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Preamble	
Research	is	at	the	heart	of	Data61.		Our	research	is	
undertaken	with	a	purpose	in	mind	–	to	create	a	positive	
data-driven	future.	This	document	outlines	our	vision1	
regarding	what	we	aim	to	achieve	by	focusing	our	research	
on	what	the	world	needs	in	areas	where	we	have	world-
leading	capability.	

Data61	plays	two	complementary	roles	in	the	Australian	
innovation	system.	We	are	“L-shaped”	(see	the	schematic	on	
the	right):		

	

1) We	conduct	market	driven	research	(end-use	driven	
projects)	in	a	range	of	industry	sectors;	these	contribute	
to	the	horizontal	part	of	Data61’s	mission	–	solving	
problems	in	other	CSIRO	business	units	(and	leveraging	
their	capability	and	connections)	and	the	community	
more	broadly.	

2) We	are	the	home	to	fundamental	research	advancing	
the	science	and	technology	of	data	(the	vertical	part	of	
the	picture).	

	

These	two	parts	mutually	support	each	other2.	Both	are	
essential.	The	market	component,	by	definition,	is	not	for	us	
to	plan,	but	to	adapt	to	in	an	agile	manner.	The	scientific,	
technological	and	engineering	research	we	propose	to	do	is	
ours	to	plan	and	shape;	that	is	what	this	document	does.	

The	purpose	of	this	document3	is	to	focus	our	work	on	the	
vertical	part	of	the	L-shaped	schematic.	The	document	
captures	the	bold	and	ambitious	areas	of	science	and	
technology	we	wish	to	advance4.	It	should	be	seen	as	a	way	
of	focusing	what	we	do,	and	allowing	us	to	say	“yes”	or	“no”	
in	a	more	informed	fashion5.	The	goal	is	not	simply	to	“put	
more	wood	behind	fewer	arrows”	but	rather	to	get	most	of	
the	arrows	pointing	in	one	direction,	and	to	describe	the	
target	they	are	aiming	to	hit	–	namely	the	four	goals	listed	in	
the	callout	box.	This	will	help	shape	our	future	capability	
investments.	

Explicitly	articulating	the	larger	technical	challenges	is	especially	important	for	Data61	because	it	is	often	
(mistakenly)	believed	that	data	and	information	technology	research	merely	supports	other	sciences	–	a	
sort	of	glorified	IT	helpdesk.	In	fact,	the	contrary	is	arguably	the	case,	with	physics6,	chemistry7,	biology8,	
social	science9,	and	economics10	all	having	the	science	of	data	and	information	at	their	core,	and	
information	technology	precepts,	such	as	modularity,	are	essential	for	the	understanding	of	many	natural	
systems11.		

Ultimately,	as	recently	witnessed	by	social	science,	any	field	immersed	in	a	properly	organised	bath	of	data	
progressively	becomes	computationally	based,	or	develops	a	computational	subfield12.	The	science	of	
information	and	data	is	arguably	the	most	fundamental	research	topic	of	the	century,	situated	not	only	at	
the	centre	of	mathematical	research13,	but	underpinning	the	nature	of	randomness	and	complexity14,	and	
situated	at	the	very	core	of	all	the	mature	sciences.	

Measuring	the	World	

Improving	the	whole	lifecycle	of	data	
capture	analysis	and	use.	
	

Delivering	Trustworthy	Analytics		

Changing	the	way	analytics	is	delivered;	
guaranteeing	trust	in	the	entire	process.		
	

Building	Software	you	can	Trust	

Creating	technologies	that	allow	the	
construction	of	software	that	can	be	trusted.	
	

Shaping	Societal	Transformations	

Developing	better	data	technologies	through	
improved	understanding	of	their	potential	
social	impact.	
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Context	

Technologies	for	data	are	general	purpose	technologies15	that	will	have	a	transformative	impact	on	
Australian	society,	although	what	those	impacts	will	be	is	neither	predictable	nor	pre-determined16.	These	
technologies	are	often	described	as	“artificial	intelligence”17	and	include	machine	learning	and	big	data	
analytics,	automated	reasoning,	computer	vision,	natural	language	understanding,	and	robotics.	Data61’s	
focus	is	on	the	advancement	of	technologies	for	data	in	a	manner	that	provides	national	benefit	(economic,	
social	and	environmental).	Thus,	a	deep	understanding	of	the	context	of	technology	use,	the	potential	
impacts	they	can	have,	and	shaping	what	those	impacts	are,	is	a	central	part	of	our	research	vision.	

Data61	lives	inside	an	organisation	dedicated	to	the	discovery	of	scientific	knowledge,	knowledge	
distinguished	by	the	high	degree	of	trust	one	can	place	in	it:	trust	in	the	conclusions;	trust	in	the	evidence	
that	is	derived	from	data;	and,	trust	in	the	processes	to	revise	the	knowledge	when	it	is	found	to	be	false.	
Science	has	always	been	data-driven	and	will	remain	so.	We	propose	to	exploit	the	scientific	enterprise	
within	CSIRO	as	a	testbed	for	ideas	that	can,	and	will,	have	much	broader	impact.	

General	principles	

The	scientific	vision	is	informed	by	the	following	five	principles18	

• P1.		Lead:		Strive	for	a	greater	proportion	of	world	leading	research.	We	should	focus	our	efforts	on	areas	
where	we	are,	or	realistically	could	be,	world	leading.	

• P2.		Multiply:	Aim	for	multiplicative	(compositional)	effects	rather	than	additive,	else	we	cannot	scale.	
This	implies	clever	“platformisation”	of	our	technology.	

• P3.		Unique:	Do	what	only	we	can	do,	else	let	others	do	it19.		

• P4.		Bold:	Aim	high.	We	really	do	want	to	change	the	world	(through	use-inspired	fundamental	research).	

• P5.		Antidisciplinary20:	Data	traverses	existing	discipline	boundaries.	We	ignore	disciplinary	boundaries	
and	follow	the	problems	wherever	they	take	us.		
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Headline	Visions	
Data61’s	goal	is	to	create	our	data-driven	future	–	a	future	where	technologies	for	data	will	play	a	positive	
role	for	society	at	large.	New	technologies	provoke	many	reactions.	Fear	and	uncertainty	is	common,	with	a	
belief	that	the	precise	forms	of	new	technology	are	inevitable	and	not	open	to	being	shaped21.	A	counter	to	
this	is	trust,	which	can	be	viewed	as	being	at	the	core	of	all	that	we	do.	All	of	our	work	revolves	around	
building	trust	in	technologies	for	data:	in	automation;	in	security	and	privacy;	that	your	software	only	does	
what	it	claims	to	do;	that	your	personal	identity	is	not	stolen	from	you;	and	trust	in	all	things	that	matter	to	
people.	

By	saying	“data	you	can	trust”	we	do	not	mean	that	you	trust	it	blindly,	and	especially	we	do	not	mean	that	
you	trust	it	raw	–	data	needs	to	be	processed	and	manipulated	to	be	useful,	and	it	is	the	processes	of	
manipulation	that	need	to	be	trusted.	This	involves	both	designing	systems	that	do	indeed	facilitate	trust	in	
data,	as	well	as	building	trustworthy	technologies	for	doing	things	with	the	data.	And	in	all	of	this	“trust”	
itself	is	complex,	multidimensional,	and	is	always	ultimately	grounded	in	human	needs	and	society22.		

We	are	using	the	apparently	simple	notion	of	“trust”	metaphorically23.		Without	attempting	to	make	a	
canonical	definition	of	trust24,	we	can	say	we	have	“trust”	as	the	anchor,	or	point	of	departure,	for	much	of	
what	we	propose	to	do,	including:	

• Trustworthy	software	–	not	software	that	you	trust	absolutely,	but	software	in	which	you	can	have	
quantifiable	degrees	of	trust	for	sound	reasons	

• Trust	in	data	–	not	data	you	trust	without	cause,	but	data	you	can	trust	for	your	purpose	because	of	the	
evidence	provided	regarding	its	management,	provenance	and	what	was	done	to	it	(analytics	that	has	
quantifiable	effect)	

• Trust	in	systems	–	trust	that	you	know	to	what	degree	you	can	rely	on	data-centric	systems,	including	
communications,	not	that	you	trust	it	absolutely	

• Trust	in	data	technology	enabled	socio-technical	systems–	trust	that	these	systems	will	benefit	you	and	
that	any	harms	are	manifest	and	controlled.	

	

Understanding	the	complex	interface	between	data,	its	management,	manipulation	and	processing,	and	
the	impacts	it	can	have	on	people	is	central	to	building	trust	around	data	and	technologies	for	data.		Trust	
in	data	(and	its	associated	processes)	can	also	underpin	trust	in	institutions,	interventions	and	policies.		

