This document was created in response to a Freedom of Information request made to CSIRO.

FOI Number: FOI2011/47

Date: 7 December 2011

Request: Copies of any information to do with CSIRO and Termi-Mesh regarding ABSAC Opinion between the years 1990 through to 1 March 1993

For more information, please refer to CSIRO’s FOI disclosure log at www.csiro.au/FOILog
TECHNICAL OPINION
NO 158 November 1992

Termi-Mesh
(Anti Termite Mesh Barrier)

PURPOSE

A physical barrier for buildings and structures against subterranean termite entry

APPLICANT

Termi-Mesh Australia Pty Ltd, 10 Westchester Road, Malaga, Western Australia 6062 (ACN 009 452 475)
(Supplier)
Termi-Mesh patent held by V Toutountzis

Figure 1. TERMI-MESH under concrete slabs on ground for buildings

Figure 2. TERMI-MESH in cavity walls

Figure 3. TERMI-MESH for the outside perimeter of cavity walls
TECHNICAL OPINION

In the opinion of ABSAC, Termi-Mesh (Anti Termite Mesh Barrier) is a suitable physical barrier against subterranean termite entry by use of a stainless steel mesh provided that:

1. The Termi-Mesh (Anti Termite Mesh Barrier) is installed by installers trained and approved by Termi-Mesh Australia Pty Ltd as:
 (a) A continuous barrier for new slab on ground construction,
 (b) a continuous barrier in cavity wall and around service penetrations in a new construction,
 (c) a continuous perimeter barrier across weep holes for new and existing constructions,
 (d) a cold-joint continuous barrier between existing structure and new slab,
 (e) a barrier around timber posts supporting structures (e.g. a sock) and,
 (f) a continuous physical shield in slab constructed structures.

2. All penetrations through the Termi-Mesh barrier are sealed in accordance with Termi-Mesh Australia specifications.
 Note: These specifications are available on request from Termi-Mesh Australia Pty Ltd, 10 Westchester Road, Malaga, Western Australia 6062

3. The barrier is installed to extend above the soil level at the perimeter of the structure and/or into the external leaf of brickwork above the damp proof course.

4. When used in conjunction with other barriers, the perimeter of the structure is treated to comply with the requirements of Australian Standards AS 1894-1974 ‘Code of practice for physical barriers used in the protection of buildings against subterranean termites (matrice unite)’ or AS 2057-1988 ‘Protection of buildings from subterranean termites - Chemical treatment of soil for buildings under construction’.

5. When used as a perimeter barrier in new construction for concrete slab or raft floors (Termi-Mesh Specification No 103), Termi-Mesh is used in conjunction with a termite barrier for penetration through the slab or raft.

6. Inspections are made, at least once a year, to check that no bridging or breaching has taken place.

7. Termi-Mesh is not used to protect against the species Heterotermes vagus.
 Note: This species of termite only currently known to exist in the northern coastal areas of Australia north of latitude 17.5°S.

BUILDING CODE of AUSTRALIA

In the opinion of ABSAC, the system described in this Technical Opinion and installed under the conditions listed herein will satisfy the provisions of Clause B1.1, ‘General Requirements’ in that it will give equivalent performance to that of Clause B1.3, ‘Construction deemed-to-satisfy’, Part 11 ‘Protection from termites’ of the Building Code of Australia (2nd Edition 1990, including Amendments 1, 2, 3 and 4).

Note: The inclusion of this clause with reference to the Building Code of Australia (BCA) is aimed at assisting local government authorities relate the Appraisal to their relevant regulations.

Any changes made to the BCA will be reviewed during the term of validity of this Technical Opinion and, where necessary, any amendment required, will be published in the annual ABSAC Consolidated List of Technical Opinions.

RELATED INFORMATION

VALIDITY OF THE OPINION

Condition:
This Technical Opinion applies only to the use of the Termi-Mesh (Anti Termite Mesh Barrier) as described herein.

Withdrawal:
This Technical Opinion will be withdrawn or amended if ABSAC considers that a change in design or manufacturing quality renders the basis of appraisal invalid, or if reported field experience convinces ABSAC of unsatisfactory quality or performance.

