network		Converted: Amount (GJ)
	Electricity (solar generation)		90,754	kWh				327
C	ectricity (thermal		155,822	kWh				561
1		,,	I	1	<u> </u>	 	TOTAL:	888

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

Australian Government Department of Climate Change

and Energy Efficiency

5

154

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

Source Name	Activity Type:	Activity type context	Usage	· Criteria	Amount	Units	Energy Content Factor	(Converted Amount (GJ))
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	19.239	kL	34.2	658
Transport	Diesel Oil	Transport	Combusted	A	3.37	kL	38.6	130
-ransport	Ethanol for use as a fuel in an internal combustion engine	Transport	Combusted	A	0.145	kL.	23.4	
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	118.18	kL	34.2	4,042
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	A	20.702	kL.	38:6	799
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	Combusted	A	0.892	κL	23.4	21
		1	.)	.l		<u>. </u>	TOTAL:	5,653

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

	Source/Name	Activity Type	Activityitype .context	*145000011100000000000000000000000000000	Criteria	E CONTRACTOR OF A STATE	Units	Content	Converted: /Amount .((GU)
_	ົງther Stationary	Town gas	Non-transport	Combusted	A	32,646	GJ	1	32,646
\	Other Stationary	Other natural gas liquids	Non-transport	Combusted	A	1.089	tonnes	46.5	
			1					TOTAL:	32,697

Energy consumed by means other than combustion

	<u>l</u>						TOTAL:	99,632
Energy commodities	Electricity	Energy commodity			21,010,02-1			
THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE	Provinsing and a second second second				27,675,524	kWh	0.004	99,632
		context					Content Factor	
SourcetName	Activity Type	ActivityItype	Usage	Criteria	Amount	Units	Energy	Converted

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Final

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Summary Table

 κ

n,

Categories	Converted Amount	Units
Amount of energy consumed by means of combustion	38,350	GJ
Energy consumed by means other than combustion	99,632	GJ
TOTAL:	137,982	GJ

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

Page 33 of 65

0

Australian Government

Department of Climate Change and Energy Efficiency COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

4. Facility Aggregate - CSIRO-NT

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

		GHGIE	MISSIONS		ENE	RGY	
				otairof Scope I			
	(5002	-e) (€		and Scope 2 (t.CO2=e)			
\bigcirc	3	and a second	235	238	1,290	0	
			GHG Scope	1 Emission By	[Gas ((I-CO2-6))]		
	CO2	CHA .	lin a NzO	IPerfluorocarbon	HECS	Sulphur/Hexa	TOTAL
Car	Bon Dioxide	Methane	NitroustOxide		Hydro/Fluoro Carbons		

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region: BusinessUnit:	NT
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

Hacility/Name	Address	GEOlCoordinates
CSIRO-NT-Alice Springs	50 Spicer Street ALICE SPRINGS, NT 0872	23.696°S, 133.862°E
CSIRO-NT-Darwin	Vanderlin Drive Berrimah BERRIMAH, NT 0828	12.411°S, 130.921°E

Facility Aggregate Data

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

61

and the second se

Australian Government Department of Climate Change and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

Scope 1

Source Name	Activity Data"Name	Data	ICriteria	Amount.	Units	Content Ractor	Content	Factors			Scopell t (CO2-e Carbon DioxIde (Equivalent)
Transport	Gasoline	Transport -	A]	kL	34.2	39	66.700	CO₂	Method 1	.3
\downarrow	(other than for use as	Post 2004 vehicles						0.020	CH₄	Method 1	0
Ý	fuel in an aircraft)	Venicies						0.200	N₂O	Method 1	0
Transport	Gasoline	Transport	A	0	kL	34.2	6	66.700	CO2	Method 1	0
	(other than for use as							0.600	CH₄	Method 1	0
	fuel in an aircraft)							2.300	N2O	Method 1	0
	<u> </u>	L	I	1						TOTAL:	3

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

Scope 2

	Source/Name	Activity:DataName	Activity Data Context Name	Criteria	Amounts	Unis	Scope2 t CO2-e tCarbon DloxIde Equivalent.	
5	Energy commodities	Electricity	Energy commodity		345,770	kWh	235	
		1	<u>.</u>			TOTAL:	235	
								1

n?