The	means	of	manipulating	and	processing	data	are	data	technologies.	When	we	say	“technologies	that	
work	for	you”	we	mean	they	do	what	they	are	supposed	to	do,	they	don’t	do	anything	else,	and	they	are	
usable	and	useful	(and	implicitly	we	recognise	the	importance	of	who	the	“you”	is	–	technologies	that	help	
one	group	can	harm	others).		

While	these	sentiments	might	be	taken	for	granted,	history	shows	they	are	often	absent,	and	improving	the	
degree	to	which	the	technologies	we	develop	achieve	these	goals	helps	to	shapes	what	we	do.	Examples	
are:	the	construction	of	software	that	has	an	adequately	high	guarantee	of	securely	doing	only	what	it	is	
supposed	to	do;	or,	statistical	machine	learning	methods	you	trust	because	of	mathematical	theories	that	
provide	adequate	guarantees	regarding	their	behaviour	and	uncertainty.		

Both	these	examples	illustrate	the	necessity	for	deep	scientific	and	mathematical	knowledge	as	well	as	a	
quantitative	notion	of	performance.	This	scientific	depth	differentiates	what	Data61	does	from	much	of	the	
data	technology	in	the	wider	world.	

The	headline	visions	and	scientific	challenges	serve	as	a	rallying	point	for	not	only	the	scientific	research	we	
do,	but	also	the	shorter	term	end-use	driven	projects	delivered	by	our	engineering	team.	Ideally	the	
majority	of	such	projects,	in	addition	to	delivering	on	customer	expectations,	will	further	the	goals	below.	
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H.1	Measuring	the	World25		

Thus	is	by	geometrye	mesured	alle	thingis		

–	William	Caxton,	Myrrour	of	the	Worlde	(1481)	

The	world	becomes	better	understood,	and	thus	interventions	are	more	effective	and	acceptable,	
through	the	development	of	methods	for	data	capture	and	model	building	that	put	trust	at	the	center.	

Background:	Humans	try	to	improve	the	world,	but	often	fail.	Their	interventions	don’t	work,	or	have	
unintended	consequences.	One	reason	for	these	failures	is	poor	models	of	the	world	–	it	is	different	from	
what	we	expect.	By	measuring	the	world	(ie	capturing	data	about	the	world),	one	learns	more	about	the	
world	and	thus	interventions	can	be	better	designed.	This	is	the	vision	of	empirical	science.	We	propose	to	
improve	how	data	is	captured	and	used	to	advance	our	understanding	of	the	world.	

The	world	is	full	of	data,	but	only	a	small	fraction	is	known	to	us.	Rather	than	being	given	to	us	(“data”	
comes	from	the	Latin	dare	meaning	“to	give”),	it	is	necessary	to	take	the	data	–	to	actively	select	and	gather	
it,	and	then,	of	course,	to	do	something	with	it.	It	is	thus	useful	to	distinguish	data	from	capta26	(from	the	
Latin	capere	meaning	“to	take,	seize,	obtain,	get,	enjoy	or	reap”27).		This	terminology	signals	that	data	
collection	is	an	active	process,	not	passive.	

Data	is	traditionally	seen	as	the	lowest	level	of	a	hierarchy	that	runs	from	data	to	information	to	knowledge	
to	wisdom28.	Implicit	in	this,	is	that	in	order	to	attain	knowledge	(or	wisdom)	one	needs	to	start	with	data.	
While	clearly	true	at	one	level,	this	does	not	capture	Data61’s	perspective	which	inverts	the	hierarchy29,	
and	has	knowledge	(or	the	decision,	action	or	intervention	required	for	a	particular	problem)	as	the	end	
point,	thus	focussing	the	needs	of	data	collection	and	analytics	from	the	reverse	perspective.	Data	becomes	
useful	once	it	is	both	captured	(capta)	and	then	made	sense	of	through	models.	The	models	can	also	
provide	guidance	regarding	desirable	capta.	

Models	and	modelling	are	central	to	making	use	of	capta.	Much	of	the	work	that	Data61	does	is	modelling	
based	on	capta.	The	distinction	between	models	and	data	or	capta	is	blurred30;	abstractly	a	model	is	always	
a	function	of	the	capta	–	whether	it	has	a	small	number	of	“parameters”	or	not	is	irrelevant	–	what	matters	
is	the	stability	of	the	model	(or	more	precisely,	the	stability	and	reliability	of	the	conclusions	drawn,	and	
actions	taken	from	the	model)	under	data	variations.		

The	important	point	is	that	it	is	the	models	that	are	ultimately	manipulated	and	used	for	action.		While	
much	is	made	of	a	“fourth	paradigm”31	(so	called	“data-driven	science”)	and	“the	unreasonable	
effectiveness	of	data”32,	the	fact	remains	that	all	data-driven	intervention	remains	based	upon	models;	
they	are	just	more	complex	than	the	models	of	old.	

We	thus	embrace	the	“primacy	of	method33”	or	a	“method	deluge”	(with	methods	as	“first	class	citizens”34)	
over	a	mere	“data	deluge”,	and	certainly	do	not	envisage	“making	the	scientific	method	obsolete”35.	For	
science,	data	alone	(however	it	is	linked	or	presented)	is	not	enough36.		Neither	data	nor	facts	are	ever	
entirely	raw	–	they	are	constructed	and	theory-laden37.	It	is	indeed	true	that	“‘Raw	data’	is	both	an	
oxymoron	and	a	bad	idea”38.			

Some	of	the	greatest	contributions	to	the	recent	explosion	of	interest	in	data-driven	everything	comes	from	
new	methods39	with	refined	notions	of	trust	(better	quantification	of	errors).		The	blurred	boundary	
between	“data”	and	“method”	drives	how	methods	(analysis)		are	being	pushed	towards	the	data	
(embedded	analytics40),	as	well	as	the	propagation	of	all	aspects	of	the	data	(such	as	its	provenance)	
through	the	entire	modelling	process,	in	order	to	better	inform	interventions.		

The	real	promise	of	a	data-driven	society	is	that	it	is	an	“experimenting	society”41	that	allows	decisions,	
actions	or	interventions	to	be	closely	tied	to	capta.	

We	will	develop	new	methods	for	achieving	this	universal	“captafication”42	of	the	physical	world,	the	
biological	world	and	the	social	world:	

• From	modelling	of	materials	and	biological	organisms	at	the	molecular	and	macro	level	to	the	design	of	
new	materials	and	food	
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• From	sensors	measuring	anything	through	to	trusted	data	from	those	sensors	and	the	associated	trusted	
interventions	and	policy	

• From	all	the	geospatial	data	in	the	country	to	the	rich	set	of	services	that	can	exploit	this	information	

• From	people’s	identity	and	reputation	to	systems	that	can	guarantee	the	security,	privacy	and	fairness	of	
using	this	information	

• From	the	captafication	of	the	law	and	public	policy	to	make	the	machinery	of	government	transparent	to	
the	user	to	the	very	development	of	new	policy	in	a	trustworthy	evidence	driven	manner,	and	

• From	transforming	how	science	is	done	(tracking	data	and	evidence	and	the	analytical	conclusions	
drawn)	to	the	empiricisation	of	business	(doing	proper	experiments	aided	by	technologies	for	data).	
	

Our	vision	is	that	by	developing	new	and	better	methods	we	will	be	able	to	better	model	the	world,	and	
thus	act	better.	Central	to	this	is	the	notion	of	trust:	

• Trust	in	the	source	of	the	data	(collected	the	right	capta)	and	that	it	was	reliably	captured,	transmitted	
and	not	tampered	with	(else	skeptics	will	challenge	the	result,	or	worse,	wrong	actions	will	be	taken)	

• Trust	in	the	models	underpinning	the	capture	of	the	data	(such	models	always	leave	something	out	–	
how	does	one	know	if	the	omissions	do	harm?)	

• Trust	in	the	methods	used	for	analysis	(that	it	is	known	what	the	methods	actually	do	from	a	user’s	
perspective	and	that	the	posterior	uncertainty	is	properly	calibrated)	

• Trust	in	how	the	capta	and	conclusions	are	presented	and	used	(if	one	ignores	this	human	element,	then	
the	best	methods	can	still	lead	to	terrible	outcomes),	and	

• Trust	that	legal	and	moral	rights	and	notions	of	fairness	are	not	infringed	(else	society	will	disdain	the	
power	of	data	analytics	because	of	concerns	regarding	its	abuse).	
	

H2.	Trustworthy	Analytics	Delivered43		

New	methods	for	data	analytics	that	offer	high	degrees	of	trust,	and	new	methods	of	delivering	these	
trustworthy	methods	will	increase	their	use,	reduce	economic	friction	and	speed	up	the	process	from	
invention	to	deployment.	This	will	accelerate	scientific	discovery,	business	improvement	and	improve	
public	policy	outcomes.		

