Blog icon

By Amalyah Hart 28 March 2022 8 min read

Credit: Michael Dunning; Getty Images

What are critical and rare-earth minerals?

Critical minerals are vital for the world’s economic wellbeing; nickel, manganese and cobalt, all of which are mined in Australia, are needed to make batteries, for example, which will power a greener future, and alumina (aluminium oxide) is needed to make lithium-ion batteries. People often confuse critical and rare-earth minerals, but rare earths make up a specific, highly useful category of their own within the critical minerals family.

The rare earth metals are 15 elements in the lanthanide series of the periodic table (plus two extra ones that aren’t in the lanthanide series). They’re not, in fact, particularly rare in the Earth’s crust; according to Geosciences Australia[Link will open in a new window], cerium is the 25th most abundant element in the crust. As research scientist Chris Vernon, who leads the Green Mineral Technologies initiative at CSIRO, puts it, the first rare earths on the chain, lanthanum and cerium, are “common as muck”.

The rare earths are a bit like chemical wunderkinds: they’re used for all sorts of things most of us don’t even know we need.

Lanthanum and cerium are catalysts in a number of industrial processes; neodymium and praseodymium (commonly short-handed as NdPr) make super-strong magnets, which we need for effective motors in things like wind turbines and electric vehicles; these last two, plus gadolinium, are also used in the teeny tiny magnets in your smartphone’s speaker and microphone. Other rare earths, such as ytterbium and europium, create the colours in LED lighting.

According to Allison Britt, director of mineral resources advice and promotion at Geosciences Australia, rare earths are even used in rapid antigen tests to create the thin red lines that tell you if you’re positive or negative.

So, all these minerals are important for the functioning of the global economy. Most importantly, we need them for renewable energy, particularly for our wind turbines, electric vehicles, and batteries – without them, we have little hope of powering a net-zero future.

What are the benefits of an on-shore critical mineral sector?

We already mine critical minerals here in Australia – the nation produces almost half[Link will open in a new window] of the worldwide supply of lithium, for example. But the touted projects would ramp up extraction, and in particular will amount to the first processing of rare earths onshore – up until now, we’ve simply shipped our raw rare-earths abroad.

According to Vernon, “the thing with rare earths is that the West forgot about them”.

“In the 1980s China started producing rare earths at really cheap prices, before we’d started to use a lot of rare earths in magnets, but we weren’t even building electric vehicles, so we didn’t care.”

Interest has piqued since the 2010s, with more rare-earth prospecting, but essentially Australia, despite being the fourth-largest producer of rare-earths in the world, still sits on a vast and untapped quantity of these materials.

“The statistics are that Australia might have something like 20% of the world’s supply of rare earths,” Vernon says. “And I think that could go up quite considerably, once we start looking at some of these other deposits.”

Contact us

Find out how we can help you and your business. Get in touch using the form below and our experts will get in contact soon!

CSIRO will handle your personal information in accordance with the Privacy Act 1988 (Cth) and our Privacy Policy.


First name must be filled in

Surname must be filled in

I am representing *

Please choose an option

Please provide a subject for the enquriy

0 / 100

We'll need to know what you want to contact us about so we can give you an answer

0 / 1900

You shouldn't be able to see this field. Please try again and leave the field blank.