Appendix C

List of figures

Figure 1.1 Major dams (greater than 500 GL capacity), large irrigation areas and selected drainage divisions across Australia ... 3

Figure 1.2 Schematic diagram of key components and concepts in the establishment of a greenfield irrigation development .. 7

Figure 2.1 The Flinders and Gilbert catchments within the Gulf region of northern Australia .. 10

Figure 2.2 The Flinders catchment .. 11

Figure 2.3 Soil sampling sites and airborne geophysical survey flight lines of the Flinders catchment 14

Figure 2.4 Schematic representation of digital soil mapping method .. 15

Figure 2.5 Availability of rainfall data in the Flinders catchment .. 16

Figure 2.6 Crop yield (rice) and applied irrigation water .. 27

Figure 3.1 Schematic diagram of key natural components and concepts in the establishment of a greenfield irrigation development .. 34

Figure 3.2 Simplified surface geology of the Flinders catchment ... 37

Figure 3.3 Soil generic group (SGG) classes for the Flinders catchment .. 40

Figure 3.4 Surface soil pH of the Flinders catchment .. 42

Figure 3.5 Minimum soil depth of the Flinders catchment .. 42

Figure 3.6 Soil surface texture of the Flinders catchment .. 43

Figure 3.7 Soil permeability of the Flinders catchment .. 44

Figure 3.8 Plant available water capacity in the Flinders catchment .. 45

Figure 3.9 Electrical conductivity in soils of the Flinders catchment ... 46

Figure 3.10 Typical synoptic systems influencing the Flinders catchment .. 47

Figure 3.11 Mean annual rainfall and mean annual potential evaporation under Scenario A 48

Figure 3.12 Rainfall under Scenario A for the Flinders catchment .. 48

Figure 3.13 Potential evaporation under Scenario A for the Flinders catchment ... 49

Figure 3.14 Rainfall deficit under Scenario A for the Flinders catchment .. 49

Figure 3.15 Rainfall and potential evaporation under Scenario A averaged across the Flinders catchment ... 50

Figure 3.16 Mean annual rainfall and potential evaporation under Scenario A averaged over the Flinders catchment ... 51

Figure 3.17 Rainfall variability around Australia under Scenario A ... 52

Figure 3.18 Runs of wet and dry years in the Flinders catchment under Scenario A ... 53

