Blog icon

The global deployment of solar power technology, at increasing scale, will be critical to the success of the global energy transition. By 2050, solar and other renewables will be the leading source of energy generation globally.

Australia has world leading solar resources and a vast land mass to facilitate deployment at scale. However, we are entirely reliant on overseas supply chains for the production of solar photovoltaic (PV) technology.

The Australian Silicon Action Plan, prepared by PricewaterhouseCoopers, outlines the economic benefits available to us by investing in an integrated silicon and solar cell supply chain. The ultimate vision is for an integrated silicon and solar cell supply chain, including recycling to address end of life considerations, that is powered by renewable energy and creates truly circular outcomes.

Download the report

[Music plays and a split circle appears and photos of different CSIRO activities flash through in either side of the circle and then the circle morphs into the CSIRO logo]

[Image changes to show text “Silicon” on a white screen, and then the image changes to show an animation of a rotating world globe, and then the animation image changes to show a dump truck]

Narrator: Silicon is one of the most abundant elements on our planet, with the most common form being silica sand or SiO2. 

[Animation images move through to show a concrete mixer truck, the sun shining on a solar panel, three computer screens, and a car moving across the screen from the left to the right]

SiO2 is a vital starting material for concrete, solar panels, fibre optics, and even aluminium alloys used in your car.

[Animation image changes to show a glowing light bulb on the left linked to a wind turbine on the right]

We need a lot of pure silicon for the energy transition especially. 

[Animation image changes to show a solar PV on the left and on the right of the screen, and text appears between: 4 terawatt hours]

The world requires 4TW hours of solar PV by 2050, making the demand even greater.

[Animation images move through to show the sun shining on solar panels, a piece of quartz rock, a lump of elemental silicon, a lump of poly silicon, a solar cell, and then a group of solar panels]

Solar panels are made from a form of silica called high purity quartz, which is first reduced into elemental silicon, then upgraded to poly silicon, cells, and then into panels. 

[Animation image changes to show symbols of the process of producing solar panels joined across the bottom of the screen and CO2 clouds appear moving up from the process chain]
 
This lengthy process generally produces a lot of CO¬2, and with a fragile global supply chain Australia has the chance to make a big difference.

[Animation images move through to show a world map showing the USA, and then China, and then Australia highlighted on the map]

Currently the United States supplies a lot of the quartz, while China produces the vast majority of the world’s poly silicon and solar panels.

[Camera zooms in on Australia on the map, and then symbols of quartz appear over the map, and then the symbols of quartz are replaced with symbols of solar panels]

With Australia’s access to high purity quartz, and the growing demand for solar PV, we have the potential to become an industry leader in producing clean, renewable electricity.

[Animation image changes to show a dump truck with a load of quartz in the back]

But it will take work to establish our own supply chains and ensure carbon neutrality.

[Animation image changes to show a process flow chart joining symbols of a sun shining on a solar panel, quartz, elemental silicon, poly silicon, green hydrogen, a solar cell, and a group of solar panels]

Considering new process techniques, like the use of green hydrogen to replace carbon reductants is essential. 

[Animation image changes to show the sun shining on a landscape, and then the camera zooms out to show a map Australia highlighted in a world map]

This is our chance to become a leader in green silicon and poly silicon production and in creating new industries.

[Music plays and the image changes to show text on a white screen: CSIRO, Australia’s National Science Agency]

Will you join us?
 

Share & embed this video

Link

https://vimeo.com/788515347

Copied!

Embed code

<iframe src="//player.vimeo.com/video/788515347" width="640" height="360" frameborder="0" allow="autoplay; fullscreen" allowfullscreen></iframe>

Copied!

Find out more about how your organisation can work with CSIRO

There are many ways we can support your business to drive innovation forward, from funding and programs to IP and Commercialisation expertise, to facility and lab use.

Work with us

Contact us

Find out how we can help you and your business. Get in touch using the form below and our experts will get in contact soon!

CSIRO will handle your personal information in accordance with the Privacy Act 1988 (Cth) and our Privacy Policy.


First name must be filled in

Surname must be filled in

I am representing *

Please choose an option

Please provide a subject for the enquriy

0 / 100

We'll need to know what you want to contact us about so we can give you an answer

0 / 1900

You shouldn't be able to see this field. Please try again and leave the field blank.