Term of Validity:
This Technical Opinion will lapse three years after the date of issue unless revalidation is requested and granted (see back page).
RELEVANT DOCUMENTS

Termi-Mesh Australia, 'Termi-Mesh Specification No 104: Cold joint installation for termite protection between existing structure and new slab' (April 1992)
Standards Australia, AS 1694-1974 'Code of practice for physical barriers used in the protection of buildings against subterranean termites (matric units)'
Standards Australia, AS 2057-1986 'Protection of buildings from subterranean termites - Chemical treatment of soil for buildings under construction'.

APPROVED OPINION EXTRACT

The Termi-Mesh (Anti Termite Mesh Barrier) as installed by Termi-Mesh Australia Pty Ltd, Malaga, Western Australia, (ACN 009 452 475) and installers trained and approved by Termi-Mesh Australia Pty Ltd is suitable for use as a physical barrier against subterranean termite entry when the conditions of ABSAC Technical Opinion No. 158 are fulfilled.

APPRAISAL

DESCRIPTION

The following description is based on information provided by the applicant.

General:
A high grade stainless steel mesh is used as a physical barrier to prevent subterranean termites entering a structure either through the concrete slab or via cavity walls.

Mesh Specification:
Termi-Mesh is made from 304 or 316 grade stainless steel. The mesh is made from 0.16 mm diameter wire with mesh openings of 0.85 x 0.45 mm. Termi-Mesh is made in widths of 1200 mm and approximately 30 m long.

Installation:
Termi-Mesh can be used under slab on ground, in cavity walls, on the outside perimeter of cavity walls, as a cold joint installation between existing structures and new slabs and can be installed in timber post supported structures. The mesh is joined by a 10 - 15 mm physical lap joint (two and a half times). This join can be strengthened by using a hot-glue gun every 500 - 1000 mm along the join.

Sealing penetrations through concrete slabs is achieved by cutting a hole, smaller than the penetration, in the mesh and then stretching the mesh over the penetration to form a collar. This collar is secured by a stainless steel hose clamp.

1. Slab-on-ground:
Termi-Mesh is installed after the footings and plumbing have been completed and before the plastic vapour barrier and steel reinforcing is laid for the concrete slab.

2. Cavity walls:
The mesh can be installed on the slab edge and into the external leaf of the cavity. The mesh will allow moisture to drain through to the weep holes. The mesh can remain hidden within the brick course or be exposed on the external wall.

3. Outside perimeter of cavity walls:
The Termi-Mesh is cemented to the concrete footing and extends approximately 50 mm above the ground level.

4. Cold joint installation between existing structure and new slab:
The Termi-Mesh is adhered/cemented onto the existing structure without any gaps and then sandwiched into the concrete being poured for the new structure.
5. Timber post supported structures:
The Termi-Mesh is formed into a continuous 'sock' which is pulled over the end of the post to be set into the ground.

6. Termite cap:
The mesh can be used in place of the typical termite cap on the top of pilars.

DESIGN INFORMATION

General:
Termi-Mesh is a fine gauge stainless steel mesh, with openings too small for termites, except the species *Heterotermes vagus*, to penetrate.

Durability:
The life expectancy of the physical barrier made by Termi-Mesh would be no shorter than that expected from other conventional treatments covered by Australian Standards, either AS 1694-1974 'Code of practice for physical barriers used in the protection of buildings against subterranean termites (metric units)' or AS 2057-1986 'Protection of buildings from subterranean termites - Chemical treatment of soil for buildings under construction'.

BASIS OF APPRAISAL

ABSAC has assessed the following aspects in undertaking this appraisal:

(a) physical properties of the mesh,
(b) installation procedures,
(c) long term durability of the stainless steel mesh and
(d) relationship to Australian Standards AS 1694-1974 'Code of practice for physical barriers used in the protection of buildings against subterranean termites (metric units)' and AS 2057-1986 'Protection of buildings from subterranean termites - Chemical treatment of soil for buildings under construction'.