The	impact	of	new	technologies	comes	from	their	use.	We	will	change	the	way	analytics	is	delivered	to	
broaden	its	use.	We	will	build	trust	into	the	core	of	how	we	create	and	deliver	analytics	technologies:	from	
the	mathematical	foundations	of	trust	in	data-driven	conclusions	and	the	quantification	of	certainty;	to	
embedded	analytics	at	the	source	of	data	capture;	and,	to	web	services	that	allow	the	flexible	composition	
of	analysis	methods	in	a	reproducible	and	scalable	manner,	and	which	build	in	key	elements	of	trust	from	
the	outset	(provenance	and	traceability,	management	of	legal	and	moral	rights,	and	management	and	
preservation	of	uncertainty)44.	

Background:	“Data	Analytics”	means	the	computational	processing	of	capta	with	the	goal	being	to	derive	
insights	suitable	for	comprehension,	decision	or	action.	It	includes	mathematical	or	algorithmic	methods	as	
well	as	visualisation	and	presentation	of	the	results	in	a	manner	suitable	for	human	consumption.	Analytics	
is	not	only	used	by	a	(human)	statistician;	many	socio-technical	systems	have	analytics	embedded	into	their	
core	operation,	and	all	the	points	made	below	apply	there	too.		

Presently	analytics	is	implemented	primarily	in	a	manner	that	makes	its	composition	(gluing	together	
components)	difficult.		
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The	current	model	leads	to	various	problems:	

• Vendors	of	large	software	packages	have	an	interest	in	locking	in	customers	to	their	platform	(so	there	is	
relatively	little	incentive	to	enable	composability	with	other	systems)	

• Many	of	the	implementations	presume	the	capta	is	all	in	one	place	(either	local	or	in	a	cloud).	Much	
capta	cannot	be	moved.	It	might	be	too	large	(the	analysis	has	to	be	actually	done	at	the	source),	or	there	
is	not	the	legal	right	to	move	it	

• Provenance,	traceability,	legal	and	moral	rights	and	uncertainty	are	poorly	managed,	resulting	in	outputs	
of	analytics	that	lose	sight	of	the	reliability	and	trustworthiness	of	the	original	data	(and	thus	the	results	
are	less	trustworthy)	

• It	is	difficult	to	redo	analyses	when	mistakes	are	discovered	(a	consequence	of	the	point	above).	Often	
not	all	of	the	“state	information”	is	stored	to	enable	the	re-running	of	analyses	

• Closed	ecosystems	make	it	hard	to	import	new	techniques	as	they	are	invented.	

	

There	are	potential	solutions	to	all	of	these	problems,	all	of	which	we	envisage	developing:	

• By	embedding	analytics	at	the	source	of	the	data,	the	burden	of	moving	large	amounts	of	data	is	
removed.	Being	able	to	reach	all	the	way	back	to	the	original	data	source	(typically	embedded	in	a	cyber-
physical	system)	through	composable	data	ingestion	schemes	allows	better	tracking	of	provenance	

• Systems	that	deliver	analytics	as	a	RESTful	web	service,	then	it	becomes	more	readily	composable.	This	
can	remove	the	downside	(lock-in)	of	proprietary	systems	

• By	taking	the	computation	to	the	data	(in	data	centers	for	example),	we	can	avoid	the	problem	of	not	
being	able	to	move	the	data	(for	reasons	of	scale	or	jurisdictional	constraints).	This	necessitates	advances	
in	not	only	the	secure	encapsulation	of	analytics	code,	but	also	necessitates	trusted	means	to	control	
information	flow	(so	private	information	is	not	exfiltrated	from	the	captabases)	

• The	ultimate	delivery	involves	presentation	to	users.	By	improving	the	user	experience	of	data	analytics	it	
will	be	more	widely	and	reliably	used.	This	requires	development	of	visualisation	as	a	service	that	
represents	uncertainty	and	provenance	as	first	class	objects	

• Composable	provenance	of	data	(including	legal	rights	such	as	licenses)	and	analytics	across	walled	
gardens	allows	increased	trust,	reliability	and	repeatability	of	analytics	

• Systems	that	are	designed	to	federate	data	from	different	sources	can	bypass	jurisdictional	and	practical	
problems	of	extracting	insights	from	distributed	capta	

• Late	binding	schemas	or	ontologies	minimise	the	deleterious	effects	of	past	decisions	regarding	data	
categorisation	and	organisation	

• Systems	that	capture	and	re-execute	entire	workflows	to	facilitate	late-binding,	rapid	prototyping	and	
the	automation	of	translation	from	exploratory	to	production	systems	

	

The	creation	of	technologies	as	above	will	not	only	accelerate	the	use	of	data	analytics	for	its	own	sake,	but	
will	play	a	central	role	in	our	vision	for	cyber-security	–	securing	data-driven	business	operations	through	
ensuring	trustworthiness	in	the	data.	This	is	especially	important	for	critical	infrastructure	protection45.	

H3.	Building	Software46	you	can	Trust	

We	will	develop	new	ways	of	creating	software	that	will	be	the	global	benchmark	in	terms	of	quality,	
security	and	trust.	Widespread	adoption	will	make	software	companies	more	productive,	improve	
cybersecurity	(by	addressing	the	root	cause	of	one	of	the	main	problems)	and	enable	higher	degrees	of	
trust	in	data-centric	systems.		



		|		8	

Technologies	for	data	are	underpinned	by	software,	which	is	the	means	by	which	data	is	processed	and	
transformed.	Building	better	technologies	requires	building	better	software.		We	will	develop	the	science	
and	technology	stacks	to	build	software	that	provably	does	what	it	is	supposed	to	do	and	nothing	else	–	we	
will	be	able	to	say	precisely	and	with	strong	evidence	when	software	will	be	bug-free,	provably	secure,	and	
will	deliver	guaranteed	results.		This	will	address	one	of	the	major	causes	of	problems	in	cyber-security	
(vulnerabilities	that	are	introduced	when	software	does	more	than,	or	other	than	what	it	is	supposed	to	
do).	We	will	also	develop	better	methods	to	quantify	risks	associated	with	software	and	understand	the	
human	factors	that	contribute	to	trustworthy	software.	

In	addition	to	increasing	the	reliability	of	software	against	attacks	that	cause	it	to	do	things	other	than	
which	it	should,	the	same	technologies	can	be	used	to	provide	improved	guarantees	for	the	
trustworthiness	of	data,	whether	it	is	that	the	data	has	not	been	manipulated,	or	that	sensitive	information	
has	not	been	exfiltrated.	Thus	improving	the	trustworthiness	of	software	is	not	only	essential	for	making	
technologies	that	work	for	you,	but	also	for	ensuring	that	you	can	trust	data	and	entrust	your	data	to	such	
technological	systems.	

H4.	Shaping	Societal	Transformations		

Technology	…	is	not	destiny47		

–	Jason	Furman	-	July	2016	

Technologies	shape	society,	and	technologies	for	data	will	shape	the	future	of	Australian	society,	but	
there	is	the	opportunity	to	choose	what	these	effects	are.	By	developing	better	understandings	of	the	
complex	relationships	between	data	technology	and	people,	we	will	be	able	to	influence	the	
development	and	use	of	technologies	for	data	to	lead	to	better	societal	outcomes.	The	research	
necessary	to	attain	this	understanding	can	(and	needs	to)	be	done	in	concert	with	the	more	narrowly	
technical	aspects	of	our	work.	

New	technologies	for	data	will	transform	society,	but	there	is	much	freedom	regarding	how.	Our	interest	in	
technology	does	not	stop	with	the	technology	itself,	but	extends	to	its	use.	Technologies	such	as	UAVs	and	
autonomous	vehicles	will	obviously	shape	society,	and	their	use	will	be	shaped	by	what	society	finds	
acceptable.	Collectively,	as	technologists	and	scientists,	we	cannot	ignore	the	societal	implications	of	our	
work.	The	same	basic	technological	principles	can	be	used	in	many	different	ways;	some	of	which	are	more	
usable,	helpful	and	beneficial	to	people	than	others.	We	will	develop	new	ways	of	envisaging	and	
influencing	these	societal	transformations.		

This	will	involve	new	approaches	to	the	ethnography	of	technology	(better	understanding	people’s	
relationship	with	data-driven	technology,	especially	in	terms	of	trust)	and	deriving	technological	foresights.	
This	goal	aligns	with	strategy	2	of	the	recently	released	US	National	Artificial	Intelligence	Research	and	
Development	Strategic	Plan48:	“Develop	effective	methods	for	human-AI	collaboration.	Rather	than	replace	
humans,	most	AI	systems	will	collaborate	with	humans	to	achieve	optimal	performance.	Research	is	
needed	to	create	effective	interactions	between	humans	and	AI	systems.”	