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

REGISTRATION APPLICATION No.: R090819-00534

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

Source Name	Activity Type	Activity/type context	Usage:	Criteria	Amount	.Units	Energy Content Factor	Converted Amount (GJ)
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	0.186	kL	34.2	6
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	1.14	kL	34.2	39
	1 ····						TOTAL:	45

Energy consumed by means other than combustion

Source Name	Activity Type	Activity/type context	-Wsąge	Criteria	Amount:	Units	Content Factor	(GJ)
Energy commodities	Electricity	Energy commodity			345,770	kWh	0.004	1,245
	L						TOTAL:	1,245

Summary Table

Categories	Converted Amount	Units
Amount of energy consumed by means of combustion	45	GJ
Energy consumed by means other than combustion	·1,245	GJ
TOTAL:	1,290	GJ

(1)

Commonwealth Scientific and Industrial Research Organisation

Australian Government

ABN: 41 687 119 230

Department of Climate Change and Energy Efficiency **REGISTRATION APPLICATION No.: R090819-00534**

5. Facility Aggregate - CSIRO-QLD

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

		GHGIE	MISSIONS		ENE	RGY	
	Scope				Energy Consumed	Energy Produc	edi
	(t)GO2	÷e) (0 (and Scope 2. ((CD2=e)	(G))		
\frown	254	1992) SALASICI (SALASICA)	7,887	8,140	35,699	. 0	
			GHG Scope	1 Emission By	.Gas ((t.C.@258));		
	COLUMN	GH4	-N2O	Renfluorocarbon	HFCS	SulphuriHexa	ΠΟΤΑΈ
IC.	arbon (Dioxide)	Methane	Nitrous@xide		Hydro/Fluoro Carbons	HIUORIOE	
1.000	251	0	2	0	0	0	254

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region: - BusinessUnit:	QLD
Dusinessum.	
ANZSIC Code:	691 .
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

 \mathbf{c}

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

FacilityName	Address 4	GEO.Coordinates
CSIRO-QLD-Atherton	Maunds Road ATHERTON, QLD 4883	17.258°S, 145.484°E
CSIRO-QLD-Cannon Hill	Corner Creek & Wynnum Roads CANNON HILL, QLD 4170	27.468°S, 153.095°E
CSIRO-QLD-Cleveland	233 Middle Street CLEVELAND, QLD 4163	27.527°S, 153.270°E
CSIRO-QLD-Indooroopilly	120 Meiers Road INDOOROOPILLY, QLD 4068	27.511°S, 152.996°E
CSIRO-QLD-Pullenvale	1 Technology Court (off Bainbridge Drive) PULLENVALE, QLD 4069	27.528°S, 152.911°E
IRO-QLD-Rockhampton-Belmont	Bruce Highway QLD	23.216°S, 150.431°E
CSIRO-QLD-Townsville	University Drive TOWNSVILLE, QLD 4810	19.328°S, 146.758°E
CSIRO-QLD-Rockhampton - Rendel	Bruce Highway (Ibis Avenue) KAWANA, QLD 4701	23.322°S, 150.516°E
CSIRO-QLD-Woodstock	4073 Flinders Highway WOODSTOCK, QLD 4816	19.288°S, 146.796°E
CSIRO-QLD-Weipa	Evans Landing WEIPA, QLD 4874	12.662°S, 141.849°E

Facility Aggregate Data

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

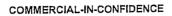
GREENHOUSE GAS EMISSIONS

	The LOCAL STREET, BOARD COLUMN	Activity Data Name	-Activity IData Scontexts Name	Gritenia	Amount:	Units:	Energy Content Hactor	Energy Content	Emission Factors	Gases	Method	Scopel t CO2-e Carbon Dioxide Equivalent:
ł	Other	Liquefied	Non-	Α	'3	kL	25.7	87	59.600	CO2	Method 1	5
Ċ	tationary	petroleum gas	transport						0.100	CH₄	Method 1	0
		5							0.200	N₂O	Method 1	0
	Other	Town gas	Non-	A	315	GJ	1	315	59.900	CO2	Method 1	19
	Stationary		transport						0.030	CH₄	Method 1	0
									0.030	N₂O	Method 1	0
	Transport	Diesel Oil	Transport –	A	18	kL	38.6	701	69.200	CO2	Method 1	49
			Post 2004 vehicles						0.010	CH₄	Method 1	0
			Venicies						0.600	N₂O	Method 1	0
	Transport	Diesel Oil	Transport	A	3	kL	38.6	114	69.200	CO ₂	Method 1	8
									0.200	CH₄	Method 1	0
									0.500	N2O	Method 1	0
	Transport	Ethanol for	Transport –	A	1	kL	23.4	15	0.000	CO2	Method 1	0
(use as a fuel in an	Post 2004 vehicles						0.200	CH4	Method 1	0
	ſ .	internal	Venicies					l.	0.200	N2O	Method 1	0
		combustion engine						i	i i	•		
	Transport	Ethanol for	Transport	A	0	kL	23.4	2	0.000	CO2	Method 1	0
		use as a							1.200	CH₄	Method 1	0
		fuel in an internal							2.200	N2O	Method 1	0
		combustion engine								ı	1	
	Transport	Gasoline	Transport -	A	64	kL	34.2	2,203	66.700	CO2	Method 1	147
		(other than	Post 2004 vehicles						0.020	CH₄	Method 1	0
		for use as fuel in an aircraft)	venicles						0.200	N₂O	Method 1	0