Figure 3.19 Percentage change in mean annual rainfall and potential evaporation under Scenario C relative to Scenario A .. 54
Figure 5.19 Annual time reliability and volumetric reliability for Porcupine Creek dam under scenarios A and C..155
Figure 5.20 Comparisons of inundated area with and without the construction of Porcupine Creek dam under Scenario A ..155
Figure 5.21 Regional ecosystems inundated by the Porcupine Creek dam at full supply level ..156
Figure 5.22 Schematic diagram of sheet piling weir ..157
Figure 5.23 Rectangular ring tank ...160
Figure 5.24 Annual volume of streamflow extracted versus annual time reliability for streamflow gauge 915204A..161
Figure 5.25 Annual volume of streamflow extracted versus annual time reliability for streamflow gauge 915008A..161
Figure 5.26 Annual volume of streamflow extracted versus annual time reliability for streamflow gauge 915003A..161
Figure 5.27 Land suitability for offstream water storages in the Flinders catchment ..163
Figure 5.28 Reported conveyance losses from irrigation systems across Australia (ANCID, 2001).................................168
Figure 5.29 Efficiency of different types of irrigation systems..169
Figure 5.30 Probability of crop yield potential for dryland and fully irrigated mungbean sown in Richmond climate on 15 January ..179
Figure 5.31 Probability of yield potential for dryland and fully irrigated sorghum (grain) sown in Richmond climate on 15 January ..179
Figure 5.32 Probability of yield potential for dryland and fully irrigated cotton sown in Richmond climate on 15 January ..179
Figure 5.33 Crop yield plotted against applied irrigation water in Richmond climate ..181
Figure 5.34 Applied irrigation water for planting on the 15th day of each month for sorghum (grain) at Richmond..........................186
Figure 5.35 Crop yield for planting on the 15th day of each month for sorghum (grain) at Richmond ...187
Figure 5.36 The area associated with each land suitability class for a selection of 13 crops in the Flinders catchment ..190
Figure 5.37 Modelled land suitability for sorghum (grain). Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water ..192
Figure 5.38 Sorghum (grain) ...192
Figure 5.39 Modelled land suitability for mungbean. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water ..195
Figure 5.40 Mungbean ...195
Figure 5.41 Modelled land suitability for Rhodes grass and sorghum (forage). Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water ..199
Figure 5.42 Bambatsi ...199
Figure 5.43 Modelled land suitability for lablab and lucerne. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water ..202
Figure 5.44 Lablab ...202
Figure 5.45 Modelled land suitability for cotton. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water .. 206
Figure 5.46 Cotton ... 206
Figure 5.47 Modelled land suitability for sugarcane. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water .. 209
Figure 5.48 Sugarcane ... 209
Figure 5.49 Modelled land suitability for sweet corn and tomato. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water 212
Figure 5.50 Sweet corn ... 212
Figure 5.51 Modelled land suitability for mango and Indian sandalwood. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water 215
Figure 5.52 Indian sandalwood ... 215
Figure 5.53 Modelled land suitability for mango and Indian sandalwood. Note that this land suitability map does not take into consideration flooding, risk of secondary salinisation or availability of water 219
Figure 5.54 Mangoes .. 219
Figure 6.1 Schematic diagram of key components and concepts in the establishment of a greenfield irrigation development ... 228
Figure 6.2 Growth patterns of beef cattle in northern Australia .. 231
Figure 6.3 Land tenure in the Flinders catchment ... 252
Figure 7.1 Schematic diagram of key components and concepts in the establishment of a greenfield irrigation development ... 256
Figure 7.2 Steady-state watertable level for (a) various recharge rates and hydraulic conductivities (K) and (b) an irrigation area of 100 ha, at varying distances to the river ... 261
Figure 7.3 Steady-state watertable level for an irrigation area of 1000 ha, plotted against distance to the river ... 261
Figure 7.4 Steady-state watertable level at varying distances to the river for an irrigation area of (a) 250 ha and (b) 500 ha .. 262
Figure 7.5 Steady-state watertable level at varying distances (d) to the river for (a) an irrigation area of 1000 ha and (b) various irrigation area and distance combinations ... 262
Figure 7.6 Watertable level for various aquifer diffusivities (D) and distances to river (d), for an irrigation area of 100 ha and recharge rate of 100 mm/year .. 263
Figure 7.7 Flux response for different aquifer diffusivities, for different hydraulic conductivities (K), specify yields (Sy) and distances to river (d) .. 263
Figure 7.8 Variation in watertable level beneath two neighbouring 500-ha irrigation developments at different distances of separation ... 264
Figure 7.9 Conductivity–depth section (lower panel) for flight line 10230. Location of flight line on a satellite image is shown in upper panel. This flight line transects the Flinders River downstream of Hughenden .. 265
Figure 8.1 Schematic diagram illustrating the components of the case study for an irrigation development near Cloncurry, with feedlot, abattoir and Cave Hill dam ... 277
Figure 8.2 (a) Satellite map and (b) relief map of the area surrounding Cave Hill dam 280
Figure 8.3 (a) Soil generic group map and (b) land suitability map of the area surrounding Cave Hill dam for spray-irrigated sorghum (grain) ... 282
Figure 8.1 Landscape of the potential Cave Hill dam irrigation development, facing east

Figure 8.5 (a) Monthly rainfall and (b) monthly potential evaporation, under Scenario A at Cloncurry

Figure 8.6 (a) Maximum monthly temperature and (b) minimum monthly temperature, under Scenario A at Cloncurry

Figure 8.7 Annual streamflow at the Cave Hill dam site under Scenario A

Figure 8.8 Crop yield versus applied irrigation water under Scenario A for sorghum (grain) in the Cloncurry area

Figure 8.9 Mean annual applied irrigation water supplied to the field in (a) ML and (b) ML/ha under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.10 (a) Median annual applied irrigation water supplied to the field and (b) percentage of years that the maximum area is planted under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.11 Ratio of evaporation from the reservoir to the applied irrigation water under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.12 (a) Percentage of time the volume of the reservoir is less than dead storage volume and (b) percentage of time the volume of the reservoir is less than 20% of the full supply level volume under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.13 Mean annual streamflow quotient at (a) gauge 915203A and (b) gauge 915003A for the irrigation development associated with the Cave Hill dam

Figure 8.14 (a) Median of the 30-year mean values (M30M) for crop yield and (b) standard deviation of the 30-year mean values (S30M) for crop yield under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.15 Annual crop yield from the irrigation development under Scenario B for three different scheme areas