We	will	reimagine	what	it	means	to	be	human	in	a	data-driven	world.	We	will	develop	new	technologies	for	
ensuring	rich	notions	of	privacy	and	transparency	in	a	data-driven	and	algorithmic	world.	We	will	develop	
new	understandings	of	the	complex	technical	tradeoffs	between	usability,	security,	privacy,	efficiency	and	
fairness.	We	will	study	how	to	build	data-driven	societal	institutions	that	citizens	can	trust.	We	will	design	
new	computational	mechanisms	to	enhance	social	welfare,	enabled	by	pervasive	technologies	for	data.		

We	will	develop	new	methodologies	that	exploit	data-technologies	to	better	understand	how	data-
technologies	themselves	end	up	being	used	(including	the	derivation	of	qualitative	insights	from	
quantitative	data).	This	will	extend	the	reach	of	user-experience	design	to	new	areas,	and	advance	its	state	
of	the	art.	And	we	will	develop	new	economic	and	business	models	enabled	by	data-technologies	in	a	
manner	that	seeks	to	maximise	benefit	for	Australia	as	a	whole.	
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Scientific	Challenges	and	Foci	
Theories	are	nets:	only	he	who	casts	will	catch.		

–Novalis		
	

In	this	section	are	listed	some	scientific49	challenges	arising	
from	the	above	visions.	These	are	not	all	the	scientific	
challenges	we	will	try	to	solve,	but	they	capture	much	of	what	
we	aim	to	do.	In	all	cases	the	timeline	is	roughly	5-10	years.			

While	each	of	these	challenges	is	motivated	and	inspired	by	
broader	societal	challenges,	the	particular	impacts	one	can	
expect	of	scientific	advances	are	notoriously	difficult	to	
predict	on	such	a	time	scale	(impact	can	be	predicted	more	
reliably	for	shorter	term	projects).	Thus,	apart	from	some	
rather	general	statements,	there	is	no	specific	prediction	of	
impact	arising	from	the	scientific	challenges.	

I	have	tried	to	state	a	high	level	challenge	(in	red)	followed	by	
some	explication.	It	would	be	impossible	to	outline	all	the	
possibilities,	and	those	listed	are	not	meant	to	be	too	
prescriptive.		

In	all	cases	they	are	stated	as	“How	to…”.	This	is	both	a	
scientific	challenge	(development	of	new	knowledge	and	
understanding)	as	well	as	a	technological	one	(development	
of	techniques	and	methods	and	systems	that	achieve	the	
goal).	

	

S1.	Materials	and	Data	

How	to	turn	materials	into	data	so	they	can	be	manipulated	and	designed?			

To	understand	materials	(so	they	can	be	synthesised,	manipulated	and	changed)	one	needs	to	understand	
them	and	trust	that	understanding	(modelling	and	synthesis).	Materials	are	not	systems	(for	the	purpose	of	
this	document).	The	question	applies	to	both	non-organic	and	organic	materials	(including	for	example	
food).	

How	to	design	materials	in	a	data-driven	manner	–	from	quantum	monte-carlo	(for	engineering	materials)	
through	to	food	designed	in	response	to	genetic	information?	

	

S2.	Physical	/	biological	systems	and	data	
How	to	embed	data	into	physical	systems;	understand	physical	systems	through	data-driven	models;	and	
design,	build	and	control	physical	systems	by	using	data?	

This	includes	challenges	in	robotics	and	sensor	networks	and	in	the	processing	of	visual	data	–	how	to	
embed	trusted	analytics	into	physical,	biological	and	environmental	systems.	How	to	use	data	to	increase	
trust	in	data-centric	systems	(such	as	the	internet	of	things),	for	example	by	better	management	of	privacy.	
How	to	better	model	physical	systems	using	data	(or	more	precisely,	how	to	improve	that	modelling,	which	
is	the	core	business	of	all	scientists,	using	modern	technologies	for	data).		

Areas	of	Scientific	Challenge	
• Materials	and	Data	

• Physical	/	Biological	Systems	and	

Data	

• Institutions	and	Data	

• Trustworthy	Software	Construction	

• Architecture	for	composability,	
compartmentalisation	and	
resilience	

• Distributed	Trust	Mechanisms	

• Analysing,	Representing	and	

Modelling	Data	

• Quantification	of	and	reasoning	
with	risk	and	uncertainty	
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How	to	control	physical	systems	with	data	in	a	manner	that	you	can	trust?		How	to	turn	physical	or	
biological	objects	(eg	scientific	specimens,	or	aspects	of	living	systems)	into	data	cheaply	and	at	scale	in	a	
manner	that	can	be	trusted?	How	to	map	the	world	more	reliably	(using	spatial	data	as	a	testbed	for	
analytics	pipelines)?	How	to	build	autonomous	systems	for	data	gathering	in	the	field.	How	to	manage	the	
ingestion	of	semi-structured	sensor	data?	How	to	manage	the	provenance	of	data	gathered	in	the	world?	
	

S3.	Institutions	and	Data	

How	to	represent,	augment,	understand,	manage	and	control	institutions	better	using	data?	
	
I	use	“institutions”	in	the	economist’s	sense50	which	includes	government,	the	legal	system	(statute	law,	
regulation),	business	processes,	and	contracts,	etc.	The	challenge	is	to	represent	these	societal	systems	
using	data	that	can	be	processed	and	reasoned	with	by	a	machine.	Solving	this	involves	advancing	the	state	
of	the	art	of	natural	language	processing	(eg,	targeted	at	specialised	uses	of	English,	as	in	statute	law	and	
contracts)	and	the	development	of	tools	that	allow	the	crafting	of	legal	instruments	in	a	manner	similar	to	a	
modern	programming	development	environment	that	will	guarantee	properties	such	as	consistency,	but	
will	also	emit	human	readable	versions	of	the	instruments.		

Another	challenge	is	how	to	use	technologies	for	data	to	improve	institutions,	for	example	by	data-driven	
experimentation	for	policy	development51.		Part	of	the	solution	is	likely	to	be	aiding	the	change	of	role	of	
government	from	owner	of	assets,	or	deliverer	of	retail	services	to	wholesaler	and	architect	of	modular	
systems.		
	

S4.	Trustworthy	software	construction		
	
How	to	construct	software	that	does	what	it	is	supposed	to	and	nothing	else?	
How	to	make	technologies	that	constructs	software	that	guarantees	its	correctness,	invulnerability	and	
other	properties	(eg	real	time	guarantees).	One	can	ask	similar	questions	regarding	interaction	and	
communication	protocols.	Particular	challenges	include:	mixed-criticality,	real-time,	multicore,	side-
channels;	information	flow;	concurrent	systems	verification;	protocol	verification	(as	a	means	to	deal	with	
composition	and	break	the	back	of	concurrency);	automation	of	proof	effort.	How	to	specify	and	quantify	
dimensions	of	security	(turning	it	from	a	binary	property	to	a	real-valued	property	you	can	reason	about	
from	a	risk	sensitive	perspective)?	How	to	ensure	trustworthiness	of	mobile	code	(especially	for	analytics)?		
	

S5.	Architecture	for	composability,	compartmentalisation	and	resilience		

How	to	build	data-centric	systems	that	can	be	reliably	composed	and	compartmentalised	and	which	are	
resilient,	robust	and	trustworthy?	

Data-centric	systems	are	the	most	complex	artefacts	designed	by	man.	The	challenge	is	to	design	them	
(including	cyber-physical	and	cyber-societal)	in	a	manner	that	facilitates	composition,	
compartmentalisation	and	resilience.	This	is	necessary	in	order	to	improve	the	reliability	and	
trustworthiness	of	such	systems.	

This	challenge	is	architectural	(including	questions	such	as	how	to	compose	trust	–	just	because	you	have	
trusted	components	does	not	guarantee	their	composition	can	be)	but	includes	questions	such	as	how	to	
monitor	and	manage	such	large	systems	(supervisory	control	and	diagnostics).	Examples	that	are	worthy	of	
attack	include	how	to	architect	large	distributed	data	analytics	systems.	How	can	trust	in	such	systems	be	
quantified,	measured	and	managed?	
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S6.	Distributed	trust	mechanisms		
	
How	to	manage	trust	in	distributed	data-centric	systems?	
	