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final


(

Australian Government

Department of Climate Change and Energy Efficiency

Scope 1

"

Commonwealth Scientific and Industrial Research Organisation

Australian Government

ABN: 41 687 119 230

Department of Climate Change and Energy Efficiency REGISTRATION APPLICATION No.: R090819-00534

Fransport	Gasoline	Transport	А	- 10	kL.	34.2	359	.66,70.0	CO₂	Method 1	24
	(other than							0.600	CH₄	Method 1	0
	for use as									<u> </u>	
	fuel in an							2,300	N2O	Method 1	1
	aircraft)	· _ ·				·	ĺ		1	1 1	

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

Lope 2

	<u> </u>	.L	<u></u>		TOTAL:	7,887
Energy commodities	Electricity	Energy commodity		8,861,616	kWh	7,887
Source)Name	Activity/DataIName		Criteria	Amounts	Units	Scope2 tt (CO2-e Catbon Dioxide Equivalent:

Australian Government

Department of Climate Change and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

.:Source:Name	Activity Type	Activity type context	Usage	Criteria	Amount	Units		Converted Amount (GJ)
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	10.488	kL	34.2	359
Transport	Diesel Oil	Transport	Combusted	A	2.958	kL	38.6	114
ansport	Ethanol for use as a fuel in an internal combustion engine	Transport	Combusted	A	0.105	kL	23.4	2
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	64.427	kL	34.2	2,203
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	A	18.171	kL.	38.6	
Transport	Ethanol for use as a fuel in an internal combustion	Transport - Post 2004 vehicles	Combusted	A	0.644	kL	23.4	15
	engine	<u> </u>	<u></u>			, <u>, , , , , , , , , , , , , , , , , , ,</u>	TOTAL:	3,395

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

	Source Name	ActivityType	Activityitype context	Usage	Criteria	'Amount	Units	Energy Content Factor	
	ther Stationary	Town gas	Non-transport	Combusted	A	315	GJ	1	315
ſ	Other Stationary	Liquefied petroleum gas	Non-transport	Combusted	A	3.402	кL	25.7	87
+		penoleum guo			l			TOTAL:	402

Energy consumed by means other than combustion

SourceName Energy	Activity/type context Energy commodity	Criteria	Amount/ 8,861,616	Energy Content Factor	NGC THE HEART CONTRACT
commodilles		 		 TOTAL:	31,902

...

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230 REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Summary Table

Categoriles	Converted Amount	Units
Amount of energy consumed by means of combustion	3,798	GJ
Energy consumed by means other than combustion	31,902	GJ
TOTÁL:	35,699	GJ

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

6. Facility Aggregate - CSIRO-SA

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

		CHEMAN PROPERTY AND A DESCRIPTION OF A D	MISSIONS			RGY	
	Scope)	Sci (t-C	STATES AND A STATES	taliof Scope II . IndiScope 2	Energy Consumed (CJ)	Energy Produce (GJ)	ed.
\sim					27.174	0	
	459		,206				
12.22	A STATE OF A	LANGE AND A CONTRACT OF A DESCRIPTION					
	VCO2	a the constant of the second	TENERS' SECTOR STREET	Construction and the second second second	Gasi((t.CO2-e))	A REAL PROPERTY AND A REAL	TOTAL
	ICO: Bon Dioxide	COLUMN TO A	TENERS' SECTOR STREET	Reifluorocarbon	A State of the sta	A REAL PROPERTY AND A REAL	ΠΟΠΑΕ

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region:	SA
BusinessUnit:	
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

Facility Name	Address	GEO/Coordinates
CSIRO-SA-Adelaide	Gate 13 Kintore Avenue ADELAIDE, SA 5001	34.918°S, 138.601°E
CSIRO-SA-Walte Campus	Waite Road URRBRAE, SA 5064	34.967°S, 138.635°E

