Blog icon

25 September 2015 News Release

[Title appears: Gravitational waves]

[Animation of two galaxies colliding appears then a bright white flash as the image zooms into the galaxies]

[Animation appears of a green grid in space with two black holes moving around the grid then colliding with the following text appearing on screen: Two black holes collide]

[Screen flashes bright white as image zooms back out to show the two galaxies then a green grid wave comes out from the centre of the galaxies]

[Text appears on screen: According to Einstein they send out gravitational waves which reach our Galaxy, the Milky Way where they modulate the signals from pulsars. While the green grid wave extends to another galaxy]

[Animation zooms in on a galaxy then flashes white and shows the earth with a large Satellite with a blue signal line going to a small yellow dot in space]

[Animate then changes to show a green grid covering space while it moves in a wave motion, text appears: Astronomers using the Parkes telescope were expecting to detect these waves during their pulsar timing research but didn’t… casting doubt on our current understanding of galaxies and their black holes.]

[CSIRO Logo appears with text: Big ideas start here, www.csiro.au]

Share & embed this video

Link

https://vimeo.com/140255109

Copied!

Embed code

<iframe src="//player.vimeo.com/video/140255109" width="640" height="360" frameborder="0" allow="autoplay; fullscreen" allowfullscreen></iframe>

Copied!

For scientists gravitational waves exert a powerful appeal, as it is believed they carry information allowing us to look back into the very beginnings of the Universe. Although there is strong circumstantial evidence for their existence, they have not yet been directly detected.

The work, led by Dr Ryan Shannon (of CSIRO and the International Centre for Radio Astronomy Research), is published today in the journal Science.

Using Parkes, the scientists expected to detect a background ‘rumble’ of the waves, coming from the merging galaxies throughout the Universe, but they weren’t there.

The world-first research has caused scientists to think about the Universe in a different way.

“This is probably the most comprehensive, high precision science that’s ever been undertaken in this field of astronomy,” Dr Shannon said.

“By pushing ourselves to the limits required for this sort of cosmic search we’re moving into new frontiers in all areas of physics, forcing ourselves to understand how galaxies and black holes work.”

The fact that gravitational waves weren’t detected goes against all theoretical calculations and throws our current understanding of black holes into question.

Galaxies grow by merging and every large one is thought to have a supermassive black hole at its heart. When two galaxies unite, the black holes are drawn together and form an orbiting pair.  At this point, Einstein’s theory is expected to take hold, with the pair predicted to succumb to a death spiral, sending ripples known as gravitational waves through space-time, the very fabric of the Universe.

Although Einstein’s general theory of relativity has withstood every test thrown at it by scientists, directly detecting gravitational waves remain the one missing piece of the puzzle.

To look for the waves, Dr Shannon’s team used the Parkes telescope to monitor a set of ‘millisecond pulsars’. These small stars produce highly regular trains of radio pulses and act like clocks in space. The scientists recorded the arrival times of the pulsar signals to an accuracy of ten billionths of a second.

A gravitational wave passing between Earth and a millisecond pulsar squeezes and stretches space, changing the distance between them by about 10 metres — a tiny fraction of the pulsar’s distance from Earth. This changes, very slightly, the time that the pulsar’s signals arrive on Earth.

The scientists studied their pulsars for 11 years, which should have been long enough to reveal gravitational waves.

So why haven’t  they been found? There could be a few reasons, but the scientists suspect it’s because black holes merge very fast, spending little time spiralling together and generating gravitational waves.

“There could be gas surrounding the black holes that creates friction and carries away their energy, letting them come to the clinch quite quickly,” said team member Dr Paul Lasky, a postdoctoral research fellow at Monash University.

Whatever the explanation, it means that if astronomers want to detect gravitational waves by timing pulsars they’ll have to record them for many more years.

“There might also be an advantage in going to a higher frequency,” said Dr Lindley Lentati of the University of Cambridge, UK, a member of the research team who specialises in pulsar-timing techniques. Astronomers will also gain an advantage with the highly sensitive Square Kilometre Array telescope, set to start construction in 2018.

Not finding gravitational waves through pulsar timing has no implications for ground-based gravitational wave detectors such as Advanced LIGO (the Laser Interferometer Gravitational-Wave Observatory), which began its own observations of the Universe last week.

“Ground-based detectors are looking for higher-frequency gravitational waves generated by other sources, such as coalescing neutron stars,” said Dr Vikram Ravi, a member of the research team from Swinburne University (now at Caltech, in Pasadena, California).

The International Centre for Radio Astronomy Research (ICRAR) is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Images

CSIRO's Parkes radio telescope.
Dr Ryan Shannon (CSIRO and ICRAR). ©  Wheeler Studios

Contact us

Find out how we can help you and your business. Get in touch using the form below and our experts will get in contact soon!

CSIRO will handle your personal information in accordance with the Privacy Act 1988 (Cth) and our Privacy Policy.


This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

First name must be filled in

Surname must be filled in

I am representing *

Please choose an option

Please provide a subject for the enquriy

0 / 100

We'll need to know what you want to contact us about so we can give you an answer

0 / 1900

You shouldn't be able to see this field. Please try again and leave the field blank.