Trust	underpins	human	interaction,	and	thus	data-technologies	that	mediate	such	interactions	must	
manage	trust.	The	challenges	include	how	to	ensure	trustworthy	provenance	of	data	and	operations	on	
data	(provenance	is	a	kind	of	dual	to	security:	provenance	tells	you	reliably	where	the	data	came	from	and	
who	did	what	to	it;	data	security	reliably	ensures	where	the	data	can	go	and	who	can	do	what	with	it).	Thus	
we	will	study	both	provenance	and	security	together.	This	needs	to	be	done	in	a	risk	sensitive	manner	(see	
S8).	How	to	build	richer,	better	and	more	applicable	distributed	ledgers	and	allied	technologies?	How	to	
understand	and	quantify	their	security	and	reliability?	How	to	build	social	choice	mechanisms	that	can	be	
trusted?	How	to	build	the	communications	technology	that	underpins	distributed	trust?	

	
S7.	Analysing,	Representing	and	Modelling	data		
	
How	to	derive	insight	from	data	that	can	inform	action?	
	
How	do	you	make	sense	of	data?	How	to	make	sense	of	all	the	methods	that	do	so?	How	to	build	models	
that	are	usable	and	re-usable.	How	to	exploit	complex,	structured	data	with	all	of	the	mess	of	the	world	in	
the	way?	How	to	model	complex	phenomena	(ecologies,	language,	societies)	using	data?	How	to	make	
such	models	trusted	and	reliable	and	composable?	How	to	best	communicate	such	models	to	people	for	
action?	How	to	act	and	decide	upon	models	of	data?	How	to	manipulate	data	representations	of	the	
world?	Tools	for	managing	multiple	representations	of	data	and	manipulating	them	(music,	law,	biology).	
How	to	exploit	computational	and	algorithm	advances	to	build	better	technologies	for	data	analysis?	
	
This	all	needs	to	be	done	in	the	context	of	the	structure	of	data;	data	is	not	merely	a	string	of	bits.	Many	of	
the	types	of	data	that	will	have	the	largest	impacts	are	highly	structured	(natural	languages,	video,	social	
networks,	etc).	Advancing	the	stated	goal	with	respect	to	these	data	types	requires	deep	science	and	
technology	stacks	(that	can	be	used	across	diverse	application	domains).	
	

S8.	Quantification	of	and	reasoning	with	risk	and	uncertainty	
	
How	to	quantitatively	represent	the	rich	sources	of	risk	and	uncertainty	represented	by	data,	and	how	to	
reliably	reason	with	this?	
	

Whilst	data	can	sometimes	reduce	uncertainty,	it	does	not	remove	it;	decisions	still	need	to	be	made	in	the	
face	of	uncertainty.	Furthermore,	the	increasing	complexity	of	data-driven	systems	means	that	the	
management	of	partial	information,	uncertainty	and	ambiguity	is	essential.	How	can	this	be	done	in	a	risk-
sensitive	manner?	How	can	all	aspects	of	data	technology	be	made	resilient	to	uncertainty?		How	can	
different	notions	of	uncertainty	be	combined	(relative	to	the	inference	of	decision	task	at	hand),	and	how	
can	it	be	reasoned	with	in	an	effective	manner?	How	can	uncertainty	and	risk	be	effectively	communicated	
and	visualised?	How	can	legal	rights,	security	and	privacy	be	made	risk	sensitive?	
	

S9.	Fundamental	limits	of	data		
	
How	to	determine	the	limits	of	what	can	be	done	with	technologies	for	data?	

All	technologies	for	data	have	limits.	How	can	these	be	determined	and	catalogued?	And	how	can	we	
approach	these	limits?	Without	knowing	what	the	fundamental	limits	are	it	is	not	possible	to	know	when	a	
technology	may	break	down	and	where	to	put	effort	to	prevent	this	from	happening.		
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This	challenge	cuts	across	everything	we	do,	is	a	fundamental	differentiator,	and	provides	credibility	for	our	
status	as	part	of	a	scientific	research	organisation.	It	also	sets	a	target	for	other,	less	“fundamental”,	work	
by	setting	a	gold	standard	to	approach.	

Challenges	include	what	is	possible	with	data	analytics,	optimisation,	distributed	trust	mechanisms,	and	
indeed	all	data	technologies	we	examine.	Challenges	include	characterising	the	difficulty	of	learning	from	
data,	inferring	causality,	dealing	with	noise,	protecting	privacy,	transmitting	and	sharing	data,	and	solving	
computational	problems.		

There	are	limits	in	terms	of	data,	knowledge,	computation,	energy,	time	and	space.	As	well	as	limits	to	
technical	components,	there	are	also	limits	(which	need	to	be	determined)	to	composite	systems	(such	as	
trust,	stability,	and	ability	to	control).	There	are	also	limits	to	socio-technical	systems	built	with	data	
technologies	(for	example	computational	social	choice,	limits	to	“fairness”	and	other	synthetic	properties)	
and	limits	arising	from	human	abilities	or	inabilities.	
	

S10.	Shaping	data-driven	society		
	
How	to	understand	what	it	means	to	be	human	in	a	data-driven	world?	
	
What	does	it	mean	to	be	human	in	a	data-driven	world?	How	can	our	humanity	be	enhanced	by	data-
driven	technologies;	how	can	we	prevent	harm?	How	can	we	build	data-technologies	that	are	meaningful	
and	valuable	to	society	at	large?	How	can	we	encourage	and	assist	communities	in	their	adoption	of	
technologies	for	data	to	improve	their	lives?		

Solving	this	challenge	will	require	the	development	of	new	ethnographic	methods	for	data-centric	
technologies.	It	will	also	require	ongoing	research	on	how	people	interact	with	data-technologies	from	the	
perspective	of	decision	theory	(social	choice,	bounded	rationality,	etc.).	

Such	new	methods	will	enable	the	attacking	of	challenges	such	as	how	to	design	data-technologies	that	
better	protect	usability,	privacy,	security	and	confidentiality.	It	could	also	provide	scientific	underpinnings	
for	the	practice	of	UX	design.		
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Impacts	
Data61’s	L-shaped	model	(see	page	1)	means	that	our	impacts	
are	the	product	of	our	scientific	capabilities	with	market	forces	
and	opportunities.	These	impacts	are	managed	through	our	
business	development	and	product	management	processes.	A	
given	scientific	capability	can	deliver	impact	in	many	end-use	
problems52;	a	given	market	need	can	be	satisfied	by	many	
different	scientific	capabilities53		–	see	the	schematic	to	the	right.	

The	science	driven	challenges	are	our	view	of	where	technology	
needs	to	move.	The	end-use	projects	we	do	will	largely	be	driven	
by	the	market’s	view	of	this.	It	will	be	primarily	through	these	
projects	that	the	science	will	have	its	larger	impact.	This	impact	
can	be	categorized	in	many	overlapping	ways.	Three	are	given	
below:	

General	categories:	

• Improvement	in	the	efficiency	of	Australian	businesses
• Improvement	in	the	efficiency	of	Australian	governments
• Improved	reliability,	safety	and	security	of	data-technologies
• Generation	of	new	industries,	especially	platform	centric	ones
• Improvement	in	the	speed	and	effectiveness	of	scientific	discovery.

Data61	market	focus	categories	(in	partnership	with	other	BUs	where possible):	

• Safety	and	Security
• Health	&	Communities
• Future	Cities
• IoT/Industrial	Internet
• Agri-business
• Spatial	Intelligence
• Data-driven	Government
• Enterprise	Services	+	Fintech
• Defence

Whole	of	CSIRO	categories54	

• Food	security	and	quality
• Clean	energy	and	resources
• Health	and	wellbeing
• Conservation	and	use	of	our	natural	environment
• Innovative	industries
• A	safer	Australia

Data61’s	research	in	support	of	the	scientific	vision	of	the	present	document	will	support	projects	in	these	
impact	areas,	and	will	thus	find	pathways	to	impact	through	them.	Individual	projects	are	responsible	for	
analysing,	shaping	and	articulating	what	those	pathways	and	impacts	will	be.	This	needs	to	be	done	in	an	
agile	manner,	adapting	to	opportunities,	but	building	upon	our	focused	scientific	capability.	