Facility Aggregate Data

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

ALL STREET, MARKEN AND ALL STREET, S	Activity Data'Name		Chitenia Chitenia	Amount	Units		Energy Content	Emission Factors	Gases		Scopell t CO2-e Carbon Dioxide Equivalent
Other	Town gas	Non-	Α	6,299	Gj	1	6,299	59.900	CO2	Method 1	.377
tionary		transport						0.030	CH₄	Method 1	0
								0.030	N₂O	Method 1	0
Transport	Diesel Oil	Transport -	A	4	kL	38.6	169	69.200	CO₂	Method 1	12
		Post 2004 vehicles						0.010	CH₄	Method 1	· 0
	ľ	Verneies						0.600	N2O	Method 1	0
Transport	Diesel Oil	Transport	A	1	kL.	38.6	27	69.200	CO2	Method 1	2
					1			0.200	CH₄	Method 1	0
								0.500	N2O	Method 1	0
Transport	Gasoline	Transport -	A	23	kL	34.2	780	66.700	CO2	Method 1	52
	(other than for use as	Post 2004 vehicles						0.020	CH₄	Method 1	0
	fuel in an aircraft)	Venicies						0.200	N2O	Method 1	· 0
⊤ransport	Gasoline	Transport	A	4	kL	34.2	127	66.700	CO2	Method 1	8
	(other than for use as	-						0.600	CH₄	Method 1	0
	fuel in an aircraft)							2.300	N2O	Method 1	0
Transport	Liquefied	Transport -	A	4	k kL	26.2	94	59.600	CO2	Method 1	6
	petroleum	Post 2004 vehicles						0.300	CH₄	Method 1	0
	gas	Venicies						0.300	N2O	Method 1	0
Transport	Liquefied	Transport	A		l kL	26.2	15	59.600	CO2	Method 1	1
	petroleum							0.600	CH₄	Method 1	0
	gas							0.600	N2O	Method 1	0
					_ <u>}</u>		l	<u></u>		TOTAL	: 45

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

Australian Government

Department of Climate Change and Energy Efficiency

Scope 1

m

P

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Greenhouse Gas Emissions

Scope 2

10

¢

		the second se			TOTAL:	4,20
ergy commodities	Electricity	Energy commodity		5,461,705	kWh	4,20
					HEALTHING HARRIES	1.00
						Equivalent.
		Context Name				IN THE REPORT OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTI
Source/Name	Activity Data Name	Activity Data Context Name	Criteria	Amounts		Scope2 t CO Carbon Dlox

Australian Government

Department of Climate Change and Energy Efficiency

ID.

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

Source/Name	Activity Type	Activity type context	Wsage	Criteria	Amount	Units	Content	Converted Amount (GJ)
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	3.712	kL.	34.2	127
Transport	Diesel Oil	Transport	Combusted	A	0.712	kL	38.6	27
Insport	Liquefied petroleum gas	Transport	Combusted	А	0.586	kL	26.2	15
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	22.804	kL.	34.2	780
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	A	4.372	кL	38.6	169
Transport	Liquefied petroleum gas	Transport - Post 2004 vehicles	Combusted	A	3.602	kL	26.2	94
		1	1				TOTAL:	1,213

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

SourcelName	Activity Type	Activity type context	.Usage	Criteria	*Amount	Units	Energy Content Eactor	Converted /Amount (GJ)
Other Stationary	Towngas	Non-transport	Combusted	A .	6,299	GJ	1	6,299
	<u> </u>		<u> </u>				TOTAL:	6,299

Energy consumed by means other than combustion

jource Name		Activity type context	Usage	Criteria	Amount	Wnits.	Energy Content UFactor	Amount (GJ))
Energy	Electricity	Energy commodity			5,461,705	kWh	0.004	19,662
Commodities	<u></u>		l <u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>		TOTAL:	19,662

Summary Table

Categories	Converted Amount	Units
Amount of energy consumed by means of combustion	7,512	GJ
Energy consumed by means other than combustion	19,662	GJ
TOTAL	27,174	GJ

Australian Government

Department of Climate Change and Energy Efficiency

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

7. Facility Aggregate - CSIRO-TAS

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

	Scope	11.2	CHG EI	opei2	Tiot a	al-of/scope.ili nd/Scope.2		ENE ergy Consumed (GJ)	Energy/Produc	ed	
	83			885 GHG Scc		(ti.CO2-36)) 968 Em(SSION/B)	y (C	15,073 Sas ((t (C@z=e))	0		
汉利利田	(CO) con Dioxide 82	A MARKAGE AND	nane	NzO NitroustOx	E CARLES AND A	A STREET WATCH AND A STREET AND A	nsi	iHFGS HydroiElucroi (Carbons) 0	SulphuriHexa Filionide 0		ITOTAL 83

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region:	TAS
BusinessUnit:	
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

Facility Name	Address	GEO Coordinates
CSIRO-TAS-Hobart	Castray Esplanade BATTERY POINT, TAS 7004	42.886°S, 147.338°E
CSIRO-TAS-Hobart-Church Street	Church St HOBART, TAS 7001	42.876°S, 147.319°E
CSIRO-TAS-Sandy Bay	College Road University of Tasmania SANDY BAY, TAS 7005	42.905°S, 147.319°E
CSIRO-TAS-Hobart - Melville Street	2 Melvilie Street HOBART, TAS 7000	42.880°S, 147.325°E
CSIRO-TAS-Droughty Point	Droughty Point TRANMERE, TAS 7018	42.922°S, 147.428°E