The following documents and inspections were used in carrying out the appraisal:

Manufacturer's and Installation Information:

1. Termi-Mesh Australia Pty Ltd, 10 Westchester Road, Malaga, Western Australia 6062, Letter (6 June 1991):
This letter provides specifications of the mesh, and installation details. It is noted that, at present, installation is only by Termi-Mesh Australia Pty Ltd. However, it is envisaged that licensed approved installers will be trained by Termi-Mesh Australia Pty Ltd in future. Termi-Mesh Australia Pty Ltd intends to guarantee the product and inspect the majority of installations.

2. Termi-Mesh Australia Pty Ltd, 10 Westchester Road, Malaga, Western Australia 6062. 'Termi-Mesh Installation Information' (April 1992):
This manual details installation instructions of the mesh for use under slab on ground, in cavity walls, on the outside perimeter of cavity walls, as a cold-joint installation between existing structures and new slabs and in timber post supported structures.

3. Termi-Mesh Australia Pty Ltd, 10 Westchester Road, Malaga, Western Australia 6062. 'Termi-Mesh Installation Information', Letter (15 April 1992):
Termi-Mesh is now a Trade Mark. Termi-Mesh Australia Pty Ltd has training programs for installers who obtain a Termi-Mesh franchise. The franchise agreement requires that installers be trained by Termi-Mesh Australia Pty Ltd who will also have inspectors checking on the quality of work of installers. A franchise will be terminated where work is not up to the required standard.

This correspondence details information about the chemical and galvanic corrosion of stainless steels and corrosion due to building materials. Also, cold-jointing and termite shielding and caps are discussed. Important information for installing Termi-Mesh is also given.

This facsimile details the quality control methods used in the production of the Termi-Mesh.

6. Ormonoid, a subsidiary of Laporte, Level Thin No. 8. Rapid Hardening Cement Based Levelling Compound, Data Sheet:
This adhesive cement is used for levelling uneven concrete. It is composed of Portland Cement with a polycellulose adhesive which polymerises with water. Details of preparation, mixing, application and specifications are provided.
Test Reports:

1. CSIRO Division of Entomology, Canberra ACT 2601 Report 90/11 'The resistance of Termi-Mesh to penetration of subterranean termites in the laboratory' (10 October 1990):
The results were satisfactory in that the termites did not breach the mesh, folded joints or stainless steel seals during a 12 week test period.

2. CSIRO Division of Entomology, Canberra ACT 2601 Report 91/15 'The resistance of Termi-Mesh to penetration of subterranean termites in the field - First Report' (16 August 1991):
The results were satisfactory for termites except the species Heterotermes vagus. No termites except the Heterotermes vagus breached the mesh, folded joints or seals during a 12 month exposure period.
Note: The mesh is now manufactured with openings of 0.36 x 0.45 mm, which may prevent entry of the Heterotermes vagus species. The smaller opening mesh is currently under test against this species.

3. Department of Mines Western Australia, Chemistry Centre, 125 Hay Street, East Perth, Western Australia 6004. Accelerated Corrosion Test (25 February, 1991):
This report states that the Termi Mesh showed no observable sign of corrosion when tested alone or with copper pipe and cement mortar.
Slight staining was reported where the mesh was stressed. Corrosion was severe on steel reinforcement in contact with the mesh. Under the systems appraised in this Technical Opinion, direct contact between the Termi Mesh and reinforcing steel is not permitted.

Inspections:
ABSAC representatives have inspected a site prior to concreting and found the level of performance satisfactory. It was noted that a high degree of care and skill, and attention to detail are necessary. Supervision would be necessary to maintain the precision needed.

B. L. Schaefer
Appraisal Officer
22/07/1992

K. G. Deacon
Chairman ABSAC
1. SOURCE ORGANISATION

Absac
AUSTRALIAN BUILDING SYSTEMS APPRAISAL COUNCIL LIMITED

2. ORGANISATIONAL UNIT
Technical Secretariat

3. TYPE OF DOCUMENT/SERIES
Technical Opinion

4. DOCUMENT NUMBER
158

5. TITLE/SUBTITLE
Termi-Mesh (Anti Termite Mesh Barrier)

6. AUTHOR(S) (Give Affiliation of External Authors or Co-authors)
B. L. Schefér

7. PUBLISHER AND PLACE OF PUBLICATION
ABSAC/Melbourne

8. PUBLICATION REFERENCES

9. DATE OF ISSUE
(Month, Year)
November 1992

10. NO. OF PAGES
AND FORMAT
7/A4

11. PRICE

12. SUPPLEMENTARY NOTES

13. KEYWORDS (Up to 15 entries, Alphabetical Order Preferred, Divide by Semicolons)
ABSAC; cavity walls; concrete slab-on-ground; perimeter; physical; pier; stainless steel mesh; subterranean termites; termite barrier