Scientific 
Capabilities 

Market	Driven	
Projects 
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Endnotes	

1	It	is	deliberately	called	a	“vision”,	and	not	(metaphorically)	a	“roadmap”	–	a	roadmap	is	a	two-dimensional	graphical	
representation	of	something	that	already	exists	(roads),	and	is	rarely	something	inspiring	and	exciting;	at	best	a	
“science	/	technology	roadmap”	it	is	a	visual	depiction	of	the	expected	temporal	evolution	of	a	technological	product	
family	(Ronald	N.	Kostoff	and	Robert	R.	Schaller,	Science	and	Technology	Roadmaps,	IEEE	Transactions	on	Engineering	
Management,	48(2),	132-143	(2001);	Lianne	Simonse,	Jan	Buijs	&	Erik	Jan	Hultink,		Roadmap	grounded	as	‘visual	
portray’:	Reflecting	on	an	artifact	and	metaphor,	Helsinki	EGOS	2012	Sub-theme	09:	(SWG)	Artifacts	in	Art,	Design,	and	
Organization	(2012))	which	suffers	by	being	contrained	to	a	two	dimensional	visual	form.	Conversely,	a	“vision”	can	be	
of	something	that	does	not	exist,	and	can	inspire	and	excite	and	is	not	contrained	to	fit	any	particular	format.	It	tells	
where	we	want	to	go,	and	outlines	in	broad	strokes	how	we	might	get	there,	without	actually	pinning	the	exact	path	
down.	It	is	a	science	vision	in	the	general	sense	of	the	word	“science”	–	systematised	knowledge;	see	endnote	4.		We	
expect	to	develop	more	traditional	technology	roadmaps	(i.e.	temporally	linear	expectations	and	plans)	for	particular	
product	and	service	offerings	which	we	develop.	
2	At	different	times	in	computing’s	evolution,	either	the	demand	(market)	or	the	technology	push	side	have	been	
dominant;	but	it	is	never	just	one	or	the	other;	see	Jan	van	dem	Ende	and	Wilfred	Dolfsma,	Technology	push,	demand	
pull	and	the	shaping	of	technological	paradigms	–	Patterns	in	the	development	of	computing	technology,	Journal	of	
Evolutionary	Economics	15,	83-99	(2005).	The	reality	is,	of	course,	complex,	and	recombination	(the	mixing	up	of	
different	ideas)	plays	an	essential	part	(Cristiano	Antonelli,	Jackie	Krafft,	Francesco	Quatraro.	Recombinant	Knowledge	
and	Growth:	The	Case	of	ICTs,	Structural	Change	and	Economic	Dynamics,	Elsevier,	21(1),	50-69	(2010))	and	the	
“demand-pull”	model	seems	to	be	losing	favor	as	a	satisfactory	explanation	(Benoit	Godin	and	Joseph	P.	Lane,	“Pushes	
and	Pulls”:	The	Hi(story)	of	the	Demand	Pull	Model	of	Innovation,	Project	on	the	Intellectual	History	of	Innovation,	
working	paper	No	13	(2013);	Benoit	Godin,	Innovation	Contested:	The	Idea	of	Innovation	over	the	Centuries,	Routledge	
(2015)).	
3	The	document	has	multiple	intended	audiences:	

• DATA61	talent	(existing	and	potential	future)	–	to	align	what	we	do,	to	help	us	say	“no”	to	opportunities	that	
do	not	align,	and	to	achieve	large	impact	multiplicatively.	

• Rest	of	CSIRO	and	external	partners	–	to	articulate	our	own	longer	term	research	goals	to	serve	as	one	of	the	
filters	we	will	apply	in	considering	engaging	in	joint	projects.	

• Wider	public	–	to	explain	what	we	do.	
	

4	It	would	be	unfortunate,	and	unhelpful,	to	get	hung	up	on	the	distinction	between	science,	engineering	and	
technology.	This	document	presents	an	aspiration	for	the	new	knowledge	we	will	create	–	novum	scientia.	While	
engineering	knowledge	is	different	from	scientific	knowledge	(Walter	G.	Vincenti,	What	Engineers	Know	and	How	They	
Know	I:	Analytical	Studies	from	Aeronautical	History,	The	Johns	Hopkins	University	press	(1990))	and	technology	is	
more	than	mere	scientific	knowledge	(W.	Brian	Arthur,	The	Nature	of	Technology:	What	it	is	and	How	it	Evolves,	Simon	
and	Schuster	(2009)),	the	essence	of	engineering	research	(the	improvement	of	technology)	remains	the	production	of	
new	knowledge	(Edwin	T.	Layton	Jr,	Technology	as	Knowledge,	Technology	and	Culture	15(1),	31-41	(January	1974)).	
The	research	Data61	does	spans	all	of	these	headings,	and	more,	such	as	“design-driven	innovation”	–	the	phrase	is	
from	Roberto	Verganti’s	book	Design-Driven	Innovation:	Changing	the	Rules	of	Competition	by	Radically	Innovating	
What	Things	Mean,	Harvard	Business	Press	(2009)	–	new	business	models,	and	ethnographic	approaches	to	data	
technologies.		
	