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

æ

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00 Final Page 48 of 65

Date Created: 12/11/2010

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS. EMISSIONS

201222222222222222222222222222222222222	Actilvity Data Name	Adtivity Data Context Name	Cniteriia:	Amount.	Units	Energy Gontent Fractor	Energy (Content	Emilssion. Factors	Gases		Scopell t CO2-e CO2-e Carbon Dioxide Equivalent
Transport	Diesel Oil	Transport -	A	6	kL	38.6	250	69.200	CO2	Method 1	17
\square		Post 2004 vehicles						0.010	CH₄	Method 1	0
1								0.600	N₂O	Method 1	0
Transport	Diesel Oil	Transport	A	1	kL	38.6	41	69.200	CO₂	Method 1	3
								0.200	CH₄	Method 1	0
								0.500	N₂O	Method 1	0
Transport	Ethanol for	Transport –	A	0	kL	23.4	1	0.000	CO2	Method 1	0
	use as a Ifuel in an	Post 2004 vehicles					1	0.200	CH₄	Method 1	0
	internal combustion engine							0.200	N₂O	Method 1	0
Transport	Ethanol for	Transport	A	0	kL	23.4	0	0.000	CO2	Method 1	0
	use as a fuel in an							1.200	CH₄	Method 1	0
	internal combustion engine							2.200	N₂O	Method 1	0
Transport	Gasoline	Transport –	A	23	kL	34.2	796	66.700	CO2	Method 1	53
	(other than for use as	Post 2004 vehicles						0.020	CH₄	Method 1	0
	fuel in an aircraft)	Venteres						0.200	N₂O	Method 1	0
Transport	Gasoline	Transport	A	4	kL	34.2	130	66.700	CO2	Method 1	9
	(other than for use as							0.600	CH₄	Method 1	0
	fuel in an aircraft)							2.300	N2O	Method 1	0
1		<u> </u>	<u></u>			····				TOTAL	

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

COMMERCIAL-IN-CONFIDENCE

141

Australian Government

Department of Climate Change and Energy Efficiency

Scope 1

0

Commonwealth Scientific and industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Scope 2

207

:4

Source:Name Activity Data Name	Activity Data Context Name	Criteria	Amounts	Units	Scope2 t/CO2-e Carbon Dioxide Equivalent
Energy commodities Electricity	Energy commodity	In the other states of the second	3,848,990	kWh	885
				TOTAL:	885

Australian Government Department of Climate Change

and Energy Efficiency

93

d.

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

Source Name:	Activity Type	Activity type context	:Usage).	Criteria	Amount	Urits.	Energy Content Factor	Converted: Amount (GU)
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	3.787	kL	34.2	. 130
Transport	Diesel Oil	Transport	Combusted	A	1.052	kL	38.6	41
nsport	Ethanol for use as a fuel in an internal combustion engine	Transport	Combusted	A	0.009	kL	23.4	0
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	23.263	kL	34.2	796
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	Α.	6.465	kL	38.6	
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	Combusted	A	0.055	kL	23.4	1
		1	1	-l			TOTAL:	1,217

Energy consumed by means other than combustion

	Activity/type	Usage	Criteria	Amount 3,848,990	kWh	Energy Content (Factor 0.004	Converted Amount (GU) 13,856
mmodities						TOTAL:	13,856

Summary Table

Categories	Converted. /Amount	Units
Amount of energy consumed by means of combustion	1,217	GJ
Energy consumed by means other than combustion	13,856	GJ
TOTAL	15,073	GJ

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

Page 51 of 65

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

8. Facility Aggregate - CSIRO-VIC

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

		Gł	HGIEM	ISSIONS				en en	ERGY			
	Scope	SPREATE AND	Scor			ofiScope 1:					ed/	
	(t.CO2	-re)	(tiC0	State State State State 16	COLOR AND	d Scope 2. NGO2-e)		, - ۷ (ש				
	4,510	6	32,4	424		36,939	17	0,404		0		
				SHG Scor	be'1	Emission By	Gas ((t	©02+e):				
	¹¹ CO2	e I (CH4	dritten (* 1	N2O1		Reiflüorocarbon		IECS	Sulphi	iriHexa		TOTAL
Gar	bon Dioxide	Methar	ne li	Nitrous Oxi	de i			rbons	, second line	oride		
1000403	4,509	3	ANALYS NEW AN	4	992420348	0		0		0		4,516

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region: BusinessUnit:	VIC
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Final

