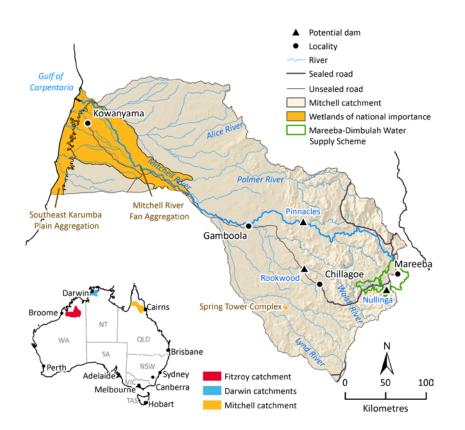
Key findings for the Mitchell catchment

CSIRO has completed, for the Australian Government, an investigation of opportunities for water resource development in the Fitzroy, Darwin and Mitchell catchments of northern Australia. Each study area offers the possibility of irrigation developments exceeding the scale of the lower Burdekin in north Queensland.


July 2018

The Northern Australia Water Resource Assessment (NAWRA) has, for each study area:

- identified and evaluated surface and ground water capture and storage options
- provided detailed information on land suitability
- identified and tested the commercial viability of agriculture and aquaculture
- assessed potential environmental, social and economic impacts and risks.

The Mitchell catchment

The Mitchell catchment has the potential to support 140,000 ha of year-round irrigated agricultural development, such as sugarcane. Irrigation on this scale would be based on four large instream dams that could release 2800 GL for agriculture in 85% of years. Offstream water harvesting could extract 2000 GL with 85% reliability, which would be sufficient to irrigate 200,000 ha of a single dry-season crop such as cotton. Groundwater opportunities are small and localised. The precise area under irrigation will, in any year, vary depending on factors such as irrigation efficiency, water availability, crop choice and risk appetite. Irrigation of this type could be widely distributed across the catchment or concentrated into a smaller number of irrigation areas. There are 235,000 ha of coastal land that are suitable for lined aquaculture ponds.

- The Fitzroy, Darwin and Mitchell catchments differ significantly in their physical and social characteristics and, as a consequence, the extent to, and the methods by which, agricultural development might occur.
- In the Fitzroy catchment, water harvesting (water pumped into farm dams) could support 160,000 ha of irrigation in 85% of years. Independent of surface water, groundwater could support up to 30,000 ha of hay production.
- In the Darwin catchments, a combination of major dams, farm-scale offstream storages and groundwater could support up to 90,000 ha of dry-season horticulture and mango trees.
- In the Mitchell catchment, large instream dams could support 140,000 ha of year-round irrigation. Alternatively, water harvesting could enable up to 200,000 ha of irrigation with one dry-season crop per year.
- If irrigation opportunities were fully developed, they would occupy less than 3% of the Assessment area.
- Indigenous people have continuously occupied and managed the Mitchell catchment for tens of thousands of years and retain significant and growing rights and interests in land and water resources, including crucial roles in water and development planning and as co-investors in future development.

The Mitchell catchment

Establishing irrigated cropping is challenging, with high input costs and high capital requirements for new (greenfield) developments. Gross margins between different crop options are highly variable with industrial crops (sugarcane and cotton) and peanuts giving the highest returns. For industrial crops to be profitable, local processing is required, and the scale of development and supply commitment needs to be sufficient to justify the investment in processing facilities. Farming systems that have more than one crop a year, or are integrated and supplement the dominant beef production systems in the Mitchell catchment are most likely to succeed initially. Irrigated forages for young cattle - to increase their weight and to allow early weaning - could markedly increase beef production per year and yield a profit. Pond-based black tiger prawns or barramundi offer potentially high returns in saltwater near the coastal margin of the catchment.

Large developments for agriculture are complex and costly and it is prudent to stage development to limit risk of early failure and allow for small-scale testing on new farms. Under the development scenarios examined, the aggregated farm revenue from broadacre cropping is unlikely to cover the cost of infrastructure, so value-adding opportunities through processing will greatly assist in improving commercial viability.

Impacts on ecological function would not be confined to the direct development footprint and would warrant further attention, especially immediately downstream, in drier years and for particular habitats such as waterholes, wetlands, riparian areas, mangroves and salt flats and into the Gulf of Carpentaria. Understanding how diverse stakeholder, investor and developer perspectives interact will be crucial in building and maintaining an ongoing social license to operate for future water and agricultural developments. Key biophysical characteristics related to irrigation development in the Assessment Area

	_	-	
ITEM	FITZROY	DARWIN	MITCHELL
Climate	Hot semi-arid	Hot humid	Hot semi-arid
Area	94,000 km²	30,000 km²	72,000 km²
Mean annual rainfall	552 mm	1423 mm	996 mm
Year to year rainfall variability	Very High	Moderate	High
Mean annual potential evaporation	1990 mm	1910 mm	1860 mm
Mean annual runoff	79 mm	416 mm	246 mm
Mean annual discharge	6600 GL	11,200 GL	15,570 GL
Median annual discharge	4900 GL	10,200 GL	13,000 GL
Area of soil moderately suitable for irrigated agriculture	5.4 million ha	1 million ha	3 million ha
Most economical source of water	Groundwater	Groundwater and gully dams	Groundwater and gully dams
Potential scale of new groundwater development	170 GL	35 GL	15 GL
Water source enabling largest scale of development	Water harvesting	Major instream dams	Major instream dams
How much water could physically be released for consumptive use	1170 GL	436 GL	2800 GL
Potential area of irrigation	160,000 ha single dry-season crop	60,000 ha single dry-season crop	140,000 ha year-round
Potential area of irrigation as a percentage of the study area	1.7%	2%	1.9%
Reduction in	25% of mean flow	<5% of mean flow	22% mean flow
discharge at ocean	35% of median flow	<5% of median flow	24% median flow

Australian Government

Department of Infrastructure, Regional Development and Cities The Northern Australia Water Resources Assessment (NAWRA) was conducted for the Commonwealth of Australia represented by the Department of Infrastructure, Regional Development and Cities. NAWRA was funded through the Australian Government's National Water Infrastructure Development Fund, an initiative of the Agricultural Competitiveness White Paper.

CONTACT US

- t 1300 363 400 +61 3 9545 2176
- e csiroenquiries@csiro.au
- **w** www.csiro.au

WE DO THE EXTRAORDINARY EVERYDAY

We innovate for tomorrow and help improve today – for our customers, all Australians and the world.

WE IMAGINE WE COLLABORATE WE INNOVATE

Chris Chilcott

Research Leader, Northern Australian Development t +61 8 8944 8422 e chris.chilcott@csiro.au

w www.csiro.au/NAWRA