We	should	aspire	to	seek	new	knowledge	(motivated	by	real	problems	and	the	desire	to	improve	our	current	
technologies)	wherever	it	takes	us,	in	the	spirit	of	the	great	researchers	of	the	past	(Lisa	Jardine,	Ingenious	Pursuits:	
Building	the	Scientific	Revolution,	Little	Brown,	London,	1999;	Jenny	Uglow,	The	Lunar	men:	The	Friends	Who	Made	the	
Future,	Faber	and	Faber	2002).		Our	inspirations	and	role	models	should	be	polymaths	such	as	Robert	Hooke	(Lisa	
Jardine,	The	Curious	Life	of	Robert	Hooke:	The	Man	who	Measured	London,		HarperCollins	(2003);	Stephen	Inwood,	
The	Man	Who	Knew	Too	Much:	The	Strange	and	Inventive	Life	of	Robert	Hooke	1635-1703,	MacMillan	(2002);	Robert	
D.	Purrington,	The	First	Professional	Scientist:	Robert	Hooke	and	the	Royal	Society	of	London,	Birkhauser	(2009);	Jim	
Bennet,	Michael	Cooper,	Michael	Hunter	and	Lisa	Jardine,	London’s	Leonardo	–	The	Life	and	Work	of	Robert	Hooke,	
Oxford	University	press	(2003))	or	Charles	Babbage	(Laura	J.	Snyder,	The	Philosophical	Breakfast	Club:	Four	
Remarkable	Friends	who	Transformed	Science	and	Changed	the	World,	Broadway	Books	(2011))	both	of	whom	freely	
moved	between	science	and	technology.		
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As	noted	long	ago	(Robert	P.	Multhauf,	The	Scientist	and	the	“Improver”	of	Technology,	Technology	and	Culture	1(1),	
38-47	(1959)),	there	is	no	perfect	word	for	the	improver	of	technology:	“engineer”	is	widely	used,	but	it	still	primarily	
refers	to	the	expert	practioner	and	not	necessarily	the	improver.	Perhaps	we,	as	improvers	of	technologies	for	data,	
should	not	worry	whether	what	we	do	is	adequately	described	as	“science”,	“engineering”	or	anything	else,	and		just	
refer	to	ourselves	by	Hilary	Cinis’	elegant	neologism:	“datanauts”.	
5	It	is	common	that	vision	statements	become	all-encompassing,	excluding	nothing.	That	the	present	vision	does	not	
aim	to	cover	everything	can	be	tested	by	comparing	it	to	the	substantially	broader	set	of	goals	in	Future	Science	–	
Computer	Science:	Meeting	the	Scale	Challenge,	Australian	Academy	of	Science	(2013),	or	President’s	Council	of	
Advisors	on	Science	and	Technology,	Report	to	the	President	and	Congress.	Designing	a	Digital	Future:	Federally	
Funded	Research	and	Development	in	Networking	and	Information	Technology,	Executive	Office	of	the	President	
(December	2010).	
6		See	John	Archibald	Wheeler,	Information,	Physics,	Quantum:	The	Search	for	Links,	in	Proceedings	of	the	3rd	
International	Symposium	on	the	Foundations	of	Quantum	Mechanics,	Tokyo,	(1989);	Hector	Zenil	(Ed.),	A	computable	
universe:	understanding	and	exploring	nature	as	computation,	World	Scientific	(2013);	Rolf	Landauer,	Uncertainty	
principle	and	minimal	energy	dissipation	in	the	computer,	International	Journal	of	Theoretical	Physics	21(3/4),	283-
297,	(1982);	Rolf	Landauer,	The	physical	nature	of	information,	Physics	Letters	A,	217,	188-193	(1996);	Antonie	Berut	
et	al.,	Experimental	verification	of	Landauer’s	principle	linking	information	and	thermodynamics,	Nature	483,	187-190,	
(8	March	2012);	Juan	M.R.	Parrondo,	Jordan	M.	Horowitz	and	Takahiro	Sagawa,	Thermodynamics	of	Information,	
Nature	Physics,	11,	131-139,	(February	2015);	Gilles	Brassard,	Is	information	the	key?	Nature	Physics	1,	2-4,	(October	
2005).	
7	Jean-Marie	Lehn,	Perspectives	in	Supramolecular	Chemistry—From	Molecular	Recognition	towards	Molecular	
Information	Processing	and	Self-Organization,	Angewandte	Chemie	International	Edition	in	English,	29(11),	1304–
1319,	(November	1990);	Jean-Marie	Lehn,	Supramolecular	chemistry	–	scope	and	perspectives	–	molecules	–	
supermolecules	–	molecular	devices,	Nobel	Prize	Lecture,	(8	December	1987).	
8	John	Maynard	Smith,	The	concept	of	information	in	biology,	Philosophy	of	Science	67(2),	177-194	(2000);	confer	
Ladislav	Kovac,	Information	and	knowledge	in	biology:	time	for	reappraisal,	Plant	Signalling	and	behaviour	2(2),	65-73	
(2007).	
9	David	Easley	and	Jon	Kleinberg,	Networks,	crowds	and	markets:	reasoning	about	a	highly	connected	world,	
Cambridge	University	Press	(2010).	
10	Friedrich	A.	Hayek,	The	use	of	knowledge	in	society,	The	American	Economic	Review,	35(4),	519-530	(1945);	George	
J.	Stigler,	The	Economics	of	Information,	The	Journal	of	Political	Economy	69(3),	213-225	(1961);	Joseph	E.	Stiglitz,	
Information	and	the	change	in	the	paradigm	in	economics,	Nobel	Prize	Lecture	8	(December	2001).		
11	Werner	Callebaut	and	Diego	Raskim-Gutman,	Modularity:	Understanding	the	development	and	evolution	of	natural	
complex	systems,	MIT	Press,	(2005);	Jeff	Clune,	Jean-Baptiste	Mouret	and	Hod	Lipson,	The	evolutionary	origins	of	
modularity,	Proceedings	of	the	Royal	Society	(series	B),	280,	20122863	(2013)	
12	David	Lazer,	Alex	Pentland,	Lada	Adamic,	Sinan	Aral,	Albert-Lazlo	Barabasi,	Devon	Brewer,	Nicholas	Christakis,	
Noshir	Contractor,	James	Fowler,	Myron	Gutmann,	Tony	Jebara,	Gary	King,	Michael	Macy,	Deb	Roy	and	Marshall	Van	
Alstynr,	Computational	Social	Science,	Science	323,	721-723	(2009).	
13	Committee	on	the	Mathematical	Sciences	in	2025,	Board	on	Mathematical	Sciences	and	Their	Applications,	Division	
on	Engineering	and	Physical	Sciences,	National	Research	Council	of	the	National	Academies,	The	Mathematical	
Sciences	in	2025,	The	National	Academies	Press,	(2013).	
14	Cristian	S.	Calude	(Ed),	Randomness	and	Complexity:	From	Leibniz	to	Chaitin,	World	Scientific,	(2007).	
15	Richard	G.	Lipsey,	Kenneth	I.	Carlaw	and	Clifford	T.	Bekar,	Economic	Transformations	General	Purpose	Technologies	
and	Long-Term	Economic	Growth,	Oxford	University	Press	(2005).	
16	Robert	C.	Williamson,	Michelle	Nic	Raghnaill,	Kirsty	Douglas	and	Dana	Sanchez,	Technology	and	Australia’s	future:	
New	technologies	and	their	role	in	Australia’s	security,	cultural,	democratic,	social	and	economic	systems,	Australian	
Council	of	Learned	Academies,	September	2015.	
17	National	Science	and	Technology	Council,	Networking	and	Information	Technology	Research	and	Development	
Subcommittee,	The	National	Artificial	Intelligence	Research	and	Development	Strategic	Plan,	(October	2016).	
18	These	complement	other	broader	principles	underpinning	everything	we	do,	such	as	national	benefit;	see	the	
Data61	operating	model	document.	
19	“We”	here	refers	to	the	broader	Data61+	network.	This	principle	implies	avoiding	NIH	(Not	Invented	Here)	
syndrome;	we	do	not	need	to	invent	everything	ourselves.	We	should	focus	on	the	things	that	we,	and	we	alone,	can	
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do;	and	then	network	with	others	in	a	rich	and	complex	manner.	It	would	be	supremely	ironic	if	our	organisation	that	
underpins	the	information	society	does	not	embrace	all	of	its	implications	(Manuel	Castells,	The	Rise	of	Network	
Society	(2nd	Edition),	Wiley-Blackwell	(2010)).	
20	The	word	is	pinched	from	a	suitably	inspiring	institution:	The	MIT	media	lab,	which	so	describes	itself	
https://www.media.mit.edu/about	.	The	principle,	of	course,	implies	much	collaboration	with	other	disciplines,	but	
goes	beyond	the	traditional	“multi-disciplinary”	to	a	stronger	problem-oriented	perspective	–	“There	are	no	subject	
matters;	no	branches	of	learning	–	or,	rather,	of	inquiry:		only	problems	and	the	urge	to	solve	them.	A	science	such	as	
botany	or	chemistry	…		is,	I	contend,	merely	an	administrative	unit”	(Karl	Popper,	Realism	and	the	Aim	of	Science,	
Rowman	and	Littlefield	(1983)).	Such	a	stance	implies	widespread	collaboration	without	fear	of	crossing	boundaries.	It	
does	not	imply	a	lack	of	“canon”	or	core;	our	canon	is	primarily	that	of	cybernetics	broadly	construed.	
21	This	viewpoint	is	given	the	fancy	name	of	“technological	determinism”	with	the	concomitant	fear	of	“autonomous	
technology”	(Langdon	Winner	Autonomous	technology:	Technics-out-of-control	as	a	theme	in	political	thought.	MIT	
Press,	1978).	The	counter	is	that	technologies	can	be,	and	are,	shaped	by	society.	The	reality	is	that	while	technologies	
do	indeed	have	“momentum”	(Thomas	P.	Hughes	"The	evolution	of	large	technological	systems."	Pages	51-82	in	
Wiebe	E.	Bijker	et	al.	(eds),	The	social	construction	of	technological	systems:	New	directions	in	the	sociology	and	
history	of	technology	(1987))	and	“drive	history”	(Merritt	Roe	Smith	and	Leo	Marx.	Does	technology	drive	history?	The	
dilemma	of	technological	determinism.	MIT	Press	(1994))	there	remains	a	huge	freedom	of	choice	in	terms	of	how	
they	are	used	and	their	precise	form.	Like	all	technologies	of	the	past,	technologies	for	data	can	also	be	shaped	for	
social	and	national	benefit.	
22	Russell	Hardin,	Trust	and	Trustworthiness,	Russell	Sage	Foundation,	New	York,	(2002);	Frances	Fukuyama,	Trust:	The	
Social	Virtues	and	the	Creation	of	Prosperity,	Simon	and	Schuster	(1995);	Eric	M.	Uslaner,	The	Moral	Foundations	of	
Trust,	Cambridge	University	Press	(2002).		An	excellent	short	summary	of	the	social	side	of	trust	is	chapter	21	of	Jon	
Elster,	Explaining	Social	Behaviour:	More	Nuts	and	Bolts	for	the	Social	Sciences,	Cambridge	University	Press	(2007).	
People’s	trust	in	technology	is	a	complex	matter	(Karen	Clarke,	Gillian	Hardstone,	Mark	Rouncefield	and	Ian	
Sommerville,	Trust	in	Technology:	A	Socio-Technical	Perspective,	Springer	(2006);		Meinolf	Dierkes	and	Claudia	von	
Grote	(eds),	Between	Understanding	and	Trust:	The	Public,	Science	and	Technology,	Routledge	(2000));	and	trust	in	
technological	experts	(as	opposed	to	the	technology	itself)	is	surprisingly	weakly	correlated	with	perceptions	of	risk	
(Lennart	Sjoberg,	Limits	of	Knowledge	and	the	Limited	Importance	of	Trust,	Risk	Analysis	21(1),	189-198	(2001)).		
23	In	the	sense	of	George	Lakhoff	and	Mark	Johnson,	Metaphors	we	Live	By,	The	University	of	Chicago	Press	(1980)	–	
not	as	a	mere	rhetorical	flourish,	but	as	an	essential	way	in	which	to	make	sense	of	what	we	do.	
24	Trust	is	a	very	complex	notion,	and	means	different	things	to	different	people:	(D.	Harrison	McKnight	and	Norman	L.	
Chervany,	The	Meanings	of	Trust,	University	of	Minnesota,	(1996);	Donna	M.	Romano,	The	Nature	of	Trust:	
Conceptual	and	Operational	Clarification,	PhD	thesis,	Louisiana	State	University	(2003)).		