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

Facility/Name	Address	GEO/Coordinates
CSIRO-VIC-Aspendale	107 - 121 Station Street ASPENDALE, VIC 3195	38.024°S, 145.101°E
CSIRO-VIC-Clayton	Bayview Avenue CLAYTON, VIC 3168	37.906°S, 145.131°E
CSIRO-VIC-Collingwood	150 Oxford Street COLLINGWOOD, VIC 3066	37.803°S, 144.985°E
CSIRO-VIC-Geelong Belmont	Technology Geelong Lab Corner Colac Road & Henry Street BELMONT, VIC 3216	38.184°S, 144.330°E
CSIRO-VIC-Highett	Graham Road HIGHETT, VIC 3190	.37.951°S, 145.041°E
SIRO-VIC-Melbourne	Level 11, 700 Collins Street DOCKLANDS, VIC 3008	37.819°S, 144.950°E
CSIRO-VIC-Merbein	585 River Avenue MERBEIN SOUTH, VIC 3505	34.212°S, 142.044°E
CSIRO-VIC-Mildura	Brian Grogan Building, La Trobe University Benetook Ave MILDURA, VIC 3502	34.203°S, 142.166°E
CSiRO-VIC-Parkville	343 Royal Parade PARKVILLE, VIC 3052	37.797°S, 144.961°E
CSIRO-VIC-Werribee-Sneydes Road	671 Sneydes Road WERRIBEE, VIC 3030	37.897°S, 144.680°E
CSIRO-VIC-Werribee-South Road	South Road WERRIBEE, VIC 3030	37.900°S, 144.684°E
CSIRO-VIC-Wodonga	La Trobe University, Building 8 University Drive WODONGA, VIC 3690	36.111°S, 146.849°E
CSIRO-VIC-Irymple	447. Dow Avenue IRYMPLE, VIC 3498	34.258°S, 142.133°E
CSIRO-VIC-Notting Hill	5 - 7 Commercial Drive NOTTING HILL, VIC 3168	37.904°S, 145.129°E

Facility Aggregate Data

Part B Report - Commonwealth Scientific and Industrial Research Organisation

٩

Australian Government

Department of Climate Change and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

Scope 1

Part B Report - Commonwealth Scientific and industrial Research Organisation

Page 54 of 65

Date Created: 12/11/2010

ħ.

Ø

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

Australian Government Department of Climate Change and Energy Efficiency

REGISTRATION APPLICATION No.: R090819-00534

	Source Names	Activity Data'Name	Activity Data Context Name	Gritenia	Amount	Units	JEnergy J Gontent Factory			Gases		Scopellit CO25e Carbon Dioxide Equivalent
- 1	1		Non-	A	69,983	GJ	1	69,983	59.900	CO2	Method 1	4,192
1	Stationary		transport						0.030	CH₄	Method 1	2
									0.030 (N₂O	Method 1	2
-	Fransport	Diesel Oil	Transport -	A	5	kL	38.6	204	69.200	CO₂	Method 1	14
(>		Post 2004 vehicles						0.010	CH₄	Method 1	0
Ì	ŕ		Venicies						0.600	N₂O	Method 1	0
-	Fransport	Diesel Oil	Transport	A	1	kL	38.6	33	69.200	CO2	Method 1	2
									0.200	CH₄	Method 1	0
									0.500	N2O	Method 1	0
-	Transport	Ethanol for	Transport -	A	0	kL	23.4	3	0.000	CO2	Method 1	0
		use as a fuel in an	Post 2004 vehicles						0.200	CH₄	Method 1	0
		internal combustion engine	venicies						0.200	N2O	Method 1	0
	Transport	Ethanol for	Transport	A	0	k∟	23.4	0	0.000	CO2	Method 1	0
		use as a fuel in an							1.200	CH₄	Method 1	0
		internal combustion engine							2.200	N₂O	Method 1	0
	Transport	Gasoline	Transport -	A	113	kL	34.2	3,874	66.700	CO2	Method 1	258
		(other than for use as	Post 2004 vehicles	1					0.020	CH₄	Method 1	0
		fuel in an aircraft)							0.200	N₂O	Method 1	1
	Transport	Gasoline	Transport	A	18	kL	34.2	631	66.700	CO2	Method 1	42
		(other than for use as					0.600	CH₄	Method 1	0		
		fuel in an aircraft)	l						2.300	N₂O	Method 1	l
		<u> </u>									TOTAL	:

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Final

Δ.

2

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

Greenhouse Gas Emissions

Scope 2

	1			TOTAL:	32,424
Energy commodities	Electricity	Energy commodity	26,576,736	i kWh	32,424
					Equivalent.
SourcelName	Activity Data Name	Activity Data Context/Name	Criteria // Amounts	Units	Scope2 t CO2-e Carbon Dioxide

· Part B Report - Commonwealth Scientific and Industrial Research Organisation

COMMERCIAL-IN-CONFIDENCE

Final

'n

e.