14. ABSTRACT (ABSAC Approved Opinion Extract)
The Termi-Mesh (Anti Termite Mesh Barrier) as installed by Termi-Mesh Australia Pty Ltd, Malaga, Western Australia, (ACN 009 452 475) and installers trained and approved by Termi-Mesh Australia Pty Ltd is suitable for use as a physical barrier against subterranean termites entry when the conditions of ABSAC Technical Opinion No. 158 are fulfilled.
AUSTRALIAN BUILDING SYSTEMS APPRAISAL COUNCIL LIMITED

The Australian Building Systems Appraisal Council Limited (ABSAC) is a non-profit company limited by guarantee which was established in 1978. The company was set up to carry out appraisals of innovations related to building and to publish its findings, with the agreement of the promoters, in the form of Technical Opinions. It thus provides a national centre of reference, acknowledged and encouraged by the Federal Government, which can assess innovations.

GENERAL PROVISIONS

Technical Opinions are not Approvals.

A Technical Opinion is intended to help all those concerned with the approval, specification and use of new products or systems. Special note should be taken of the provisions and limitations set out and the period of validity of the Technical Opinion.

Each Technical Opinion is prepared on behalf of the ABSAC by its Technical Advisory Committee (TAC) after careful consideration of the evidence available. TAC draws on the service of specialists, the Appraisal Officers, who are appointed for each application. ABSAC makes the appraisals on a national basis. To take account of variations in local building regulations, practice and local climatic features, it has set up regional committees in each State and Territory.

ABSAC accepts no responsibility for the quality and performance of batches of the material, product or system appraised. However, Technical Opinions will be withdrawn if experience shows poor overall standard of quality or performance.

Technical Opinions are given a term of validity of three years from the date of issue, in the expectation that, after that period, the subject will no longer be an innovation. They are reviewed within the first twelve months and again, as necessary. At the end of the three-year term of validity, a review is undertaken. This can result in an extension to the term of validity. The limitation on the term of validity of the Technical Opinions should not be interpreted as implying a similarly limited life expectancy of the products or systems. The term of validity of the Technical Opinion can be checked at the registered office of ABSAC.

This document must not be copied without authorization by ABSAC. An authorized copy must contain the full text and not part of it. Copies of Technical Opinions are available from the manufacturer, representative or promoter.

DIRECTORS

K.G. Deacon (Chairman)
J. R. Coghlan
L.E. Dix
J.T. Eaton
K.G. Martin
D.E. Piggott
E. G. Shearer
R.A. Swane
G. Forbes (Manager)

TECHNICAL ADVISORY COMMITTEE

J.T. Eaton Chairman
G. Geary
R. Goodall
K.N. Stanton
R.D. Thompson
C.F. Woods
B.L. Schafer (Tech. Mgr)
L.B. Bridgen (Dep. Tech. Mgr)
A. Linaraki (Tech. Ass’t)

REGIONAL REVIEW COMMITTEES

New South Wales
W.A. Bagger (ACT)
S. Dunford
M. Hall
B. O'Mara
P. Williams

Northern Territory
M. Batch
P. Fanning
R. Luxton
R. Wallis
B. Wharton

South Queensland
J. Day
J. Hutchinson
A. Leicester
M. O'Leary
K.J. Rauber

Western Australia
D. Buchanan
A. Gillett
W. Holt
R.A. Wallis
D. Sidebotham

Australia
M. Hopkins
S. McLennan
P. Phillips
M. Hopkins
S. McLennan
P. Phillips

Victoria
North Queensland
Tasmania

South Australia
J.F. Evans
A. McKaough
J. Mazzarolo
R. Neuling

North Queensland
B. Dean
H. Horton
G. Reardon

Tasmania
G.F. Hunt
B. Shannon