The	complexity	is	illustrated	follows:	

Trust	has	not	only	been	described	as	an	“elusive”	concept,	but	the	state	of	trust	definitions	has	been	called	a	“conceptual	
confusion”,	a	“confusing	potpourri”,	and	even	a	“conceptual	morass”.		For	example,	trust	has	been	defined	as	both	a	
noun	and	a	verb,	as	both	a	personality	trait	and	a	belief,	and	as	both	a	social	structure	and	a	behavioral	intention.	Some	
researchers,	silently	affirming	the	difficulty	of	defining	trust,	have	declined	to	define	trust,	relying	on	the	reader	to	ascribe	
meaning	to	the	term.	(D.	Harrison	McKnight	and	Norman	L.	Chervany,	Trust	and	Distrust	Definitions:	One	Bite	at	a	Time,	
in	R.	Falcone,	M.	Singh,	and	Y.-H.	Tan	(Eds.):	Trust	in	Cyber-societies,	LNAI	2246,	pp.	27–54,	Springer-Verlag	(2001)).	

Perhaps,	like	“culture”	(confer	Kroeber’s	164	definitions	of	culture:	Alfred	L.	Kroeber	and	Clyde	Kluckhorn,	Culture:	A	
critical	review	of	concepts	and	definitions,	Peabody	Museum	of	American	Archeology	and	Anthropology,	(1952)	or	
“technology”	(confer	Robert	C.	Williamson,	Michelle	Nic	Raghnaill,	Kirsty	Douglas	and	Dana	Sanchez,	Technology	and	
Australia’s	future:	New	technologies	and	their	role	in	Australia’s	security,	cultural,	democratic,	social	and	economic	
systems,	Australian	Council	of	Learned	Academies,	(September	2015)),	it	makes	little	sense	to	attempt	to	define	trust,	
but	rather	we	should	focus	upon	the	technological	and	scientific	problems	we	want	to	solve	(as	done	in	the	main	text).	

The	notion	of	trust	as	a	concept	in	computing	has	had	attempts	to	formalise	it	for	some	time,	starting	at	least	20	years	
ago	(Stephen	Paul	Marsh,	Formalising	Trust	as	a	Computational	Concept,	PhD	thesis,	University	of	Stirling,	(1994)),	
with	conferences	on	the	topic	starting	over		decade	ago	(Sokratis	Katsikas,	Javier	Lopez	and	Gunther	Pernul	(eds),	
Trust	and	Privacy	in	Digital	Business:	First	International	Confernce,	Trustbus	2004,	Springer	(2005);	Thorsten	Holz	and	
Sotiris	Ioannidis,	Trust	and	Trustworthy	Computing:	7th	International	Conference	TRUST	2014,	Springer	(2014)).		

One	reason	for	the	complexity	is	because	of	the	many	threats	to	trust	(in	the	same	way	there	are	many	threats	to	
security,	which	need	to	be	explicitly	declared	or	modelled:	Adam	Shostack,	Threat	Modelling:	Designing	for	Security,	
Wiley	(2014)).	But	primarily	the	complexity	comes	simply	from	the	diverse	elements	to	trust	in	data-centric	systems	
including,	but	not	limited	to:	
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• Trust	in	the	reliability	of	software	(never	absolute:	see	Donald	MacKenzie,	Mechanizing	Proof:	Computing,	
Risk	and	Trust,	MIT	Press	(2001);	Juan	C.	Bicarregui	and	Brian	M.	Matthews,	Proof	and	Refutation	in	Formal	
Software	Development,	3rd	Irish	Workshop	on	Formal	Methods	(1999));		

• Trust	in	security	(e.g.	Jeffrey	J.P.	Tsai,	Philip	S.	You	(eds),	Machine	Learning	in	Cyber	Trust:	Security,	Privacy,	
and	Reliability,	Springer	(2009));		

• Trust	in	data	management	(Milan	Petkovic	and	Willen	Jonker	(eds),	Security,	Privacy,	and	Trust	in	Modern	
Data	Management,	Springer	(2007));	

• Trust	in	the	credibility	of	information,	such	as	which	scientific	results	one	can	rely	upon:	(Christine	L.	
Borgman,	Scholarship	in	the	Digital	Age:	Information,	Infrastructure	and	the	Internet,	MIT	Press	(2007))	and	
what	sensor	measurements	one	can	trust	(J.C.	Wallis,	C.L.	Borgmann,	Matthew	Mayernik,	Alberto	Pepe,	
Nithya	Ramanathan	and	Mark	Hansen,	Know	thy	Sensor:	Trust,	Data	Quality,	and	Data	Integrity	in	Scientific	
Digital	Libraries,	11th	European	Conference	on	Research	and	Advanced	Technology	for	Digital	Libraries,	
September	16–21,	2007,	Budapest,	Hungary	(2007)).	This	is	already	front-of-mind	in	work	such	as	“bees	with	
backpacks”	that	Data61	has	done.	It	is	hardly	a	new	concern	–	the	(apparently	simple)	notion	of	a	scientific	
measurement	is	deeply	entangled	with	notions	of	trust,	as	is	evident	from	the	history	of	Victorian	science	
(Graeme	J.N.	Gooday,	The	Morals	of	Measurement:	Accuracy,	Irony,	and	Trust	in	Late	Victorian	Electrical	
Practice,	Cambridge	University	Press	(2004)).	

• Trust	that	social	mechanisms	built	with	data-technologies	cannot	be	manipulated	(See	Eric	Friedman,	Paul	
Resnick	and	Rahul	Sami,	Manipulation-Resistant	Reputation	Systems,	Chapter	27	in	Noam	Nisan,	Tim	
Roughgarden,	Eva	Tardos	and	Vijay	V.	Vaziriani,	Algorithmic	Game	Theory,	Cambridge	University	Press	
(2007));	

• Trust	that	sensitive	information	is	not	leaked	(Guillermo	Lafuente,	The	big	data	security	challenge,	Network	
security	2015.,	12-14	(2015);	

• Trust	that	data-analytics	are	fair	(Solon	Barocas	and	Andrew	D.	Selbst.	Big	data's	disparate	impact.	California	
Law	Review	104	(2016);	Danah	Boyd	and	Kate	Crawford,	Six	provocations	for	big	data.	In	A	decade	in	internet	
time:	Symposium	on	the	dynamics	of	the	internet	and	society	(pp.	1-17).	Oxford	Internet	Institute,	
(September	2011));	

• Trust	in	the	communication	system	underpinning	data	technologies	(White	House:	"Cyberspace	policy	
review:	Assuring	a	trusted	and	resilient	information	and	communications	infrastructure."	White	House,	
United	States	of	America	(2009)).	There	is	no	perfectly	trustable	communication	system,	and	so	like	all	other	
elements	of	the	trust	chain,	a	risk	sensitive	approach	will	be	warranted.	

• Trust	that	the	overall	systems	constructed	can	be	sufficiently	relied	upon	(Piotr	Cofta,	Trust,	Complexity	and	
Control:	Confidence	in	a	Convergent	World,	John	Wiley	and	Sons	(2007)).		

	
25	The	phrase	alludes	to	an	admirable	novel	about	two	famous	scientists	who	are	further	(in	addition	to	Hooke	and	
Babbage	–	see	endnote	4)	great	role	models	for	Data61	–	Alexander	von	Humboldt	and	Carl	Freidrich	Gauss	(Daniel	
Kehlman,	Measuring	the	World,	Pantheon	(2006)).		Humboldt	is	one	of	the	most	important	creators	of	modern	
science,	who	undertook	outstandingly	painstaking	data	gathering	and	analysis	(Andrea	Wulf,	The	Invention	of	Nature:	
The	Adventure	of	Alexander	von	Humboldt,	Lost	Hero	of	Science,	John	Murray,	(2015)).	Gauss	is	famously	credited	as	
the	originator	of	least	squares	data	analysis	(Stephen	M.	Stigler,	Gauss	and	the	invention	of	least	squares,	The	Annals	
of	Statistics,	9(3),	465-474	(1981))	and	thus	one	of	the	fathers	of	modern	data	analytics.	

In	an	earlier	version	of	this	document,	I	used	the	awkward	polysyllabic	neologism	“datafication”,	apparently	coined	in	
the	article	by	Kenneth	Cukier	and	Viktor	Mayer-Schoenberger:	The	Rise	of	Big	Data,	Foreign	Affairs	28–40,	May/June,	
(2013).	It	is	already	widely	used,	but	it	is	an	ugly	word	that	many	Data61	folks	reacted	negatively	to,	and,	crucially,	it	
misses	the	distinction	between	data	and	capta	(see	below).	
26	This	distinction	is	quite	old,	but	rarely	used.	See	Rob	Kitchin,	The	Data	Revolution:	Big	data,	open	data,	data	
infrastructures	and	their	consequences,	Sage,	Los	Angeles	(2014);	this	explains	some	of	the	history	of	the	word;	
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