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

Source Name	Activity Type	Activity/type context	.Usage	Criteria	Amount	Units	Energy Content Factor	Converted Amount (GJ))
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	18.439	kL	34.2	631
Transport	Diesel Oil	Transport	Combusted	A	0.859	кL	38.6	33
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport	Combusted	A	0.02	kL	23.4	0
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	113.27	kL	34.2	3,874
Transport	Diesel Oil	Transport - Post 2004 vehicles	Combusted	A	5.274	kL	38.6	204
Transport	Ethanol for use as a fuel in an internal combustion engine	Transport - Post 2004 vehicles	Combusted	A	0.124	k∟	23.4	3
			<u>_1,</u>				TOTAL:	4,745

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

Energy consumed by means other than combustion

Source Name	Activity Type	Activity/type icontext	(Usage)	Griteria	:/Amount	Units).	Energy Content Factor	
Energy	Electricity	Energy commodity			26,576,736	kWh	0.004	95,676
commodities			L	L	<u> </u>	L	TOTAL:	95,676

11

в

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government

Department of Climate Change and Energy Efficiency

Summary Table

Categories	Converted Amount	- Wnits
Amount of energy consumed by means of combustion	74,728	GJ
Energy consumed by means other than combustion	95,676	GJ
TOTAL:	170,404	GJ

Part B Report - Commonwealth Scientific and industrial Research Organisation

Final

Australian Government

Department of Climate Change and Energy Efficiency

Δ

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

9. Facility Aggregate - CSIRO-WA

The following tables aggregate greenhouse gas emissions and energy data for this facility aggregate, in accordance with NGER Regulation 4.25, which includes 2 or more facilities that were either under the operational control of this group member or were under the administrative responsibility of this business unit, during the reporting period.

		114-11		0	0	341
arbon Dioxide	<u>IMethane</u> :	- Nitrous/Oxide		Hydro Fluoro Garpons	anuonde.	
(CO2	VIVAL STEEDING HIS NEW WAY AND A COMPANY AND A	a construction of the second	223 104 CA 26 CA 2	HEGS	Sulphur/Hexa	TOTAL.
		CHG Scope	1 Emission By	Gas (t CO2-e)		
341		7,965	8,305	39,456	0	
		CARCELET ALL & ELECTRIC AL 171415	((t.CO2−e)) × 11			
Scope (HCO2-	e) (to	ope 2	and(Scope 2	Energy Consumed	Energy Phoduce (GJ)	- Q 24
	II. CHGE	STRATE STRATE OF STRATES	and the second of the construction of the second		and an	

Facility Aggregate Details

Operational Control:	Commonwealth Scientific and Industrial Research Organisation has operational control over this facility.
Region: BusinessUnit:	WA
ANZSIC Code:	691
Division:	Professional, Scientific and Technical Services
Subdivision:	Professional, Scientific and Technical Services (Except Computer System Design and Related Services)
Group:	Scientific Research Services
Class:	

List of Facilities

Facility/Name	Address	GEO Coordinates
CSIRO-WA-Floreat	Underwood Avenue FLOREAT, WA 6014	31.949°S, 115.789°E
CSIRO-WA-Kensington	26 Dick Perry Avenue KENSINGTON, WA 6151	31.994°S, 115.884°E
CSIRO-WA-Waterford	7 Conion Street WATERFORD, WA 6152	32.011°S, 115.894°E
CSIRO-WA-Bakers Hill	Berry Brow Rd BAKERS HILL, WA 6562	31.759°S, 116.462°E

Facility Aggregate Data

Part B Report - Commonwealth Scientific and industrial Research Organisation

Version 1.00

Page 59 of 65

e

ŀ

Australian Government Department of Climate Change and Energy Efficiency COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00 Final Page 60 of 65

Date Created: 12/11/2010

.

)

Australian Government Department of Climate Change

and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

GREENHOUSE GAS EMISSIONS

Scope 1

	Source ¹ Name	ActiVity IData Name	Care of the second s	(Criterila)	7AmoUnt	Units	Energy Content Factor			Gases		- Scopellat - CO2-e - Carbon - Dioxide - Equivalenta
	Other	Town gas	Non-	A	2,669	GJ	1	2,669	:59.900	.CO2	Method 1	160
	Stationary		transport						0.030	CH₄	Method 1	0
)								0.030	N₂O	Method 1	0
	Transport	Diesel Oil	Transport -	A	18	kL	38.6	701	69.200	CO2	Method 1	49
			Post 2004 vehicles					ļ	0.010	CH₄	Method 1	0
			Venicies						0.600	N2O	Method 1	0
	Transport	Diesel Oil	Transport	A	3	kL	38.6	100	69.200	CO2	Method 1	7
									0.200	CH₄	Method 1	0
									0.500	NzO	Method 1	0
	Transport	Gasoline	Transport -	A	47	kL	34.2	1,592	66.700	CO2	Method 1	106
		(other than for use as	Post 2004 vehicles						0.020	CH₄	Method 1	0
		fuel in an aircraft)	Venicics						0.200	N2O	Method 1	0
	Transport	Gasoline	Transport	A	8	kL	34.2	259	66.700	CO2	Method 1	17
		(other than for use as							0.600	CH₄	Method 1	0
~		fuel in an aircraft)		1					2.300	N₂O	Method 1	1
		L	<u></u>	I	<u> </u>	1	<u> </u>	<u> </u>			TOTAL:	341

Please note that the scope 1 emissions total does not include emissions from activity types with a zero energy content factor

Greenhouse Gas Emissions

Australian Government Department of Climate Change and Energy Efficiency

Scope 2

e

j.