Figure 8.16 (a) Median of the 30-year mean values (M30M) for specific yield and (b) percentage of time 82,500 t of grain is exceeded under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.17 (a) Median of the 30-year mean values (M30M) for gross margin and (b) median of the 30-year mean values for gross margin per hectare under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.18 (a) Median of the 30-year net present values and (b) standard deviation of the 30-year net present values under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.19 (a) Median of the 30-year net present values and (b) standard deviation of the 30-year net present values under Scenario B for the irrigation development associated with the Cave Hill dam

Figure 8.20 Gross margins for sorghum (grain) under Scenario B for the irrigation development associated with the Cave Hill dam, with a scheme area of 12,000 ha and crop area decision of 4 ML/ha: (a) time series and (b) box plot

Figure 8.21 Percentage exceedance plots of (a) net present value and (b) internal rate of return under Scenario B for the scheme-scale irrigation development of 12,000 ha associated with the Cave Hill dam

Figure 8.22 Percentage exceedance plots of net present value under Scenario B for the farm-scale irrigation development of 12,000 ha associated with the Cave Hill dam

Figure 8.23 Change in depth to watertable for different values of saturated hydraulic conductivity (K): (a) low recharge rate of 67 mm/year and (b) high recharge rate of 118 mm/year

Figure 9.1 Schematic diagram illustrating the components of the case study for an irrigation development near Maxwelton, with O’Connell Creek offstream storage
Figure 9.22 Percentage exceedance plots for the scheme-scale analysis of (a) net present value and (b) internal rate of return under Scenario B for the 5300-ha irrigation development associated with the O’Connell Creek offstream storage ... 333

Figure 9.23 Percentage exceedance plots for the farm-scale analysis of (a) net present value and (b) internal rate of return under Scenario B for the 5300-ha irrigation development associated with the O’Connell Creek offstream storage ... 334

Figure 9.24 Change in depth to watertable for different values of saturated hydraulic conductivity (K) 335

Figure 10.1 Schematic diagram illustrating the components of the case study for the water harvesting irrigation development in the Flinders catchment ... 341

Figure 10.2 (a) Relief and broad-scale flood inundation map and (b) offstream water storage suitability map of the Flinders catchment ... 344

Figure 10.3 (a) Soil generic group map and (b) land suitability map of surface-irrigated cotton in the Flinders catchment ... 346

Figure 10.4 Area associated with each land suitability class for a selection of 13 crops in the Flinders catchment, excluding land inundated by flooding ... 347

Figure 10.5 Area associated with each land suitability class for a selection of 13 crops in the Flinders catchment, excluding land underlain by the Rolling Downs Group (Figure 10.3b) ... 348

Figure 10.6 Area associated with each land suitability class for a selection of 13 crops in the Flinders catchment, excluding land inundated by flooding, underlain by the Rolling Downs Group (Figure 10.3b) or more than 5 km from a river of catchment area greater than 250 km² ... 348

Figure 10.7 (a) Monthly rainfall and (b) monthly potential evaporation at Richmond under Scenario A ... 349

Figure 10.8 (a) Monthly maximum temperature and (b) monthly minimum temperature at Richmond under Scenario A ... 349

Figure 10.9 Reliability of extracting water up to the annual entitlement for ten irrigators for three ‘storage size to entitlement-to-pump capacity’ (SSEPC) ratios (5, 10 and 20) by 1 February under Scenario B320 ... 354

Figure 10.10 Reliability of extracting water up to the annual entitlement for ten water harvesting users for three ‘storage size to entitlement-to-pump capacity’ (SSEPC) ratios (5, 10 and 20) by 1 July under Scenario B320 ... 355

Figure 10.11 Reliability of extracting water up to the entitlement for ten water harvesting users by 1 January under Scenario B. Assuming a ‘storage size to entitlement-to-pump capacity’ (SSEPC) ratio of 5 ... 357

Figure 10.12 Reliability of extracting water up to the entitlement for ten water harvesting users by 1 February under Scenario B. Assuming a ‘storage size to entitlement-to-pump capacity’ (SSEPC) ratio of 5 ... 358

Figure 10.13 Reliability of extracting water up to the entitlement for ten water harvesting users by 1 July under Scenario B. Assuming a ‘storage size to entitlement-to-pump capacity’ (SSEPC) ratio of 5 ... 359