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Source'Name	VActivity Data Name	Activity!Data Context!Name	Criteria	Amounts	Units	Scope2 t CO2-e (Carbon Dioxide) Equivalent.
Energy commodities	Electricity	Energy commodity		9,482,101	kWh	7,965
		L	L		TOTAL:	7,965

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Date Created: 12/11/2010

r

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Australian Government Department of Climate Change and Energy Efficiency

ENERGY CONSUMPTION

Energy consumed by means of combustion for transport

	Electrony and a second second second second	Activity type context	Usage,	Criteria	Amount			(Converted Amount (GJ))
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport	Combusted	A	7.576	k∟	34.2	259
Transport	Diesel Oil	Transport	Combusted	A	2.596	k∟	38.6	100
Transport	Gasoline (other than for use as fuel in an aircraft)	Transport - Post 2004 vehicles	Combusted	A	46.536	k∟	34.2	1,592
Transport	Diesel Oil	Transport - Post 2004 véhicles	Combusted	A	18:16	kL .	38.6	701
		<u></u>	1	1	·····		TOTAL:	2,652

Energy consumed by means of combustion for a purpose other than producing electricity, producing a chemical or metal product or for transport

	Ashvitumo	Activitytype	lisano	Criteria	Amount	Units	Energy	Converted
Source Name	Activity Type:	context	uuge	en conte			Content	Amount
							Factor	(GJ)
NUMBER OF STREET, S		NUCLEON CONTRACTOR CONTRACTOR	N.CONTRACTORING STREET, STORES	Electronic and a construction of the construct	0.000	<u> </u>	4	2,669
Other Stationary	Town gas	Non-transport	Combusted	A	2,669	GJ	1	2,009
		· · · · · · · · · · · · · · · · · · ·	L				TOTAL:	2,669

Energy consumed by means other than combustion

ALL PARTY AND A REPORT OF A	Source Name	Activity Type	Activityitype icontext	Usage	Criteria	Amount	Units	Energy Content Factor	(Converted) Amount (GJ)
	Energy commodities	Electricity	Energy commodity			9,482,101	k₩h	0.004	34,136
-		<u> </u>		L · · · · · · · · · · · · · · · · ·				TOTAL:	34,136

Summary Table

Categories	Converted Amount	Units
Amount of energy consumed by means of combustion	5,321	GJ
Energy consumed by means other than combustion	34,136	GJ
TOTAL:	39,456	GJ

ADDITIONAL INFORMATION

Any further information you may wish to provide can be added to the "Comments" tab in OSCAR. Information provided may or may not be used by the GEDO and authorised staff, and will only be used in accordance with the NGER Act or as otherwise required by law.

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00

Page 63 of 65

Date Created: 12/11/2010

Final

(n

Australian Government Department of Climate Change and Energy Efficiency

COMMERCIAL-IN-CONFIDENCE

Commonwealth Scientific and Industrial Research Organisation

ABN: 41 687 119 230

REGISTRATION APPLICATION No.: R090819-00534

Part B Report - Commonwealth Scientific and Industrial Research Organisation

Version 1.00 Final Page 64 of 65

. -

L

Australian Government Department of Climate Change and Energy Efficiency Commonwealth Scientific and Industrial Research Organisation ABN: 41 687 119 230 REGISTRATION APPLICATION No.: R090819-00534

NATIONAL GREENHOUSE AND ENERGY REPORT

Commonwealth Scientific and Industrial Research Organisation

FOR THE REPORTING PERIOD 01/07/2009 - 30/06/2010

PART C

HEAD OFFICE POSTAL ADDRESS:

.

PO Box 225 DICKSON, ACT 2602, AUSTRALIA HEAD OFFICE STREET ADDRESS:

Limestone Ave CAMPBELL, ACT 2612, AUSTRALIA

CEO (or equivalent): Address:

Dr Megan Clark

PO Box 225 DICKSON, ACT 2602, AUSTRALIA

Phone: 0262766621 Email: megan.clark@csiro.au

Phone: Email:

Position:

Address:

Contact-Person:

STATEMENT:

Commonwealth Scientific and Industrial Research Organisation wishes to include as part of its National Greenhouse and Energy Report the following 2 attachments:

۰No.	File Name	Description
1	CSIRO NGERS FY09-10 assumptions and estimations.pdf	
2	CSIRO - Incidental emmissions notification to GEDO for NGERS FY09- 10.pdf	

Part C Report - Commonwealth Scientific and Industrial Research Organisation

Final